Partnering for excellence in global aviation
Integration of all vehicles

Robin Garrity, SESAR JU
Context

- SESAR has traditionally been focussed on mainline Airspace Users
- SESAR 2020 now brings all AUs into the ‘family’
- Industrial Research projects must now consider how research concepts will affect, or provide benefits to, the whole family, manned and unmanned
- In this session, we hear from some new family members
Content

Matthew Baldwin (European Commission) - keynote address

1. Jean-Philippe Ramu (NetJets) – Business Aviation
2. Isabel del Pozo de Poza (EHA) – Rotorcraft
3. Juan Ignacio Del Valle – (EDA) – Military and IFR RPAS
4. John Korna (NATS) – General Aviation and ANSPs
5. Marc Kegelaers (Unifly) – VLL ‘drones’
Matthew Baldwin
Deputy Director-General for Mobility and Transport, DG MOVE
Save-The-Date

SESAR U-Space Workshop

20 April 2017

The Hague, Netherlands

Organised by:

Hosted by:

Hosted & Powered by RoboValley

#SESAR
Business aviation

Dr Jean-Philippe Ramu
NetJets Europe pilot
EBAA Consortium - SESAR Technical Manager
Business aviation – what and where

Europa

Economic Impact
Business Aviation is a leading contributor to the European job market, securing nearly half a million jobs and accounts for revenues of almost EUR 100 billion.

- 98 bn € in output
 (quantifies the sector's output, sales plus inventory increase and self-made assets)
- 27 bn € in GVA
 (quantifies the monetary worth of the production generated by firms in the Business Aviation sector and its suppliers)
- 21 bn € in labour compensation
 (provides all wages and salaries, incl. compensation of the self-employed, linked to the sector's economic activity)

Departures 2015

- 306,479
- 279,516
- 18,669
- 17,769
- 14,410

Market Share (Number of departures)

- Business Aviation
- Cargo
- Trad. Schedule
- Low Cost
- Charter

Total employment (direct & indirect)

- 371K jobs

Operations

- 37,140 in operation/FBO
- 10,197 in MROs

Manufacture

- 40,601 in manufacturers

Fleet: 3,496 based aircraft

- Business
- Heavy jet
- Midsize jet
- Light jet
- Turbo Propeller

+1K BusAv Operators

+1K operated Airports

Sources: Eurocontrol – WingX Advance – Handbook of Business Aviation – Amstat – Booz Allen Hamilton
Challenges with major airports

• Flexible departure time as opposed to on-time departure time
• Wake vortex free arrivals and capacity increase
Challenges with satellite airports

- 60% of operation in protected controlled airspace
- 25% of operation in unprotected controlled airspace
- 15% of operation in uncontrolled airspace

10x more TCAS RA

Inefficient operation
Benefit study – Egelsbach and Frankfurt

- Separated from Frankfurt traffic
- Remains in controlled airspace
- 30% fuel efficiency from FL300

Promising concepts... but new operation with new challenges
Challenges with secondary airports

• Circling approaches supported by visual RNAV procedures enabling ecological paths and enhancing safety in challenging terrain

• TIS and FIS enabling enhanced cooperation between IFR and VFR traffics in uncontrolled airspaces
Thank you for your attention

More information:
jramu@netjets.com
Rotorcraft integration in the Single European Sky

Dr. Isabel del Pozo
European Helicopter Association (EHA)
Agenda

• Who we are & our mission
• EHA objectives in SESAR to foster RC
• Rotorcraft operational needs & challenges
• Achievements in SESAR1
• Our aspirations for SESAR 2020
The European Helicopter Association (EHA)

➔ We are the rotorcraft voice in Europe

NHAC = National Helicopter Associations Committee

AMAC (Associate Members Advisory Council)

Affiliated Member
The European Helicopter Association - mission

1. Recognition of the rotorcraft´s unique capabilities
2. Tailored sustainable rule
3. Equal access to the Single European Sky (SES)
EHA objectives in SESAR: to foster RC

• Integrate rotorcraft (RC) operations in the SESAR Concept of Operation (ConOps) and in the European ATM Master Plan

• Consider RC specific aspects in the SESAR R&D projects, when relevant

• Promote, coordinate and follow RC dedicated activities in SESAR
Rotorcraft main fields of activity

HELIKOPTER AIR AMBULANCE
(HEALTH SECTOR)

SEARCH AND RESCUE

POLICE

FIRE FIGHTING
(CIVIL PROTECTION)

26,5 billion €
Gross Value Added (GVA)*

Global turnover (mil €) 7.535
N° employees 35.000

OIL AND GAS
(ENERGY SECTOR)

