Aircraft Trajectory Prediction in Random Atmosphere. Mathematical background and application to a locally uniform academic case

Christophe Baehr
Météo-France / CNRS
CNRM / GAME UMR 3589
42 Ave G. Coriolis
31057 Toulouse Cedex, France
Email: christophe.baehr@meteo.fr

Cécile Ichard
Météo-France / CNRS
CNRM / GAME UMR 3589
42 Ave G. Coriolis
31057 Toulouse Cedex, France
Email: cecile.ichard@meteo.fr

Abstract—We are interested in aircraft trajectories seen as stochastic processes. These processes evolve in an unknown atmospheric random environment. As several aircraft parameters are unknown such as true airspeed (TAS) and wind, we have to estimate them.

To this end, we suggest to use ensemble weather forecasts, which give different scenarios for the atmosphere, with a system of trajectory predictions. In this way using the air-traffic data, we evaluate the likelihood of each element and we construct a random weather environment organized by the element weight.

To get this result, we use sequential Monte Carlo methods (SMC) in the special context of random environment. The algorithm called island particle filter allow to estimate both the likelihood of the meteorological forecasts and the aircraft parameters.

Index Terms—Trajectory Prediction, Random Environment, Ensemble Meteorological Forecast, Stochastic Process, Particle Filter

I. INTRODUCTION

To satisfy the future demand in terms of air transportation, the present air-traffic management system needs to be improved. To this end two projects, NEXTGen in the United-States and SESAR in Europe, have been launched. In both cases, the selected approach consists in constraining in time and space the aircraft position (4D-trajectory). Moreover, the SESAR project aims to ensure free flights avoiding any delaying tactics. Therefore trajectory predictors have to be accurate and reliable. In that way, the workload of air-traffic controllers can be reduced using decision support tools. Moreover the capacity of the airspace can be used to its maximal capacities. To explore more innovative techniques, the SESAR JU has developed the WP-E long term research program. This work contains the fundamental methods intend to be use in the WP-E IMET program. This program investigate the optimal approach for future trajectory prediction systems to use Meteorological uncertainty information.

To compute aircraft trajectories in advance, trajectory predictors need different information. Some concern the flight intent, others are directly related to the aircraft and finally some are environmental parameters, such as wind and temperature. An important source of uncertainty in aircraft trajectory prediction concerns the meteorological parameters. Indeed a part of the along track error in predicting the aircraft trajectories is due to the weather forecasting error.

Up to now, aircraft trajectory predictors use only one weather deterministic forecast. A solution which was proposed was to use statistical errors on weather forecast to get statistical errors on trajectory prediction. The problem with this method is that the statistics used are not space depending whereas the weather forecasting error is. This work aims to give a solution to this problem using ensemble weather forecasts. Indeed national meteorological center are able to provide them. These forecasts give several atmospheric evolution scenarios which reflects the lack of knowledge about the initial state. These scenarios enable to explore the uncertainties about the state of the atmosphere. Another fact at this point is that ensemble forecasts are not delivered with a probability distribution. This problem can be tackled using stochastic methods to weight the elements of the ensemble weather forecasts regarding to air-traffic observations.

In this work we suppose that we have air-traffic observations and an aircraft trajectory predictor. Each aircraft trajectory prediction has an error part and all the aircrafts trajectories in the same area are sharing the same meteorological situation. Now, considering we have a set of weather forecasts, we can evaluate a performing score regards to trajectory prediction errors over the last minutes.

In order to formalise these two ideas, the first part is dedicated to give the formal framework of this problem. Then the ensuing algorithms are explained and finally we give some numerical results on an academic example.

I. FORMALISM

To get the likelihood of wind proposals with respect to air-traffic radar observations, a mathematical modelization has to be done. We choose to modelize aircraft trajectories as stochastic processes evolving in a random meteorological
environment. Before going deeper into the mathematical formalism, we adopt the following notations. The ensemble of probability measures on a space E is denoted $P(E)$. For a probability measure μ and a measurable function f, $\mu(f)$ is the expectation of the function f for the measure μ. For a probability operator $Q(x, dy)$ giving the probability to arrive in the element dy starting from x, $\mu Q(dy) = \int \mu(dx)Q(x, dy)$ is the probability of the event dy for the operator Q averaged by the measure μ. Finally $\mu Q(f) = \int \mu(dx)Q(x, dy)f(y)$ is the expectation of the function f for the operator Q through the measure μ.

