New perspectives for air transport performance

A. Cook and G. Tanner
Department of Planning and Transport
University of Westminster
London, United Kingdom

Abstract—The average delays of flights and passengers are not the same. The air transport industry is lacking passenger-centric metrics; its reporting is flight-centric. We report on the first European network simulation model with explicit passenger itineraries and full delay cost estimations. Trade-offs in performance are assessed using passenger-centric and flight-centric metrics, under a range of novel flight and passenger prioritisation scenarios. The need for passenger-centric metrics is established. Delay propagation is characterised under the scenarios using, inter alia, Granger causality techniques.

Keywords—delay propagation; passenger-centric; metric; flight prioritisation; Granger causality

Foreword—This work is co-financed by EUROCONTROL acting on behalf of the SESAR Joint Undertaking (SJU) and the EUROPEAN Union as part of Workpackage E in the SESAR Programme. Opinions expressed in this work reflect the authors’ views only. EUROCONTROL and/or the SJU shall not be considered liable for them or for any use that may be made of the information contained herein.

I. INTRODUCTION

The average delays of (delayed) flights and passengers are not the same. The air transport industry is lacking passenger-centric metrics; its reporting is flight-centric. Trade-offs between these metrics need to be better understood, as they are observed to move in opposite directions under certain types of flight prioritisation. With growing political emphasis in Europe on service delivery to the passenger, and passenger mobility, how are we to measure the effectiveness of passenger-driven performance initiatives in air transport if we do not have the corresponding set of passenger-oriented metrics and understand the associated trade-offs in the context of delay propagation?

In the ‘POEM’ (Passenger-Oriented Enhanced Metrics) SESAR Workpackage E project, we have built a European network simulation model with explicit passenger itineraries and full delay cost estimations. A baseline traffic day in September 2010 was selected as a busy day in a busy month – without evidence of exceptional delays, strikes or adverse weather. We compare the effects of novel flight and passenger prioritisation scenarios on new passenger-centric and flight-centric metrics, which assess not only delay but also a range of costs associated with delay. The propagation of delay through the network is also investigated, using complexity science techniques to complement classical metrics.

Table I summarises the prioritisation scenarios investigated. They were designed in parallel with the new metrics. For convenience, they are broadly classified according to the agency of the instigating stakeholder. For example, only airlines are currently likely to be able to estimate their own delay cost data in A_1 and A_2. The policy-driven scenarios P_1 and P_2 are bolder than the current scope of European regulations. It is essential to explore the context of the model and the metrics in terms of future developments such as Airport Collaborative Decision Making (A-CDM) and, regarding flight prioritisation, the User Driven Prioritisation Process (UDPP). These technical contexts, in addition to the evolving socio-political landscape, are discussed in Section III. This includes a review of the European Union’s underpinning regulatory instrument for air passenger compensation and assistance (Regulation 261, [1]), of high-level political objectives, of the Single European Sky performance scheme, and of recent ATM delay performance. A full discussion of the design of our metrics has recently been published [2], whereby a complementary approach is proposed to the understanding of network performance. This is reflected in the cross-section of results presented in Section IV. We turn first to a review of the start of the art.

II. OVERVIEW OF POEM MODEL AND EXISTING MODELS

A. Existing modelling – the state of the art

Using large data sets for passenger bookings and flight operations from a major US airline, it has been shown [3] that passenger-centric metrics are superior to flight-based metrics for assessing passenger delays, primarily because the latter do
not take account of replanned itineraries of passengers disrupted due to flight-leg cancellations and missed connections. For August 2000, the average passenger delay (across all passengers) was estimated as 25.6 minutes, i.e. 1.7 times greater than the average flight leg delay of 15.4 minutes.