AIR TAXI/CHARTER
(BUSINESS SECTOR)

AERIAL WORK

*Data source: year 2014
RC operational needs

1. **IFR access to VFR Final Approach and Take-off Areas (FATOs)**
 - Point-in-Space (PinS) RNP approaches/departures procedures to/from heliports

2. **Rotorcraft integration in dense/constrained airspace**
 - Specific Low Level IFR routes (LLR)

3. **Rotorcraft access to busy airports**
 - Simultaneous-Non-Interfering (SNI) rotorcraft
 - IFR approach/departure procedures to/from heliports located at airports
RC challenges

1. Latest RC have the highest technology standards
 - Satellite based navigation, 4-Axes Autopilot, LPV certification, Steep Approaches up to 9,9°

2. Rotorcraft Operators Need to operate 24/7
 - Operations in all weather situation (VMC and IMC)

→ Problem:
 - No LLR IFR Routes, lack of rotorcraft adapted procedures
Achievements in SESAR 1

- Rotorcraft community recognised as a player in the development of the future European ATM system
- Rotorcraft unique capabilities and specific operations are considered in SESAR ConOps and in the European ATM Master Plan
- R&D Projects and Large Scale Demonstrations dedicated to RC operations (P04.10, PROuD) are paving the way for operational implementation
 - Low Level IFR Routes RNP- 0.3 and PinS network for emergency rotorcraft operations (ENAV in Piemonte region)
 - LLR network and LPV approaches published in Norway (PIONEERS project)
Aspirations for SESAR 2020

• Integration of Low Level IFR rotorcraft routes in 4D managed dense airspace with connections to enhanced RNP approaches to RC landing locations

• Technologies relying on SVS/EVS/CVS to improve accessibility into small aerodromes in low visibility conditions

• Datalink and ADS-B IN broadcast services to support rotorcraft operations → separation of IFR & VFR traffic in uncontrolled airspace
Thank you for your attention

More information: www.eha-heli.eu
RPAS Air Traffic Integration

Juan Ignacio del Valle
European Defence Agency

Expert Point of view
European Defence Agency
Facts & figures

Established
2004
Based in
BRUSSELS

27 Member States
(all EU members except Denmark)
& Administrative Arrangements
with Norway, Serbia, Switzerland
and Ukraine)

General budget
30,5 Mio

Number and value of ad-hoc projects:
22 projects / 70 Mio

Value R&T projects 2004-2016
run within EDA: €1 billion
To support the Council and the Member States in their effort to improve the European Union’s defence capabilities for the Common Security and Defence Policy.”

Treaty of Lisbon, signed in 2007, entered into force in 2009
“...EDA and Commission to intensify their activities in the field of air traffic insertion, certification and regulation for a safe integration in Single European Sky” *

*Council conclusions, 18 May 2015
Enabling RPAS operations

The issue

• **Currently in Europe: RPAS (both civil and military) operations in segregated airspace**
 • Restrictions for operations and training
 • Segregation more difficult as air traffic density increases

• **Defining the issue: RPAS traffic integration in non segregated airspace**
 • Military? State? Civil? → Same barriers for RPAS operations
 • RPAS? UAV, drones, robots? → RPAS; MALE type (RPS – ATC)
 • Integration? insertion, accommodation? → Integration
 • Non segregated air space? → General Air Traffic (GAT)
Enabling RPAS operations

Barriers and enablers

• **Integration of IFR RPAS Traffic into GAT**

• **Barriers**
 - ATM concept of operations not adapted to RPAS
 - Regulatory framework not adapted to RPAS
 - Maturity of required technology

• **Enablers**
 - ICAO RPAS CONOPS; ICAO SARPS; ECRL ATM CONOPS
 - EASA RMT 0230 – Reg. framework accommodate UAS in the EU aviation system
 - Tech gaps & solutions ➔ European ATM Master Plan ➔ Exploratory Research; Industrial R&D ➔ Standardisation
Integration of IFR RPAS traffic into GAT EDA and SJU industrial R&D

<table>
<thead>
<tr>
<th>ATI Tech Areas</th>
<th>SESAR 2020 Wave 1</th>
<th>EDA & pMS Industrial R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAA</td>
<td>PJ.11 – ACAS Xu</td>
<td>MIDCAS SSP (Ad Hoc) TRAWA (Pilot Project – PA)</td>
</tr>
<tr>
<td>C2 Datalink</td>
<td>PJ.03a, PJ.10, PJ.11</td>
<td>DeSIRE2 (OB) – SATCOM C2</td>
</tr>
<tr>
<td>Airspace access and airports ops</td>
<td>PJ.03a – RPAS ground ops PJ.10 – RPAS IFR Integration</td>
<td>ERA (Ad Hoc) – ATOL and autotaxi</td>
</tr>
<tr>
<td>Contingency</td>
<td>PJ.10</td>
<td>ERA (Ad Hoc) - Emergency</td>
</tr>
<tr>
<td>Human Factors</td>
<td></td>
<td>RPS – Standardisation (OB)</td>
</tr>
<tr>
<td>Security</td>
<td>PJ.03a, PJ.10, PJ.11</td>
<td></td>
</tr>
</tbody>
</table>
Integration of IFR RPAS traffic into GAT EDA and SJU cooperation

