A Novel Framework to Assess the Wake Vortex Hazards Risk Supported by Aircraft in En-Route Operations

Marc Melgosa and Xavier Prats
Department of Physics – Aerospace Division
Technical University of Catalonia, Castelldefels (Barcelona), Spain

Sergio Ruiz, Joan Tarragó and Javier Busto
GTD Sistemas de Información, Barcelona, Spain

Meiko Steen
Institut fuer Flugfuehrung
Technische Universitaet Braunschweig
Braunschweig, Germany
Table of contents

1. Introduction

2. The R-WAKE project
 1. Objectives
 2. R-WAKE micro analysis framework
 3. R-WAKE macro analysis framework

3. Integration test

4. Controlled scenario

5. Discussion
 1. Conclusions
 2. Future work
• Wake vortex issues in terminal maneuvering areas (TMA) are well known and have received a particular attention in the last decades

• In the en-route phase wake vortex encounters are unlikely and so far are still considered rare events

• Current separation standards might not be enough for protecting aircraft against WVE hazards while in other cases they might be over-conservative
Introduction

- Hazardous WVE en-route might become a serious issue:
 - forecast for higher volumes of traffic in certain areas
 - a more heterogeneous and diverse traffic fleet
 - new concepts of operation
 - more accurate navigation systems (reducing the dispersion of flight tracks)
 - new (or refined) standards leading to reduced separation minima between two aircraft
THE R-WAKE PROJECT

‘What Separation Minima Reductions can be applied in specific and clearly defined operational conditions keeping the current safety level related to En-Route WVE hazards?’

= Simulation platform + Safety and robustness research methodology

SESAR Innovation Days, SIDs, 28-30 November, 2017, Belgrade, Serbia
The R-WAKE Project

Expected outcomes:

The 5 tangible Project Expected Outcomes:

1. WVE hazard **Severity Baseline and Tolerability Matrix**;
2. Simulator for testing different Separation Standards;
3. Database of Simulation Results that will provide enough evidences to propose new Separation Standards for future further R&I activities;
4. Evidence-based proposal for either maintaining current Separation Standards or adopting new ones;
5. Assessment of the feasibility and impact of the concept on ATM with an initial Validation Strategy and outline Implementation Plan.
The R-WAKE Project
Step 1 – Micro-analysis

• The goal of the micro-scale simulations (or R-WAKE Step 1) is to generate the wake vortex safety baseline

• Used as input for the macro-analysis or Step 2

• Phases:
 1. Computation of the vortex circulation, generated by the generator aircraft and encountered by the follower aircraft.
 2. Computation of the aircraft upset experimented by the follower flight due to the vortex encounter.
 3. Assessment of the severity of the upset, based on expert knowledge.
THE R-WAKE PROJECT
STEP 2 – MACRO-ANALYSIS

- Current and future traffic simulations
- New separation standards
THE R-WAKE PROJECT
STEP 2 – MACRO-ANALYSIS

• Weather Simulator (WXS):
 o Provides historic weather data to the Traffic Simulator (TRS) and to the Wake Vortex Simulator (WVS)

• Traffic and Trajectory Planner (TTP)
 o Generates and simulates traffic scenarios based on real or future traffic demand and considering weather data fed by the weather simulator
 o Applies the corresponding ATM constraints according to the concept of operations modelled
THE R-WAKE PROJECT
STEP 2 – MACRO-ANALYSIS

• Wake Encounter Region Finder (WERF):
 o Identifies regions of airspace (volumes) in which potential wake vortex encounters could occur
 o Filter to reduce computational burden

• Wake Vortex Simulator (WVS)
 o Simulates realistic wake vortexes given the flight parameters of each trajectory (aircraft mass, speed, path, etc.) and the weather for the airspace region of interest
 o Generate a simplified macro-model of the vortexes represented as a 4D tube
THE R-WAKE PROJECT
STEP 2 – MACRO-ANALYSIS