<table>
<thead>
<tr>
<th>Performance change</th>
<th>Predicted pax trip delay change</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-minute reduction in flight delay</td>
<td>-24%</td>
</tr>
<tr>
<td>Improved airline cooperation policy in re-booking disrupted passengers</td>
<td>-12%</td>
</tr>
<tr>
<td>Flights cancelled earlier in the day</td>
<td>-10%</td>
</tr>
<tr>
<td>Decreasing load factor to 70%</td>
<td>-8%</td>
</tr>
</tbody>
</table>

Source: [5].

Based on a model using 2005 US data for flights between the 35 busiest airports, [4] concurs that “flight delay data is a poor proxy for measuring passenger trip delays”. For passengers (on single-segment routes) and flights, delayed alike by more than 15 minutes, the ratio of the separate delay metrics was estimated at 1.6. Furthermore, heavily skewed distributions of passenger trip delay demonstrated that a small proportion of passengers experienced heavy delays, which was not apparent from flight-based performance metrics ([5], [6]).

Using US historical flight segment data from 2000 to 2006 to build a passenger flow simulation model to predict passenger trip times, [5] cites flight delay, load factors, cancellation (time), airline cooperation policy and flight times as the most significant factors affecting total passenger trip delay in the system (see Table II).

An “inherent flaw in the design of the passenger transportation service” has been pointed out [7], in that service delivery to the passenger did not improve in 2008 in the US, despite the downturn in traffic. One in four US passengers experienced trip disruption (due either to delayed, cancelled or diverted flights, or due to denied boarding). Recovery mechanisms in place for disrupted passengers, such as transfer to alternative flights or re-routing, require seat capacity reserves. However, the airline industry wishes to maximise economies of scale, optimise yield management, maximise load factors, and (thus) to minimise seat capacity reserves. In 2008, as airlines reduced frequencies to match passenger demand, higher load factors severely reduced such reserves [7].

Analysing US flight data for 2007 between 309 airports to estimate passenger-centric delay metrics showed [6] that the average trip delay for passengers over all flights was 24 minutes, whilst for passengers on flights delayed by at least fifteen minutes, the average delay was 56 minutes.

Flight-centric and passenger-centric metrics have also been examined [8] by comparing different rationing rules in a model US ground delay programme rationing rule simulator, exploring the trade-off between flight and passenger delay, and also between airline and passenger equity. (We shall return to these results later.)

Turning to more recent work, [9] presents a closed-form, aggregate model for estimating passenger trip reliability metrics from flight delay data from US system-wide simulations. Metrics were derived from the probabilities of delayed flights and network structure parameters. A particularly appealing finding was that the average trip delay of disrupted passengers varies as the square of the probability of a delayed flight and linearly with respect to rebooking delays.

An analytical queuing and network decomposition model – Approximate Network Delays (AND) – studied [10] delay propagation for a network comprising the 34 busiest airports in the US and 19 of the busiest airports in Europe. The model treats airports as a set of interconnected individual queuing systems. Due to its analytical queuing engine, it does not require multiple runs (as simulations do) to estimate its performance metrics and can evaluate the impacts of scenarios and policy alternatives.

Covering 305 US airports in 2010, an agent-based model reproduced [11] empirically observed delay propagation patterns. Estimated passenger and crew connectivities were identified as the most relevant factors driving delay propagation. The probability of such connections were modelled as proportional to flight connectivity levels at each airport.

Almost no current models use explicit passenger data, although this is planned for the AND model (ibid.). Also, actual passenger transfer numbers have been used in numerical simulations of a major US hub, where it was demonstrated [12] that each metric studied – terminal transit times of passengers, aircraft taxi times and gate conflict durations – outperformed observed values through the use of a balancing objective function. (As part of our work in SESAR Workpackage E, we are also preparing publications focused on actual transfer passengers at a major European hub.)

B. The POEM model – an overview

POEM models the busiest 199 European Civil Aviation Conference (ECAC) airports in 2010, having identified [13] that these airports accounted for 97% of passengers and 93% of movements in that year. Routes between the main airports of the EU 27 states and airports outside the EU 27 have been used as a proxy for determining the major flows between the ECAC area and the rest of the world. This process allowed the selection of 50 non-ECAC airports for inclusion of their passenger data.