A. Definitions of the involved stochastic processes

Before considering aircraft trajectories, we decompose the real wind at time n, W_n^r into two parts, the forecasted part W_n^f and the forecasting error part X_1^n. The state parameters of an aircraft are denoted by the process X_2^n. X_1^n may contain theMode-S information such as the location, ground speed, TAS, etc. The process X_2^n is directly influenced by the atmosphere and in our computation by the Met prediction errors X_1^n. In this study we intend to evaluate the likelihood of the couple (X_1^n, X_2^n) according to radar observations Y_n. The Mode-S observations Y_n include the aircraft positions, ground speed, TAS, etc and are assumed to be imperfect.

In our study, we have split a control area (En-Route or TMA) in sub-domain D_t where the Met errors are spatially uniform. Our interest concerns the definition of the trajectories inside the subdomain D_t and we have to manage the entries and the exits of aircrafts. The modelling presented below corresponds to this locally uniform case.

For any $n \geq 0$ we consider $E_n^{(0)} \subset \mathbb{R}^2$ the location space. Let $X_{1,n}^1$ be an $E_n^{(1)}$-valued random homogeneous environment, i.e. a random field, where $n \geq 0$ and $x \in E_n^{(0)}$. $(E_n^{(1)}, \mathcal{E}_n^{(1)})$ is a collection of measurable spaces. In the sequel as far as there is no possible misunderstood, $X_{1,n}^1$ is denoted X_1^n. Let X_2^n be an $E_n^{(2)}$-valued process. $(E_n^{(2)}, \mathcal{E}_n^{(2)})$ is a collection of measurable spaces such that for any time step $n \geq 0$, $E_n^{(2)}$ encapsulates the location of the aircrafts which are in $E_n^{(0)}$ but also the aircrafts’ kinematic parameters for example. It means that some coordinates of the process X_2^n are locations in the space $E_n^{(0)}$. Let Y_n be a F_n-valued process where (F_n, \mathcal{F}_n) is a collection of measurable spaces.

X_1^n is supposed to be a Markov chain of transition kernel $M_{1}^{(1)}$ and initial distribution $\eta_0^{(1)}(dx_0^{(1)})$. X_2^n is also a Markov process of transition kernel $M_{2}^{(2)}$ and initial distribution $\eta_0^{(2)}$. The transition kernel family depends on the evolution of the random medium X_1^n.

Using these notations, the aircraft position process model is

$$X_{n+1}^0 = X_n^0 + S_n(X_2^n) + W_n^f(X_0^n)\Delta t + \Delta X_1^n(X_0^n)$$

where S_n is the flight strategy in a time step Δt.

Let $N_t^n > 0$ be an integer denoting the number of aircrafts present in a sub-domain D_t. An air-traffic is N_t^n duplications of the process X_1^n. Moreover we consider that there are no interactions between the aircrafts, for instance no conflict avoidance. It means that the aircrafts $(X_1^{n,j})_{1 \leq j \leq N_t^n}$ are independant. The traffic processes $(X_2^{n,j})_{1 \leq j \leq N_t^n}$ are living in $E_n^{2} = \bigotimes_{1=1}^{N_t^n} E_n^{2,j}$. For the sake of simplicity, the family of aircrafts $(X_2^{n,j})_{1 \leq j \leq N_t^n}$ is also denoted by X_2^n. The process Y_n is a partial observation of the Markov chain $(X_1^n, X_2^n)_{n \geq 0}$.

B. Learning the Trajectory Processes in a Random Environment when the environment is decomposed in several domains

We first deal with the quenched process, which corresponds to the case where the evolution of the random environment is assumed to be fixed by the Met forecasts. In the next section, we will treat the case where the environment is regarded as a random process.

1) Quenched restricted process: In order to manage the subdomain exit of the aircrafts, we create a specific point called cemetry point, denoted U_0^n, where the aircrafts are affected as they go outside the subdomain.