• WV Encounter Prediction System (WEPS)
 • Detection of encounters
 • Calculation of upsets produced by the encounters
 • Conversion between upset to severity using the severity matrix from the Step 1

• Safety & Robustness Analysis (SRA for Step 2):
 o Represents a process rather than a simulator
 o Knowledge generated will be an evidence-based proposal of new separation standards and methods
Integration test

Design of experiment

• Data origin: Demand Data Repository (DDR2)

<table>
<thead>
<tr>
<th>Number of flights</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft type</td>
<td>A320</td>
</tr>
<tr>
<td>Crossing area</td>
<td>FRANCE</td>
</tr>
<tr>
<td>Date</td>
<td>28/07/2016</td>
</tr>
<tr>
<td>Weather</td>
<td>Only vertical</td>
</tr>
<tr>
<td>ConOps</td>
<td>Structured route</td>
</tr>
<tr>
<td>Horizontal Separation Standard</td>
<td>5 NM</td>
</tr>
<tr>
<td>Vertical Separation Standard</td>
<td>1000 ft</td>
</tr>
</tbody>
</table>
Integration test

Results:

• The Region Finder detected 13 potential encounters (aircrafts closer than 10NM)
• Only in one potential encounter the vortex generator was closer enough to create possible encounter

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude change</td>
<td>0.0036741 m</td>
</tr>
<tr>
<td>Bank angle</td>
<td>2.9445e-05 rad</td>
</tr>
<tr>
<td>Rate of Climb/Descent</td>
<td>0.0022483 m/s</td>
</tr>
<tr>
<td>Airspeed change</td>
<td>0.00049465 m/s</td>
</tr>
</tbody>
</table>

Severity level 1 -> 'No significant safety effect'
Controlled scenario

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude change</td>
<td>40 m</td>
</tr>
<tr>
<td>Bank angle</td>
<td>38.20°</td>
</tr>
<tr>
<td>Rate of Climb/Descent</td>
<td>12.617 m/s</td>
</tr>
<tr>
<td>Airspeed change</td>
<td>1.9492 m/s</td>
</tr>
</tbody>
</table>

Severity level 3 -> Major safety consequence'
Controlled scenario

Attitude

- ϕ_{max}: 38.20°
- ϕ_{min}: 0.00°
- θ_{max}: 6.20°
- θ_{min}: 1.14°
- ψ_{max}: 124.93°
- ψ_{min}: 108.87°

Rotational Velocity

- p_{max}: 11.95°/s
- p_{min}: -2.28°/s
- q_{max}: 1.64°/s
- q_{min}: -1.26°/s
- r_{max}: 4.01°/s
- r_{min}: -0.86°/s
Controlled scenario

Relative Position

- $\Delta y_{\text{max}}: 0.05 \text{ m}$
- $\Delta y_{\text{min}}: -65.48 \text{ m}$
- $\Delta z_{\text{max}}: 40.00 \text{ m}$
- $\Delta z_{\text{min}}: -1.00 \text{ m}$

Flight Speed

- $V_{\text{max}}: 440.97 \text{ kts}$
- $V_{\text{min}}: 437.18 \text{ kts}$
Conclusions

• The integration test has been useful as a validation exercise of the R-WAKE framework, showing that the macro-scale framework is ready to be used and all its modules are working well together.

• No significant wake encounters have been found in the integration test scenario.

• The traffic sample is still not fully representative of the entire traffic demand patterns in the ECAC area.

• The controlled scenario has shown that severe encounters with major consequences for either the crew, the aircraft, or both, can actually happen in the en-route environment.
Future work

- Simulations traffic data sets that are more representative of the actual ECAC demand
- The hazard risk will be explored and benchmarked with the application of different separation standards
- A new separation standard will be defined and proposed to reduce over-conservative separations and to protect better the flights in some cases, if it is found necessary
Thank you very much for your attention!
R-WAKE: Wake Vortex simulation and analysis to enhance en-Route separation management in Europe