The two principal datasets used to prepare the input data for the model were IATA’s PaxIS passenger itineraries and EUROCONTROL’s PRISME traffic data. Extensive data cleaning of the source traffic data was required, especially with regard to unreliable taxi-out data and scheduled times, missing taxi-in data and aircraft characteristics (including registration sequencing).

There are approximately 30 000 flights in each day’s traffic and around 2.5 million passengers distributed among 150 000 distinct passenger routings. The assignment of passengers to
individual flights, with full itineraries and calibrated load factors, was a fundamental component of POEM. All the allocated connections were viable with respect to airline schedules and published minimum connecting times.

POEM is a full gate-to-gate model with passenger connectivities explicitly modelled. Each simulated process is governed by one or more rules [13]. For example, Rule 33 governs realistic decision-making for missed passenger connections due to delays and cancellations (such as dynamic passenger reaccommodation onto aircraft with free seats, using detailed fleet and load factor data) and integrates with the tail-tracked aircraft wait and turnaround (recovery) rules. Two airline case studies, including on-site visits and workshops, focused on developing and testing specific aspects of the model rules in an operational context.

Core cost estimations in the model are with respect to delay costs to the airline, since it is these that drive airline behaviour. The model represents a normative day and the simulation results thus reflect schedule robustness (e.g. with respect to passenger reaccommodation). Using a cloud-computing platform, each full day’s simulation took approximately two minutes. As a stochastic model, statistically stable results were produced typically after ten runs (although the results presented are based on fifty runs).

III. SOCIO-POLITICAL AND TECHNICAL CONTEXTS

A. Socio-political context – the passenger imperative

SESAR’s ‘Performance Target’ [14] refers frequently to the concept of society and the passenger. The ‘societal outcome’ cluster of KPAs, is defined as being of “high visibility”, since the effects are of a political nature and are even visible to those who do not use the air transport system. The ‘operational performance’ cluster is also specifically acknowledged as impacting passengers.

Social and political priorities in Europe are now shifting in further favour of the passenger, as evidenced by high-level position documents such as ‘Flightpath 2050’ [15] and the European Commission’s 2011 White Paper (‘Roadmap to a Single European Transport Area’, [16]).

However, it has been accepted that there are currently several problems with regard to the implementation and scope of Regulation 261. A roadmap for the implementation of the Regulation was published in late 2011 [17]. After various consultations, a memo was released in 2013 [18] detailing key proposed changes, which could become law by 2015, subject to approval by member states. In summary, the key changes are to: (i) initiate passengers’ right to care and assistance after two hours of delay, regardless of the length of the flight; (ii) require an airline to re-route passengers onto other carriers (already much commoner in the US) if it cannot re-route onto its own services within 12 hours; (iii) offer passengers the same rights for delays relating specifically to connecting flights, and to extend such rights to compensation for long delays (including arrival delay) caused by any reason; (iv) introduce new obligations (currently none exist) regarding information on delayed or cancelled flights; and, (v) better define ‘extraordinary circumstances’ that exempt carriers from paying passenger compensation (although proposed changes to the compensation rights will make these more complex, allowing the carriers more time to avoid cancelling flights, for example).

The baseline scenario (S0) rules of the POEM model reflect airline costs typically imposed by Regulation 261 and common practice regarding care and rebooking during disruption [13]. Under the P1 and P2 scenarios, current constraints on airline practice are successively relaxed and the impacts are examined, as presented in Section IV.

