Vista Project
Building a Holistic ATM Model for Future KPI Trade-Offs

Gérald Gurtner, Luis Delgado, Andrew Cook
Jorge Martín, Samuel Cristóbal
Hans Plets

SESAR Innovation Days
28th November 2017
Belgrade
Goals and objectives

Vista aims to study the main forces (‘factors’) that will shape the future of ATM in Europe at the 2035 and 2050 horizons

More specifically:

• trade-off between, and impacts of, primary regulatory and business (market) forces;

• trade-offs within any given period;

• trade-offs between periods;

• whether alignment may be expected to improve or deteriorate as we move closer to Flightpath 2050’s timeframe

Focus on five stakeholders: airlines, ANSPs, airports, passengers, and environment.
Project overview

Workflow:

• Build an extensive list of **business** and **regulatory** factors likely to impact the ATM system.

• Classify the factors: short-term/long-term, likelihood of occurrence, importance of their impact on the ATM system, etc.

• Build current and future scenarios.

• Building model requirements:
 • *consider as many (important) factors as possible in a flexible way*;
 • *produce level of detail required and achievable to capture relevant metrics*.

• Iterative model development in consultation with stakeholders.

• Trade-off analysis.
Scenario definition in Vista

Vista model is a ‘what-if’ simulator

• *What happens if I do this in the system?*
 And *not:*
 • *What will happen in 2035 or 2050?*

=> Scenario definition. Aim is *not* to compute the likelihood of a given scenario.

=> Factors entering scenario subdivided into two main categories:

• **Business factors:** cost of commodities, services and technologies, volume of traffic, etc. => demand and supply

• **Regulatory factors:** from EC or other bodies, e.g. ICAO, => ‘rules of the game’
Objective of the model

• Vista model aims at:
 • Simulating a typical day of traffic in Europe to the level of individual passengers
 • Being able to change the operational environment and see their impact on several stakeholders and at several levels
• Vista model takes a holistic approach:
 • Because the behaviour of the system is not a simple sum of the individual behaviours.
 • Because the heterogeneity of behaviours among actors shapes the system.
Model presentation

SESAR Innovation Days, Belgrade, 28th of November 2017
Objective of the economic model: take into account macro-economic factors to forecast the main changes of flows in Europe.

Desired output:
- Main flows in Europe,
- Market share of different airline types
- Capacities of ANSPs and Airports
- Average prices for itineraries.
Strategic layer – economic model

Should take into account:

- **Main changes in demand:**
 - volume
 - types of passengers

- **Major business models changes:**
 - Point-to-point vs hub-based (airlines)
 - competition vs cooperation (ANSP)
 - privatization vs nationalisation (ANSP and airports)

- **Capacity restriction:**
 - Congestion at airports
 - ATCO limits

- **Major changes of prices in commodities:**
 - Fuel,
 - airport and airspace charges, etc
Model description

Deterministic agent-based model

In a nutshell:

• Step-by-step multi-agent model

• Individual agents are currently:
 • Individual airports
 • Individual airlines, part of alliances (or not)
 • Passenger aggregated at an OD level per airline
 • Individual ANSPs

• Agents compete with peers, try to predict different values (delays, future demand, prices) and act accordingly
Network Based Model

- Supply: airport pairs (edges)
- Demand: itineraries (collection of edges)

Supply and demand? Price?
ABM flow

- Airlines choose their supply, based on cost and price of tickets,
- Passengers choose between different itineraries, based on prices,
- Supply and demand are compared, prices evolve,
- Agents compute profit and form expectations,
- Short-list of airports assess a potential capacity extension,
- ANSPs choose their capacity based on target and set their unit rate.
Simple example: LLC vs trad

- Simplified setup: four airports, two airlines LCC/trad

Simple scenario:
- Increase in demand (higher income) on 0->3
- Increase of capacity of airport 3
- Increased fuel price for everyone
Number of passengers

Income increase

Capacity increase

Price of fuel increase

(Trad. from hub)
(Trad. to hub)
(lcc)

Number of passengers

Simulation step

SESAR Innovation Days, Belgrade, 28th of November 2017
Airport profit

Income increase

Capacity increase

Price of fuel increase

Simulation step

Airport profit

0 (hub)
1 (origin)
2 (origin)
3 (final dest.)
Pre-tactical layer

- From strategic high-level to tactical executable detail
Pre-tactical layer – flight plan generation

Flight plans

<table>
<thead>
<tr>
<th>Fid</th>
<th>From</th>
<th>To</th>
<th>SOBT</th>
<th>SIBT</th>
<th>Capacity</th>
<th>GCD</th>
<th>Ac type</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{AD1}</td>
<td>A</td>
<td>D</td>
<td>9:00</td>
<td>10:30</td>
<td>120</td>
<td>1234</td>
<td>A320</td>
</tr>
<tr>
<td>F_{AD2}</td>
<td>A</td>
<td>D</td>
<td>10:45</td>
<td>12:20</td>
<td>240</td>
<td>954</td>
<td>A320</td>
</tr>
<tr>
<td>F_{AD3}</td>
<td>A</td>
<td>D</td>
<td>10:50</td>
<td>12:20</td>
<td>120</td>
<td>2521</td>
<td>B737</td>
</tr>
<tr>
<td>F_{CD1}</td>
<td>C</td>
<td>D</td>
<td>8:30</td>
<td>12:00</td>
<td>70</td>
<td>3213</td>
<td>B737</td>
</tr>
</tbody>
</table>