Considering that $X_{1,n}^1 = x_{1,n}^{(1)}$ let denote $(X_{2,n}^j(x_{1,n}^{(1)}))_{1 \leq j \leq N_t^n}$ the aircraft state where $X_{2,n}^j$ is the location process. The aircrafts evolve with the transition kernel $M_{2}^{(2)}$, for any x_{n-1} to the target dy according to:

$$M_{2}^{(2)}(x_{n-1}^j, dy) = \mathbb{I}_{D_t}(y) M_{2}^{(2)}(x_{n-1}^j, dy) + (1 - \mathbb{I}_{D_t}(y)) \delta_{(U_0^n)}(dy)$$

Therefore the mutation kernel $M_{2}^{(2)}(x_{n-1}^j, dy)$ corresponds to a survival process where the aircraft goes to the cemetry U_0^n if it exits the domain D_t. After this transition step in D_t there are $N_t^n - 1$ remaining aircrafts.

Then $N_t^n - 1$ new aircrafts are added, that means that some aircrafts are entering into the domain D_t. This step is modeled by the kernel transition $P_{n,t}$ which is defined for any probability measure η by:

$$\eta P_{n,t} = \eta \otimes \eta * \mu_n$$

where μ_n is the new aircraft reallocation measure. $P_{n,t}$ can be written in the preceeding form because the mutation kernel $M_{2}^{(2)}(x_{n-1}^j, dy)$ does not account for any interaction process for instance without any conflict avoidance scheme.

Each aircraft generates an observation Y_{n}^{t}, with probability density function $G_{x_{n}^{(2)},n}^t(X_{n}^{(2)}, t)$. This density function corresponds to the likelihood of the radar observation with respect to the process restricted to the uniform domain D_t.

The Trajectory Prediction (TP) distribution with respect to the Met environment and the observations is denoted:

$$\eta_{2}^{(2)}(X_{[0,n]}, t) = \mathbb{P}(X_n^{(2)} | Y_{[0,n-1], t} = (y_{0,t}, \ldots, y_{n-1,t}), X_{1[0,n],t} = (x_{0,t}^{(1)}, \ldots, x_{n-1,t}^{(1)}))$$
The updated version of this distribution using the new observation and corresponding to the optimal TP is denoted by:

\[\eta_{x[n],l}^{(1)} = \mathbb{P}(X_{n,l}^{2} | Y_{0,n},l = (y_{0,l}, \ldots, y_{n,l}), X_{0,l}^{1} = (x_{0,l}, \ldots, x_{n,l})) \]

As it was proved in [1], \(\eta_{x[n],l}^{(2)} \) satisfies the following non-linear equation:

\[\eta_{x[n],l}^{(2)} = \phi_{x[n],l}^{(2)} \left(\eta_{x[n-1,l],l}^{(1)} \right) \]

with

\[\phi_{x[n],l}^{(2)}(\eta_{x[n-1,l],l}^{(1)}) = \int_{\mathbb{R}} \psi_{x[n-1,l],l}^{(1)}(\eta_{x[n-1,l],l}^{(1)})(dx_{n,l}^{(2)}) \]

where

\[\psi_{x[n-1,l],l}^{(1)}(\eta_{x[n-1,l],l}^{(1)})(dx_{n,l}^{(2)}) = \mathbb{E}_{E_{n-1,l}}^{(2)} \eta_{x[n-1,l],l}^{(1)}(x_{n,l}^{(2)})P_{n,l}(x_{n,l}^{(2)}) \]

This complex nonlinear system gives the sequential evolution of the TP distribution. It has no analytical solution and we have to use a Monte-Carlo algorithm to compute an approximate solution. Finally we summarize the evolution scheme of the TP distributions by the following scheme:

\[X_{n+1,l} \sim \eta_{x[n+1,l]}^{(1)}, \quad X_{n+1,l} \sim \eta_{x[n+1,l]}^{(2)} \]

2) Random restricted distribution process: In this section the environment is not fixed and we take into account its unknown evolution. As we decompose the space \(E_{n,l} \) for each time step \(n > 0 \) such that the random field \(X_{n,l}^{1} \) is uniform in each cell \(D_{l} \), we have to restrict the random process in distribution space \(\eta' \) on each \(D_{l} \). To this end, we introduce the stochastic process:

\[X'_{n,l} = (X_{n,l}^{1}, \eta_{x[n,l],l}^{(1)}) \]