B. ATM delay performance and model alignment

<table>
<thead>
<tr>
<th>Metric</th>
<th>2010</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFR flights (million)</td>
<td>9.5</td>
<td>9.6</td>
</tr>
<tr>
<td>Total pax (million, EU 27)</td>
<td>777</td>
<td>734</td>
</tr>
<tr>
<td>Average dep. delay (mins)</td>
<td>14.8</td>
<td>9.5</td>
</tr>
<tr>
<td>Arrival delays > 15 mins</td>
<td>24.2%</td>
<td>16.7%</td>
</tr>
<tr>
<td>Reactionary delays</td>
<td>46.7%</td>
<td>45.5%</td>
</tr>
</tbody>
</table>

Sources: [19], [20], [21].

Table III compares key statistics for 2010 (the year from which the POEM model’s baseline day was taken) and 2012 (the latest year for which such statistics were available at the time of press). It is to be noted that the traffic and passenger numbers are similar. Passenger numbers depend on coverage: whereas data from Eurostat [21] describe a small fall between these periods, EUROCONTROL [20] reports an increase. The Eurostat data refer to the 27 Member States of the European Union as of 1 January 2007 (i.e. they exclude Croatia, which acceded in July 2013) and report total scheduled and non-scheduled passengers carried (passengers are not multiply-counted for each stage of a stopping flight or during transfers). The EUROCONTROL coverage extends beyond these EU 27 states, thus including strong growth in Turkey.

Whilst 2010 suffered from a high number of cancellations (due to the Eyjafjallajökull ash cloud in April and May, strikes in France and Spain, and bad winter weather), this had a limited effect on punctuality per se [19]. Nevertheless, punctuality in 2010 was at its worst since 2001, even with traffic below 2007 levels after modest growth on the previous year [19]. The average departure delay values include all flights, with delays counted from the first minute and early departures counted as zero delay. The percentage of arrival delays greater than 15 minutes in 2012 reached an all-time low of 16.7% – the changes in punctuality were largely driven by improvements in en-route ATFM delays [20].

The average departure delay for September 2010, the month from which POEM’s baseline was selected, was 13.9
minutes, and the average arrival delay was 13.6 minutes. As we have detailed more fully [13], the model was calibrated partly using these values, with S_0 (baseline) averages of 13.8 and 13.5 minutes, respectively. With similar passenger and traffic volumes already between the two years, the model could also be recalibrated, if required, to reflect the better delay performance of 2012.

Current ATM key performance indicators (KPIs) in Europe are (inevitably) rather high-level. Many targets have been set [22] at the European level. For capacity (under RP1), ATFM en-route delay per flight (with a weather delay allowance managed at the network level) has a binding EU-wide target of 0.5 minutes by 2014. An intermediate (non-binding) target of 0.7 minutes per flight was set for the first year, 2012, for which reporting was published in September 2013 [23]. The EU-wide value for 2012 was 0.63 minutes of ATFM delay per flight, thus satisfying the target [23]. In fact, en-route ATFM delays decreased by 46% (compared with 2011), albeit with a corresponding 2.7% traffic decrease [23]. Some targets are also applied at the state / FAB level (e.g. targets set on all ‘performance scheme’ airports for total ATFM delay attributable to airport / terminal air navigation services, which take account of severe weather and exceptional events).

RP2 sets out to extend the performance scheme to cover the full gate-to-gate scope, with target setting for four of the International Civil Aviation Organization’s eleven KPAs: capacity, environment, cost efficiency and safety [24]. Union-wide targets for RP2 have to be set by the end of 2013, with adoption of the corresponding Performance Plans in 2014. After a range of consultations and consideration of, inter alia, macro-economic conditions, historic performance trends, air traffic forecasts, opportunities for further improvement in ANS performance and associated risks, and evidence of best practice, the PRB published [25] its proposed EU-wide targets for RP2. For capacity, this is 0.5 minutes per flight for 2015-2019. According to PRB analysis [25], this target corresponds to more than 98% of flights not constrained by ATC. (Not a focus of our research to date, the POEM model does not yet have sufficient fidelity for assessing en-route ATFM delays per se, although this module is a target for future refinement.)