Flight plans

<table>
<thead>
<tr>
<th>Fid</th>
<th>Flight plan type</th>
<th>Climb dist</th>
<th>Climb time</th>
<th>Cruise dist</th>
<th>Cruise time</th>
<th>Cruise speed</th>
<th>Cruise avg Fl</th>
<th>Cruise avg weight</th>
<th>Cruise avg wind</th>
<th>Descent dist</th>
<th>Descent time</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{AD1}</td>
<td>0</td>
<td>208</td>
<td>00:29</td>
<td>504</td>
<td>1:07</td>
<td>445N (0.77M)</td>
<td>380</td>
<td>66500</td>
<td>-34</td>
<td>201</td>
<td>00:35</td>
</tr>
<tr>
<td>F_{AD1}</td>
<td>1</td>
<td>213</td>
<td>00:31</td>
<td>442</td>
<td>1:00</td>
<td>450N (0.78M)</td>
<td>360</td>
<td>67000</td>
<td>-9</td>
<td>224</td>
<td>00:36</td>
</tr>
<tr>
<td>F_{AD1}</td>
<td>2</td>
<td>194</td>
<td>00:29</td>
<td>472</td>
<td>1:07</td>
<td>446N (0.77M)</td>
<td>380</td>
<td>66000</td>
<td>-24</td>
<td>201</td>
<td>00:35</td>
</tr>
<tr>
<td>F_{AD1}</td>
<td>3</td>
<td>208</td>
<td>00:29</td>
<td>466</td>
<td>1:02</td>
<td>450N (0.77M)</td>
<td>340</td>
<td>67500</td>
<td>0</td>
<td>218</td>
<td>00:36</td>
</tr>
</tbody>
</table>

Schedules
Pre-tactical layer – flight plan generation

Flight level requested vs. Flight plan distance (NM)
Tactical layer -- Mercury

E.g. uncertainty, cost of delay, reaccommodation rules

Tactical Layer

Mercury (mobility model)

Flight plans
ATFM delay
Passengers itineraries
Tactical delays, reaccommodations, etc
Tactical layer -- Mercury

- Data-driven mesoscopic approach, stochastic modelling
- Individual passenger DOOR-TO-DOOR itineraries
- Regulation 261/2004 – pax care & compensation
- Disruptions, cancelations, re-accommodations, compensations costs
- Airline decisions based on costs models or rule of thumb
- Full Air Traffic Management model, demand/capacity balance
Conclusions

Overall model:

• Aim at simulating *what* happens a typical day of *if* you change something in the system.

• **Macro to micro** model in different layers of increasing detail

Economic model:

• **High-level description**, dependence of main flows on macro-economic parameters.

• **Deterministic agent-based model**, featuring ANSPs, airlines, airports and passengers

• **Complex economic feed-back**, emerging phenomena coming from network-based interactions
Potential next steps

Academic developments:
• Study of emergent phenomena related to more specific changes in the model, for instance introduction of different drone management systems
• Refinements of the economic side of the model by extending the financial aspect: capital of companies, loans, etc.
• Refinements of the strategies used by agents, game theory.

Application-oriented development:
• Support to projects like PJ19, development of performance tools and general views like EATMA
• Support to projections of demand at the ANSP level (stakeholder demand)
This project has received funding from the SESAR Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 699390.

The opinions expressed herein reflect the authors’ view only. Under no circumstances shall the SESAR Joint Undertaking be responsible for any use that may be made of the information contained herein.

Vista project

Thanks for listening!
Passenger demand

- **Pax demand**: given all the possibilities (itineraries) to go from \(i \) to \(j \) with associated prices, travel times, etc, how to choose one?

\[
D_k = D_k^0 (1 - \alpha \Delta p_k + \beta \Delta i_k + ...) C(p_k, \{p_l\}_{l \neq k})
\]

Volume term

\[
C(p_k, \{p_l\}_{l \neq k}) = 1 - \frac{1}{S} \left(\Delta p_k - \sum_{l=1, l \neq k}^{n} \frac{\Delta p_l}{n-1} \right) + ...
\]
Airline supply

- **Airline supply**: profit maximizer, choosing their capacity on each branch.

\[r = S \hat{p} - c(S) \]

\[c(S) = c + c_o S + c_c S^\alpha \]

\[\alpha > 1 \]

- Overhead, constant
- Cost of capital, superlinear
- Operational cost, linear

\[S^* = \left(\frac{\hat{p} - c_o}{c_c} \right)^{\frac{1}{\alpha - 1}} \]
Airline supply

- Operational cost depends on a lot of parameters:

\[c_o = \chi \Delta \delta t_O + \chi \Delta \delta t_D + c_f(d) + c_{ATC} + \cdots \]

Cost of delay
Cost of fuel
ATC charges
Market clearing and convergence

- Demand disaggregated itineraries -> airport pair
- Demand and supply are compared on each edge, price is updated:

\[p_{t+1}^k = p_t^k \left(1 + \lambda \left(\frac{S_k - D_k}{(S_k + D_k)/2} \right) \right) \]
Airport delay management

- Airports compute their total traffic, which produces an extra level of delay given by
 \[\delta t = \delta t_0 + \frac{T}{C} \]

 - Traffic
 - Capacity (fitted)

- Airports try to maximise their profit by increasing (or not) their capacity:
 \[r = T\hat{P} - c(C) \]

 - Cost of capacity (linear in the model)