This stochastic process takes its values in \(E_{n,l} = E_{n,l}^{1} \times \mathcal{P}(E_{n,l}^{2}) \). As it was proved in [1], it is a Markov chain with transitions defined for any function \(f'_{n,l} \) and for any state \((u, \eta) \in E_{n,l}\):

\[M_{n,l}^{1} \left((x_{n-1,l}^{1}, y_{x[n-1,l],l}^{(1)}), d(x_{n,l}^{1}, y_{x[n,l],l}^{(2)}) \right) \left(f'_{n,l} \right) = \int \int \mathbb{P}(X_{n}^{2} | Y_{0,n},l = (y_{0,l}, \ldots, y_{n,l}), X_{0,n}^{1} = (x_{0,l}, \ldots, x_{n,l})). \]

and an initial distribution \(\eta_{0,l} \in \mathcal{P}(E_{0,l}^{1}) \) defined by:

\[\eta_{0,l}(d(x, \nu)) = \delta_{x_{0,l}}(dx) \delta_{\nu_{0,l}}(d\nu) \]

The application \(\phi_{x[n],l}^{(2)} \) is defined by:

\[\phi_{x[n],l}^{(2)}(\eta_{x[n-1,l],l}^{(1)})(dx_{n,l}^{(2)}) = \psi_{x[n-1,l],l}^{(1)}(\eta_{x[n-1,l],l}^{(1)})(dx_{n,l}^{(2)}) \]

The most important point to keep in mind to differentiate \(\phi_{x[n],l} \) is that in the quenched framework we know the environment and its evolution in time whereas in this distribution space \(X_{n,l}^{1} \) is a random variable.

Now following the same scheme as before, we define the marginal quantities \(\eta_{n,l} \) in distribution space. We can find here that

\[\eta_{n,l} = \mathbb{P}(X_{n,l}^{1}, \eta_{x[n,l],l}^{(2)} | Y_{0,n-1,l} = (y_{0,l}, \ldots, y_{n-1,l})) \]

and

\[\eta_{n,l} = \mathbb{P}(X_{n,l}^{1}, \eta_{x[n,l],l}^{(2)} | Y_{0,n,l} = (y_{0,l}, \ldots, y_{n,l})). \]

One can check that \(\eta_{l} \) is verifying a non-linear equation:

\[M_{n,l}^{1} \left((x_{n-1,l}^{1}, y_{x[n-1,l],l}^{(1)}), d(x_{n,l}^{1}, y_{x[n,l],l}^{(2)}) \right) \left(f'_{n,l} \right) = \phi_{x[n],l}^{(2)}(\eta_{x[n-1,l],l}^{(1)})(dx_{n,l}^{(2)}) \]

with

\[\psi_{n-1,l}(\eta')(f'_{n,l}) = \psi'(G_{n-1,l}^{1}(x,y), \eta')(G_{n-1,l}^{1}(x,y)) \]

where

\[G_{n,l}^{1}(x,y) = \int_{E_{n,l}^{2}} \mu(dy)G_{n,l}(x,y) = \mu(G_{n,l}(x,y)) \]

In other words, \(G_{n,l}^{1} \) represents the probability that the observations \(y_{n,l} \) is made given that \(Y_{0,n-l} = (y_{0,l}, \ldots, y_{n-1,l}) \), and \(X_{n,l}^{1} = x_{n,l}^{(1)} \).

As the probability \(\eta_{n,l} \) cannot be calculated analytically, we have to use particle techniques to approximate them using the Island Particle Filter algorithm presented in the generic Algorithm 1. In this generic algorithm the hidden state \(x_{n,l} = (x_{n,l}^{1}, \eta_{x[n,l],l}^{(1)}) \) has to be estimate with respect to the observation sequence \(y_{n,l} \). This is exactly the scope of our work.
Algorithm 1 Island Particle Filter - IPF

Require: \(\eta_0, M' \) et \(\psi' \)

Ensure: Particle approximation of \(p(x_n^i|y_{1:n}) \) and \(p(x_n^i|y_{1:n-1}) \)