Setting challenging targets for 2020, SESAR’s Performance Target [14] significantly refines (see Table V) the fifteen minute historical threshold for defining arrival and departure delay in Europe and the US.

Table IV. SES Performance Scheme Reference Periods

<table>
<thead>
<tr>
<th>Reference period</th>
<th>Applicable years</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP1</td>
<td>2012 - 2014</td>
</tr>
<tr>
<td>RP2</td>
<td>2015 - 2019</td>
</tr>
<tr>
<td>RP3</td>
<td>2020 - 2024</td>
</tr>
</tbody>
</table>

Table V. SESAR Performance Objectives and Targets

<table>
<thead>
<tr>
<th>SESAR metric</th>
<th>Target for 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>departure punctuality</td>
<td>≥ 98% of flights departing as planned ±3 mins other 2%: average delay ≤ 10 mins</td>
</tr>
<tr>
<td>arrival punctuality</td>
<td>> 95% of flights arrival delay ≤ 3 mins other 5%: average delay < 10 mins</td>
</tr>
<tr>
<td>reactionary delay</td>
<td>50% reduction by 2020, cf. 2010</td>
</tr>
<tr>
<td>cancellations</td>
<td>50% reduction by 2020, cf. 2010</td>
</tr>
<tr>
<td>variation in block-to-block times</td>
<td>block-to-block σ < 1.5% of route mean³</td>
</tr>
</tbody>
</table>

³ KPIs are subject to target setting; PIs are for monitoring only.

Fig. 1. Reactionary delay trend to 2012. Source: adapted from [20].
Whilst the SES performance scheme focuses on improving air navigation service (ANS) provision, and hence uses ATFM delay in its capacity KPs, the SESAR targets are broader in scope. Airline punctuality is a poor metric for assessing ANS performance *per se*, since such punctuality is driven to a considerable extent by airline scheduling decisions. Such punctuality metrics remain pertinent in terms of service delivery to the passenger, however, and it is clear that a complementary set of metrics is needed by the industry. Whilst evidence [6] suggests that delays of less than 15 minutes are less important in terms of passenger connectivities, increasing pressures on utilisation and lower connecting times add to the importance of more exacting targets.

For the POEM model results, we focus in Section IV on the trade-offs between flight-centric and passenger-centric metrics, including costs, reporting on the corresponding reactionary delay effects at the disaggregate level, in addition to the impact on the high-level target of Table V. Exploring the robustness of our scenarios under disruption, cancellation rates have currently been used as a model input variable, rather than being modelled intrinsically. To measure the effect of increased perturbation, two disrupted days were derived from the baseline traffic. This allowed like-for-like comparisons between the disrupted days and the baseline day. One disrupted day imposed 1 extra minute on the average departure delay (making a new average of 14.9 minutes across all flights). The other disrupted day imposed just under 1% of additional cancellations on morning operations. Comparing the model outputs for the disrupted days showed them to be well modelled in that changes to the core metrics were as expected and reflected operational experience (e.g. with regard to relatively low impacts on flight punctuality metrics during periods of higher cancellations). Compared with the baseline day, the scenarios also performed similarly under disruption, demonstrating a degree of robustness in terms of their efficacy under such perturbation (see [13] for details). In 2014, traffic is expected to increase by 2.8%, finally reaching the 2008 pre-economic crisis levels again by 2016 [20]. Future traffic samples could also be used as inputs into the POEM model, which would be interesting to further stress-test the scenarios. (Explicit passenger assignments would have to rebuilt using the dedicated algorithms). It would be feasible, and instructive, to observe the impacts on modelled performance compared with some of the SES / SESAR targets.

