Probabilistic Runway and Capacity Forecasting using Machine Learning to Support Decision Making

SESAR Innovation Days 2016 – November 9, Delft
- Probability forecast of runway use and runway capacity
- Prototype in use at KLM’s Operations Control Centre (OCC) at Schiphol Airport
Schiphol Situation

Runway Use at Schiphol
- 6 runways
- Used in 80+ different runway combinations
- Alternates between departure and arrival peaks
- Configuration changes at least 14x per day

Runway selection
- Weather conditions
- Demand
- Noise preferential system
- Runway availability

Schiphol alternates between departure and arrival peaks
Motivation

Factors affecting airline performance

- Runway Capacity
 - On-time performance
 - Airborne holding
- Runway Use
 - On-time performance
 - Taxi-time

Timely actions required when performance at risk

- Possible actions include:
 - Re-route passengers
 - Take extra fuel on board
- Flight preparation starts up to 20-24 hrs in advance
- Decisions based on forecasts

Probabilistic Forecast

- Uncertainty of meteorological forecast
- Runway selection under influence of factors that cannot easily be captured or modelled
• Developed together with KLM OCC
• 30 hour probabilistic forecast
- Overview of the next 30 hours
- Capacity vs. Demand per 20 minute period
- Capacity available with a probability of 50% or more
- 20 minute period clickable to get more detailed information
For the selected 20 minute period
- Runway combinations, probabilities, capacity
- What-if scenarios
 - Different runway mode (e.g. outbound peak instead of inbound peak)
 - Visibility conditions (e.g., marginal instead of good)
Capacity table
- Same information as graph
- Summary of meteo

Meteo for 20 minute period
- Most likely
- Uncertainties
Probabilistic Forecast

Probabilistic Meteorological Forecast × Probabilistic Runway Use Forecast

“probabilistic meteo forecast x probabilistic runway use forecast”
- Run Monte Carlo simulations with the runway use model
- Vary meteorological conditions based on meteo forecast
- Aggregate simulation results to obtain the probability forecast
KNMI PROBABILITY FORECAST SCHIPHOL

Friday 21 November 12 UTC till Saturday 22 November 18 UTC

Last update: Short term: 09:45 UTC Long term: 10:57 UTC

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>21</th>
<th>00</th>
<th>03</th>
<th>06</th>
<th>09</th>
<th>12</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility</td>
<td></td>
</tr>
<tr>
<td>Visibility < 5 km and/or ceiling < 1000 ft (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>RVR < 1500 m and/or ceiling ≤ 300 ft (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>RVR < 550 m and/or ceiling< 200 ft (%)</td>
<td>0</td>
</tr>
<tr>
<td>RVR < 350 m (%)</td>
<td>0</td>
</tr>
<tr>
<td>Wind direction (deg)</td>
<td></td>
</tr>
<tr>
<td>Windspeed (kt)</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Gusts (kt)</td>
<td>15</td>
</tr>
<tr>
<td>Standarddeviation wind direction (deg)</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Standarddeviation windspeed (kt)</td>
<td>2</td>
</tr>
<tr>
<td>CB (%)</td>
<td>0</td>
</tr>
<tr>
<td>Thunderstorm (%)</td>
<td>0</td>
</tr>
<tr>
<td>Temperature (C)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Dewpoint (C)</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Relative humidity (%)</td>
<td>76</td>
<td>81</td>
<td>76</td>
<td>76</td>
<td>81</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>100</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>Windchill</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-0</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Snow (%)</td>
<td>0</td>
</tr>
<tr>
<td>Moderate or heavy snow (%)</td>
<td>0</td>
</tr>
<tr>
<td>Freezing precipitation (%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: KNMI

- Product of the Royal Netherlands Meteorological Institute (KNMI)
- Probability forecast up to 30 hours
- Updated every hour
Probability Forecast Runway Use

- 1 Landing +1 Take-off
- Wind 310° 10 kts
- Good visibility, in UDP

Runway combination and probability:

<table>
<thead>
<tr>
<th>Runway Combination</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>36L/06</td>
<td>60%</td>
</tr>
<tr>
<td>36L/36R</td>
<td>30%</td>
</tr>
<tr>
<td>36L/27</td>
<td>10%</td>
</tr>
</tbody>
</table>

Model Predictors

- Available runways
- Number of departure and arrival runways needed
- Wind direction, wind speed and gust
- Visibility (horizontal & cloud base)
- Daylight conditions (yes/no)
Supervised Machine Learning

- The computer is presented with example inputs and their desired outputs, given by a ‘teacher’, and the goal is to learn a general rule that maps inputs to outputs.