Begin
1. INITIALIZATION \(p = 0 \)
 for \(i = 1, \ldots, N_2 \) do
 Sample \(\epsilon^i = (\zeta_{0}^i, \nu_{0}^i) \sim \eta_0' \)
 \(\zeta_{0}^i \sim \eta_{0}^{(1)} \) and \(\nu_{0}^i = \frac{1}{N_1} \sum_{j=1}^{N_1} \xi_{0}^{i,j} \) where \(\xi_{0}^{i,j} \sim \eta_{0}^{(2)} \)
 end for
 \(p = 1 \)
2. SELECTION OF ISLANDS
 Sample \(I_p = (I_p^0)_{i=1}^{N_2} \) multinomially with probability \(\alpha \)
 \(\left(\frac{1}{N_1} \sum_{j=1}^{N_1} G_p(\zeta_{0}^{i,j}, \xi_{0}^{i,j}) \right)_{i=1}^{N_2} \)
 for \(i = 1, \ldots, N_2 \) do
 end for
3. SELECTION OF PARTICLES INSIDE EACH ISLAND
 Sample \(J_p^i = (J_p^k)_{i=1}^{N_1} \) multinomially with probability \(\alpha \)
 \(\left(G_p(\zeta_{0}^{i,j}, \zeta_{0}^{k,j}) \right)_{j=1}^{N_1} \)
 for \(j = 1, \ldots, N_1 \) do
 end for
4. MUTATION OF ISLAND
 Sample independently \(\zeta_{p+1}^i \) according to \(M^{(1)}(\zeta_{0}^{i,j}, \cdot) \)
 for \(j = 1, \ldots, N_1 \) do
 end for
5. MUTATION OF PARTICLES
 Sample \(\xi_{p+1}^{i,j} \) according to \(M^{(2)}(\zeta_{0}^{i,j}, \cdot) \)
 end for
 \(p \leftarrow p + 1 \) go to step 2.
End

II. NUMERICAL RESULTS

In order to test our method, we have designed an academic, but realistic, experiment (see Fig. 2). We consider an air traffic sector observed by Mode-S radar with a given meteorological situation. We assume that there is a meteorological perturbation such as a cold front. Then two domains appear, one behind the cold front with a specific wind force and direction, and a second zone with a different wind. The ensemble Met forecasts provide different location of the cold front and different wind forecasts. Moreover we assume that three aircrafts evolve following a straight line in the control sector and only one is crossing the cold front limit. Therefore the flight model is very simple with a null constant acceleration except for random instants. We suppose that the aircraft altitude is constant and their airspeeds are constant piecewise functions with some slight variations. Then the purpose is to evaluate the likelihood of an ensemble of Met predictions and to learn the TAS of the aircrafts present in the traffic.

The Island Particle filter is used to learn both the ensemble forecast weights and the aircraft parameters (here only the TAS). The method is described in Fig. 1. For any aircraft present in the traffic, using any Met forecasts, the algorithm generates several trajectories. Then using the radar observations, the trajectories are resampled according to their likelihood. The updated trajectories for all the aircrafts are used to compute the weight of the Met forecasts according to the Mode-S information.

For our different numerical experiments, we model the wind error by stationary and uniform values in each subdomain. The limit of the domain delimited by a vertical border is not known. The unknown wind error is uniform in direction and strength over each area. Therefore, the forecasting wind error in both areas in terms of strength and direction, and the location of the border have to be estimated. It is known that aircraft compensate lateral wind. It is the reason why we have to use more than one aircraft direction line. The aircraft true airspeed is not exactly observed and we consider that the speed is piecewise constant with some little random jump. In the experiment, the random jump are modeled by a Poissonian process. The configuration of the experiment is resumed in the Fig. 2. The blue line with triangles represents the unknown limit we have to estimate. The arrows in each domain separated by the blue line have the same direction and the same number of dash which means that the wind force is the same overall the area.

The observation process is given by Mode-S radar information. Using the perturbed true airspeed and ground speed, we can deduce a perturbed 2D wind force. In both domains, the wind force is about 40 kt. This can be used as wind observation. The three aircrafts have a true airspeed about 400 kt.
In this academic work, the perfect observations are perturbed with Gaussian centered random noises. We have chosen a white noise with a variance of 0.1 on each aircraft position and for the deduced wind with a variance of $\sqrt{\frac{1}{5}}$. The period of sampling observations is 15 seconds. In this example the experiment simulates 20 minutes of air-traffic started at 12h00 UTC.