D. Flight prioritisation and SESAR ConOps

At the core of the POEM model simulations are the flight and passenger prioritisation scenarios. These need to be considered in the context of the SESAR Concept of Operations (henceforth “ConOps”). Is there a future role for such mechanisms? If so, over what timescale and at what level of prominence? The SESAR ConOps is mapped into three steps, as shown in Table VI. The three steps are not purely sequential, but overlap, with some changes being developed in parallel across them. The first editions of ConOps Step 1 and Step 2 were published in May 2012 [26] and July 2013 [27], respectively. (ConOps Step 3 will probably be published in 2016.) These documents serve as the main references for all envisaged operationally-related SESAR tasks. Key components of these steps are UDPP and the process into which it feeds – Demand and Capacity Balancing (DCB).

<table>
<thead>
<tr>
<th>ConOps step and operations type</th>
<th>UDPP implementation status</th>
<th>Other example implementations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1. Time-based</td>
<td>Initial UDPP; flexibility at dep.</td>
<td>A-CDM; Network Operations Planning, CTAs (Controlled Times of Arrival); initial SWIM; airport surface management integrated with AMAN/DMAN (arr./dep. manager); some free routes</td>
</tr>
<tr>
<td></td>
<td>airport (reordering flights before pre-departure sequencing, with consistency between airport slots and flight plans) and flexibility en-route (through enhanced ATFM slot swapping)</td>
<td>Network Operations Planning based around full 4D trajectories; multiple CTAs (Controlled Times Over) /CTAs (including on non-published waypoints)</td>
</tr>
<tr>
<td>Step 2. Trajectory-based</td>
<td>More flexibility to re-arrange schedules in a trajectory-based environment - integrated with en-route CDM, also full integration of AMAN, DMAN and surface management linked to UDPP and (dynamic) DCB</td>
<td>Two airspace categories (civil and military); specific separation tasks delegated to flight deck; free routes implemented from TMA exit to entry; Dynamic Mobile Areas</td>
</tr>
<tr>
<td>Step 3. Performance-based</td>
<td>Full SWIM (System-Wide Information Management) and collaboratively planned network operations with UDPP</td>
<td>-</td>
</tr>
</tbody>
</table>

Primary sources: [27] and [28].

UDPP is a CDM-based process carried out for DCB purposes, which allows airlines to request a priority order for flights affected by restrictions arising from unexpected capacity reductions. The desired priority order is that which “best respects the business interests” [27] of the airspace users. As explained in ConOps Step 1 [26], (dynamic) DCB with short-term ATFCM measures “constitute a step forward to close the gap between ATFCM and ATC”, with the objective of anticipating and managing traffic peaks, and smoothing ATC workload through the application of fine-tuned measures.

ConOps Step 1 extends the previous scope of UDPP. Its deployment phase is from 2014 to 2025. Previously, the emphasis of UDPP was on implementation after DCB had failed to reach an acceptable solution. Its current scope, however, embraces strategic, pre-tactical and tactical phases and will be available in any ‘normal’ situation, although with a particular applicability during capacity constraints with an early focus, once the design has sufficiently matured, on the pre-departure phase (but ultimately including en-route and arrival phases). Indeed, in the second edition of the ATM Master Plan [28], the prominence of UDPP in the implementation of Step 3 is clear: “‘Performance-based Operations” is realised through the achievement of SWIM and collaboratively planned network operations with User Driven Prioritisation Processes (UDPP).” If AO iterations do not come to an agreed solution, the Network Arbitration function makes sure that in the UDPP process a resolution for the conflict between trajectories demand and constraints due to network capacity is proposed. As a last resort, the Network Arbitration function decides a solution. Arbitration follows pre-agreed rules, and is monitored by the Network Manager in its role as UDPP referee.
Step 1 starts from the ‘Deployment Baseline’, which comprises operational and technical solutions that have successfully completed the R&D phase and have already been implemented, or are being implemented, and runs up to 2018. Enhanced ATFCM and DCB processes are part of the Deployment Baseline. A-CDM and UDPP are major milestones for airport integration with the network. From the Deployment Baseline onwards, A-CDM increases information-sharing between the airport, airlines, handling agents, ANSP and the Network Manager to improve cooperation and increase predictability in order to optimise resource utilisation. Indeed, in the airport context, UDPP in Step 1 was developed only for airports operating A-CDM [27]. During steps 2 and 3 (with deployment after around 2025), exchanges of positions in flight lists managed by either the ACC, Network FMPs or the DCB actors at airports will be implemented, from flight planning to the execution phase, and will form the basis of AO negotiation.