- EDA Contribution to EU ATM Master Plan update
- SJU Support in the definition of new R&D initiatives at EDA
- Support in evaluations
- Experts involvement in projects execution as stakeholder or observers
- Common objective in R&D → Standardisation through established European standardisation organisations
Enabling RPAS operations
Summary: EDA approach

- **Objective:** Integration of IFR RPAS Traffic into GAT
- **Barriers:** ATM CONOPS, regulations, tech. maturity
- **Enablers:** CONOPS Update, RMT.0230, R&D

EDA monitors the ongoing work on the applicable CONOPS, contributes to the update of the EU ATM Master Plan and leads specific dual-use Industrial R&D initiatives that ensure standardisation activities of key ATI technological enablers which in turns supports Rulemaking Tasks.
Thank you for your attention

More information:
juanignacio.delvalle@eda.europa.eu
Integration of all vehicles: General aviation (GA) and ANSPs

John Korna

NATS
Context

• Historically, UK ANSP and GA challenges have been:
 • Infringements of controlled airspace
 • Mid-air collision risk
 • Controlled flight into terrain

• Other topics old and new of interest
 • Oil rig “wrong deck” landings
 • Cost and complexity to certify GA ADS-B installations
 • Appropriate use of low cost “good enough” technology by GA
 • Drones
EVA outcomes

See, be Seen and Avoid

• It can be really difficult to visually acquire aircraft (and drones!)
• Pilots typically overestimate their ability to spot other aircraft
• A pilot who sees no aircraft may believe they are they only one in that airspace, thus a pilot may relax their scan – making the odds of spotting other a/c even less likely
• Traffic information, either from an ATS Unit, or a cockpit device can prevent that downward spiral
• Traffic Alert Displays must minimise heads down time
• UK CAA now has requirements and approval procedures for low cost, low power, low/no integrity ADS-B devices: CAP1391
This is the aircraft you are looking for
Aspirations for the SESAR programme

• Maintain, or reduce safety and service risks for airspace users as demand increases

• Lower or remove barriers; close the GA business case
 • Compelling benefits in answer to “So what’s in it for me?” challenge
 • Reduce risk of divergent technologies and closed eco-systems

• Development of seamless, transparent interoperability between existent & emergent airspace users, commercial aircraft, and ground services ATM & in future UTM

• Mutually interoperable technology capability and service solutions with appropriate Size, Weight and Power-Cost (SWaP-C) for all GA stakeholder communities
Technology, standards, regulation & cost

- Need for appropriate “Risk Based” avionic requirements for low hours, low budget users
 - Perfect solutions will cost too much, take too long and not be bought
- Generating suitable enabling standards take time and commitment from all stakeholders – easy to be overtaken by events
 - Modern rapid, frugal innovation will enable non-traditional technology actors to produce low cost solutions
 - If there is a perceived market/need someone will look to fulfil it
- Make it easy for stakeholders to adopt - give them something they want!
 - Clear, compelling answers to “What is in it for me?”
 - Seek to build user pull, showing how GA benefits; benefits should not all be for Commercial Air Traffic or ANSPs
- Interoperability, interoperability, interoperability
Thank you for your attention

More information:
John.Korna@nats.co.uk
+44 1489 44 46 57
Drones in VLL airspace

Marc Kegelaers

Unifly
Unifly – the company

• Young / Scale Up
• “Operations Ready” UTM Solution
• History:
The challenge
The solution – use of EAD data
EAD for recreational users
Unifly & SESAR

• SESAR SWIM Masterclass 2014 Runner-up
• H2020 SESAR UTM Exploratory Research
 • Topic 1 – UTM Concept definition = CORUS
 • Topic 4 – Ground-based technology = CLASS
 • Topic 6 – Security & Cyber-resilience = SECOPS

• Next: H2020 SESAR UTM VLD (?)
• Ideal integration unmanned/manned
Thank you for your attention

More information:
marc.kegelaers@unifly.aero
Thank you for your attention

More information:
robin.garrity@sesarju.eu