1 – Training phase

2 – Prediction phase

Multinomial Logistic Regression

- Predicts the probabilities of all possible runway combinations
- The runway combination is considered a nominal dependent variable
 - the number of categories is limited (i.e., 82 unique runway combinations),
 - there is no ordering in any meaningful order
 - all categories are known
Machine Learning Runway Use Model

Training phase (prior to use)

<table>
<thead>
<tr>
<th>Weather</th>
<th>Runway Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>Visibility (GMB)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>320 10kt</td>
<td>G</td>
</tr>
<tr>
<td>320 10kt</td>
<td>G</td>
</tr>
<tr>
<td>310 10kt</td>
<td>G</td>
</tr>
<tr>
<td>310 10kt</td>
<td>G</td>
</tr>
<tr>
<td>310 10kt</td>
<td>G</td>
</tr>
<tr>
<td>180 6kt</td>
<td>M</td>
</tr>
</tbody>
</table>

Prediction phase (use)

give runway combinations and probability for the following conditions:
- 1 dep runway and 1 arr runway
- Wind 310 10 kts
- good visibility, within UDP

Model

combination	prob.
36L/06 | 60% |
36L/36R | 30% |
36L/27 | 10% |
Monte Carlo simulations with runway use model

20 minute period

select peak periods

draw meteo condition

departure arrival, peak etc.

meteo-condition

runway use model

prob. forecast runway use for 1 meteo condition

aggregate results individual simulations

probability forecast runway use

“probability forecast meteo x probability forecast runway use”

- Series of Monte Carlo simulations with runway use model
- Varying meteorological conditions based on probabilistic forecast
- Runway model gives probabilistic forecast for one meteo condition
Predictive Power

- Reliability of the model
- “Confidence” of the model

- Trained model using 2013 data
- Generated probability forecasts for 2014
- Compared the forecast with actual runway use
Forecast vs. Actual Use – runway use model only

- Strong correlation between forecast and actual use
Forecast vs. Actual use against the prediction horizon
Impact on Decision Making

- User experiment
- Type of decision made
- Time a decision was made

- Use of the system
- Get feedback on the design and functionality
Impact on Decision Making

- KLM selected 5 days to assess the impact on decision making in an experiment
 - Storm, snow, showers, bad visibility

- Three participants
 - 2 x Supervisor Flight Dispatch
 - 1 x Flow Controller
 - No experience with the system

- Impact on decision making
 - Fuel advice (e.g., extra fuel for expected holding)
 - Inform ‘network operations’ (e.g. cancel flights)
 - Compare decisions taken during the experiment run and the actual operation
Experiment Setup

- Scenario starts at 7:00z the day before (D -1)

- The participant is asked to assess the situation using the DSS system. Also available to the participant are weather information and the latest briefing.

- The participant is asked to:
 1. Describe the situation
 2. Indicate which conclusions he/she draws based on the information
 3. Indicate if operational decisions should be taken.
 If yes, indicate which operational decisions.

- The steps above are repeated at 15:00z (D -1), 23:00z (D -1), 7:00z (D 0) at the day itself.

- Same steps as in the actual operation
Comparison of Decisions Taken

- No impact on the ‘type’ of operational decisions that are made
 - Fuel advices more targeted to fleet segments (EUR/ICA) and time frame

- Possible effect on the moment decisions are made
 - Fuel advices later
 - Cancellations earlier

- Sample size is too small to draw any statistical significant conclusions
User Feedback & Interface Use (selection)

- The capacity graph works as a trigger. When demand exceeds capacity, users explore the situation further.

- The system enables more targeted decision making.

- More focus on the middle of the day.

- Capacity table adds little information, can be removed.

- Difficult to see how the weather is changes over time, requires many mouse clicks.

- Crosswind per runway and capacity penalty due to headwind would be a valuable addition.
Main Conclusions

- Combining the probabilistic runway use forecast with a probabilistic meteorological forecast results in a probabilistic forecast that accounts for both the uncertainty in the weather forecast and runway selection.

- Probabilities forecast have strong correlation with the percentage of time a runway is actually used.

- Indication that the system has a positive effect on decision making
 - decisions to cancel flights are taken earlier.
 - decisions to take extra fuel onboard later.
 - more targeted decision making
This project was funded by
Probabilistic Runway and Capacity Forecasting using Machine Learning to Support Decision Making

SESAR Innovation Days 2016 – November 9, Delft