Clearly, there is a well-defined place for flight prioritisation strategies within the SESAR ConOps. Indeed, its scope has recently been extended [26]. Already aligned with A-CDM implementation plans, UDPP is a perfect vehicle for the inclusion of cost- and passenger-focused prioritisation mechanisms. In the next section, we demonstrate how the impacts of the POEM (flight) prioritisation scenarios are reflected through appropriate metrics and analytical tools.

IV. KEY RESULTS FROM THE POEM MODEL

A. New metric results

Fig. 2 presents the core results across various flight-centric and passenger-centric metrics, by the various scenarios. The values indicated are scenario values minus the corresponding baseline (S₀) value. Flight prioritisation scenarios (N₁ and N₂) operating during arrival management based simply on the numbers either of inbound passengers or on those with connecting onward flights, were ineffective in improving performance. The policy-driven scenario (P₁) represents putative conditions not driven by current airline or ATM objectives but which may nevertheless benefit the passenger. This scenario, rebooking disrupted passengers at airports based on minimising delays at their final destination, produced very weak effects when current airline interlining hierarchies were preserved. When these restrictions were relaxed, under P₂, marked improvements in passenger arrival delay were observed, although at the expense of an increase in total delay costs per flight (due to passenger rebooking costs). Trade-off results have also been observed in a US model [8]: compared to the traditional rationing-by-schedule rule, rationing by aircraft size (three priority queues: ‘heavy’, ‘large’ and ‘small’ aircraft) was shown to decrease the total passenger delay by 10%, with a 0.4% increase in total flight delay. Rationing by passengers on-board decreased total passenger delay by 22%, with only a 1.1% increase in total flight delay.

4 Differences shown are statistically significant (p < 0.05; z-tests) and exceeded a minimum change threshold applied to avoid reporting artefactual results (typically set at approximately 2% of the baseline mean values; not applied to the ratio metrics).

![Figure 2. Summary of core results.](image)
The importance of using passenger-centric metrics in fully assessing system performance is clearly made through the results shown in Fig. 2, since the changes were not expressed through any of the currently-used flight-centric metrics at the common thresholds set. Scenario A_1 appears to hold particular promise and will be studied in particular, along with the corresponding baseline (S_0) results, in the next sections.

B. Delay propagation

Reactionary delays and their causes are determined a posteriori. If several passengers were connecting from different flights and all of them were late, we only considered the most restrictive connection (in actual minutes) as the reason for the reactionary delay being induced. In this sense, one flight can delay many others, but any given flight can only be delayed by one previous flight (the most restrictive one). This graph is thus a (propagation) tree.

![Figure 3. Arrival and reactionary delay, by airport size.](image)

Fig. 3 shows total (daily) reactionary and arrival delay as a function of airport movements. Although large airports are associated with more reactionary and arrival delay, there is a considerable relative difference between these delay types at the smaller airports. For some of the forty smaller airports arrival delay was doubled (or even tripled) into reactionary delay. This is due to reduced delay recovery potential at such airports, for example through: flexible or expedited turnarounds; spare crew and aircraft resources (as yet not explicitly modelled in POEM); and, whether a given airport has sufficient connectivity and capacity to reaccommodate disrupted passengers. In practice, the business model of airlines operating at airports also influences these effects. Similar findings have been reported in some literature ([30], [31]).