Consequently, all the ingredients needed to perform the Island Particle Filter method are available. Concerning the Met proposals, we have designed an ensemble of 3125 forecasts with a combination of 5 different forecasted wind force normally distributed around the true value, 5 different directions and 5 possible border locations uniformly distributed around the true value.

The numerical results are quite good both for the learning of the Met environment and for the TAS of the aircrafts.

First we put our attention to the Met situation. As regards the limit, as soon as an aircraft experiment the limit, the true limit is perfectly determined. The Figure 3 represents the likelihood evolution of the vertical limit proposals over time. First all the limit proposals are equivalent as no aircrafts experiment the limit yet. Therefore the likelihood of all the proposal are the same. In the experiment only one aircraft is crossing the limit from the right to the left. When the aircraft is crossing a wrong proposal, the likelihood of the proposal decreases down to zero and gradually all the wrong limits obtain a weak likelihood. At the end, the highest likelihood limit proposal are concentrated on the left where the real limit is.

Once the limit between the two domains is known, we can put our interest on the meteorological parameters, for instance for the left area. First the likelihood of the wind direction forecasts is examined. As it might be noticed on the Fig. 4, the weight evolution of the direction proposals for the uniform domain on the left is concentrated over one proposition. At the beginning of the experiment the direction weights are equidistributed. Then using the Mode-S information, the weight starts to concentrate on only one direction till the end of the experiment. This weight concentration on one direction corresponds to the real direction which has been successfully learned.

The direction of the wind being learned, the figure 5 presents the wind force relative errors. One can see that this relative error is about 2%. Concerning the wind force, it seems to have two periods. The second period and the jump in the error values correspond to the entry of the right aircraft in the left area. In the first one, the relative errors are quite unstable showing the learning phase with two aircrafts. While in the
Fig. 3. Time evolution (y-axis from top to bottom) of weight (color scale) of the different limit proposals (x-axis) between the two domain. The algorithm gives gradually the maximum of likelihood to the forecast which has the most probable limit. The other limit are excluded as soon as an aircraft experiment the border.

Fig. 4. Likelihood evolution (in color) over time (y-axis from top to bottom) of direction proposals (x-axis) obtained with IPF for the left uniform area. Using the algorithm, the maximum of weight is quickly concentrate over one direction giving the best forecast regarding to the air-traffic radar observations. In this example, the best forecast corresponds to the real direction.

second period the relative error is very stable showing the end of the learning process with the three aircrafts in the same domain.

While the environment parameters are learned by the Island Particle system, the aircraft parameters are also estimated. In our experiment we only have to estimate the true airspeed of each aircraft about 400 kt. The airspeed estimation of one of these aircrafts is represented in Figure 6. On this graphic, the black line represents the true airspeed which needs to be estimated (knots), the blue line the mode-S radar observations and the red line the reconstructed signal by the IPF algorithm. Even if the perturbations of the TAS observation are strong, the estimation of the TAS is efficient picking out the Poissonian jump.

In this numerical experiment, we have shown the capability of our method to estimate the likelihood of an ensemble of Met forecasts while learning some aircraft parameters. For further experiments, we intend to work with multiple areas and more realistic meteorological forecasts.

CONCLUSION AND FURTHER DEVELOPMENTS

In this study, we have developed a stochastic modeling of the aircraft trajectories in random atmospheric conditions. The stochastic process is a Markov process in a random environment partially observed by radar. This process can be estimated by a special Particle Filter called Island Particle Filter. Each island corresponds to a weather prediction and is
used to evaluate the likelihood of the Met forecasts.

Then the methodology developed in this work allows us to give a weight to each element set of the ensemble weather forecasts regarding to the traffic-observations. That is we can infer the random environment: learning the likelihood of wind proposals while learning some flight parameters such as true airspeed. The numerical experiment have shown the powerfull of our stochastic modelization developed and the capability of the Island Particle Filter.

The next mathematical step of this work is to relax the assumption of uniformity for the Met errors. We are working on this topic using errors which are uniform in probability law (it means that it is the probability distribution which is uniform and not the errors themselves) on sub-domains. Then we intend to deal with real weather ensemble forecasts such as the forecasts provided by European operational meteorological centres.

ACKNOWLEDGEMENTS

The authors thanks the WP-E IMET program for its support and Gaëtan Baehr for his artwork contribution.

REFERENCES