Back-propagation (where an aircraft’s outbound delay propagates back to an airport one or more times later in the day) was found to be an important characteristic of the persistence of delay propagation in the network. Paris Charles de Gaulle, Madrid Barajas, Frankfurt, London Heathrow, Zürich and Munich all demonstrated more than one hundred hours of back-propagated delay during the modelled (baseline) day. The prevalence of hub back-propagation has also been reported in the literature ([10], [31], [32]).

C. Granger causality directed network analysis

Classical statistical instruments such as correlation analysis are only able to assess the presence of some common (equivalent) dynamics between two or more systems. However, correlation does not imply causality. Granger causality, on the other hand, is held to be one of the only tests able to detect the presence of causal relationships between different time series. It is an extremely powerful tool for assessing information exchange between different elements of a system, and understanding whether the dynamics of one of them is led by the other(s). It was originally developed by Nobel Prize winner Clive Granger [33] and although it was applied largely in the field of economics [34] it has received a lot of attention in the analysis of biomedical data ([35]-[37]).

A network reconstruction was computed for the flight and passenger layers for the S_0 and A_1 scenario simulations of the baseline traffic day, i.e. four reconstructions in total (the two baseline networks are shown in figures 4 and 5). The colour of each node represents its eigenvector centrality, from green (low centrality) to red (most central nodes). The size represents the out-degree, i.e. the number of airports that a given airport Granger ‘forces’ in terms of delay. The eigenvector centrality is a metric defined such that this centrality of a node is proportional to the centralities of those to which it is connected.

Comparing eigenvector centrality rankings through Spearman rank correlation coefficients showed [13] that all four network layers were remarkably different from each other ($r_S = 0.01 – 0.07$). These rankings demonstrated that different airports have different roles with regard to the type of delay propagated (i.e. flight or passenger delay) and that these were further changed under A_1. Indeed, a trade-off was introduced under A_1: the propagation of delay was contained within smaller airport communities, but these communities were more susceptible to such propagation. The absence of major hubs in the top five ranking lists for in-degree, out-degree and eigenvector centralities was evident. Indeed, the largest airports present in these rankings were Athens, Barcelona and Istanbul Atatürk. We previously reported similar findings in a network vulnerability analysis [2].

![Figure 4. Flight delay causality network for S_0 simulation.](image)

Investigating how congested airports form connected clusters in the US 2010 network, it was found [11] that the same airports were not consistently part of such clusters, implicating daily scheduling differences in delay propagation patterns. It was noted that being in the same cluster was a measure of correlation but not necessarily a sign of a cause and effect relationship. Notably, only two major hubs, Newark and
San Francisco, were present in the top ten for persistence in the largest congested clusters ([11]. “Supplementary information”).

Figure 5. Passenger delay causality network for S₀ simulation.

V. FUTURE RESEARCH

An examination of the socio-political, regulatory and technical contexts, and of the state of the art regarding current modelling, suggests that there is a role for the continued development of tools to explore the impacts of flight and passenger prioritisation strategies. The results we have presented, building the first explicit passenger connectivity simulation of the European air transport network, show that passenger-centric metrics, including appropriate network and cost considerations, are necessary complements to existing flight-centric metrics in order to fully evaluate system performance. These enable insights into such performance, in addition to oversight. Building on the POEM model’s flexibility, we plan to implement higher fidelity en-route behaviour and ATFM modelling functionalities, and to use the tool to explore future market trends (such as traffic levels, aircraft size, load factors, service frequencies and hub wave structures), robustness under disruption, and the trade-offs between various prioritisation and policy strategies. These may be examined not only at the network level, for example in the context of SES and SESAR high-level targets, but also for given airline route clusters and airports.

REFERENCES

[23] EUROCONTROL, PRB Annual monitoring report 2012 volume 1, European overview and PRB recommendations (Ed. 1), September 2013.
[26] SESAR, SESAR Concept of Operations Step 1 (Ed. 1), 2012.
[27] SESAR, SESAR Concept Of Operations Step 2 (Ed. 1), 2013.