Project Number 08.03.10	Edition 00.08.00
D45 - ISRM Modelling Guidelines
	[image: SESAR_JU]

	ISRM Modelling Guidelines

	Document information

	Project Title
	Information Service Modelling deliverables

	Project Number
	08.03.10

	Project Manager
	NORACON

	Deliverable Name
	ISRM Modelling Guidelines

	Deliverable ID
	D45

	Edition
	00.08.00

	Template Version
	03.00.00

	Task contributors 

	DFS, EUROCONTROL, NORACON, NATMIG, FINMECCANICA

	

	Abstract
The modelling guideline is part of the ISRM foundation. It gives step by step instructions for service modellers and service architects to design service models on a logical level.



Authoring & Approval
	Prepared By - Authors of the document.

	Name & Company
	Position & Title
	Date

	Oliver Schrempf, DFS
	Project Member
	17/05/2016

	Tord Pola, NORACON
	Project Manager
	20/04/2016



	Reviewed By - Reviewers internal to the project.

	Name & Company
	Position & Title
	Date

	P08.03.10 project members
	
	

	Walter Van Hamme / EUROCONTROL
	8.3.10 Contributor
	30/03/2016

	Serena Rubbioli / IDS
	8.3.10 Contributor
	23/05/2016

	Tom Erik White / NORACON
	8.3.10 Contributor
	23/05/2016



	Reviewed By - Other SESAR projects, Airspace Users, staff association, military, Industrial Support, other organisations.

	Name & Company
	Position & Title
	Date

	
	
	

	
	
	



	Approved for submission to the SJU By - Representatives of the company involved in the project.

	Name & Company
	Position & Title
	Date

	Tord Pola / NORACON
	Project Manager
	31/05/2016

	
	
	



	Rejected By - Representatives of the company involved in the project.

	Name & Company
	Position & Title
	Date

	
	
	

	
	
	



	Rational for rejection

	None.


Document History
	Edition
	Date
	Status
	Author
	Justification

	00.00.01
	18.04.2011
	Draft 
	Florian Kraus
	New Document, based on “ISRM Guide for modellers” V00.01.00 

	00.00.02
	04.05.2011
	Draft
	Florian Kraus
	Draft of modelling process created.

	00.00.03
	12.05.2011
	Draft
	Florian Kraus
	Incorporated feedback from training preparation and input from Noracon

	00.00.04
	25.05.2011
	Draft
	Florian Kraus
	Finalised all chapters except chapter 4

	00.00.05
	09.06.2011
	Draft
	Daniel Berg
	Added information on collaborative process and QoS examples. 

	00.01.00
	10.06.2011
	Final
	Oliver Krueger
	Reviewed Document

	00.01.01
	07.07.2011
	Final
	Florian Kraus
	Amended chapter 8.2 Messages and Data Types

	00.01.02
	31.05.2012
	Draft
	Oliver Krueger
	Interim Version including NWF process steps

	00.01.03
	04.06.2012
	Final
	Oliver Krueger
	Updated after comments

	00.01.04
	18.06.2012
	Final
	Tord Pola
	Change control reworked

	00.01.05
	19/06/2012
	Final
	Oliver Krueger
	Finalisation after additional review

	00.01.06
	28/06/2012
	Final
	Svein G. Johnsen
	Inserted index.

	00.01.07
	24/04/2013
	Draft
	Ashley Williams
	New Structure

	00.01.08
	08/05/2013
	Draft
	Ashley Williams
Michel Denys
Tord Pola
	Modelling Guidelines Workshop in Copenhagen from 7th until 8th May 2013

	00.01.09
	22/05/2013
	Draft
	Michel Denys Ashley Williams
	Added section Input Assessment phase and Identify Service

	00.01.10
	27/05/2013
	Draft
	Ashley Williams
	Updated Identify Service

	00.01.11
	27/05/2013
	Draft
	Michel Denys
	Added the section on Service allocation

	00.01.12
	28/05/2013
	Draft
	Ashley Williams
	Added the Appendix sections on, updated Identify Service, section Design Service Added 

	00.01.13
	29/05/2013
	Draft
	8.3.10 WS Oslo 28th/29th of May 2013
	Comments

	00.01.14
	29/05/2013
	Draft
	Ashley Williams
	Chapter and Appendix changed and added

	00.01.15
	31/05/2013
	Draft
	Ashley Williams
	Minor and major changes

	00.01.16
	03/06/2013
	Draft
	Ashley Williams
	Minor and major changes

	00.01.17
	04/06/2013
	Draft
	Ashley Williams
	Minor and major changes

	00.01.18
	06/06/2013
	Draft
	Ashley Williams
	Minor and major changes / Comments of Leslie Folds

	00.01.19
	06/06/2013
	Draft
	Ashley Williams
	Webex 06/06/2013, Bjørn Solberg, Tord Pola, Ashley Williams 

	00.01.20
	06/06/2013
	Draft
	Ashley Williams
	Minor and major changes

	00.02.00
	07/06/2013
	Final
	Ashley Williams
	Minor and major changes / Comments of Leslie Folds

	00.02.01
	12.09.2013
	Final
	Svein G. Johnsen
	Minor changes.

	00.02.02
	31.10.2013
	Draft
	Oliver Schrempf
	EATMA compatibility

	00.02.03
	02.12.2013
	Draft
	Lars-Olof Kihlström
	Profile use, taxonomy and data content

	00.02.04
	20.12.2013
	Draft
	Lars-Olof Kihlström
	General how-to update

	00.02.05
	17.01.2014
	Draft
	Lars-Olof Kihlström
	Comments handled

	00.02.06
	02.02.2014
	Draft
	Lars-Olof Kihlström
	Examples included

	00.02.07
	17.02.2014
	Draft
	Lars-Olof Kihlström
	Comments and changes to profile included.

	00.02.08
	26.02.2014
	Draft
	Oliver Schrempf
	Update Design Chapter

	00.03.00
	06.03.2014
	Final
	Oliver Schrempf
	Incorporate Comments

	00.03.01
	18.03.2014
	Draft
	Oliver Schrempf
	Implementation of Change Requests CR-3 and CR-10 (Payload mapping)

	00.03.02
	20.03.2014
	Draft
	Oliver Schrempf
	Implementation of Change Request CR-15 (map to role)

	00.03.03
	25.02.2014
	Draft
	Trond Natland
Oliver Schrempf
	CR-12 (SDD generation)
CR-2 (alternative mapping)

	00.03.04
	27.03.2014
	Draft
	Oliver Schrempf
	Incorporated comments from Svein Johnsen (NATMIG)

	00.03.05
	02.04.2014
	Draft
	Oliver Schrempf
	Incorporated Review Comments

	00.03.10
	09.04.2014
	Final
	Oliver Schrempf
	Preparation for final delivery

	00.04.00
	13.05.2014
	Final
	Oliver Schrempf
	CR-14 Updated template 
CR-8 Service naming
CR-18 drop activity report
CR-32 Fix typo
CR-31/38 Rule SM580
CR-41 direction of serviceSupportsActivity
CR-44 lowerCamelCase
CR-6 Naming of ServiceLevels
CR-7 reference MEP Source

	00.04.01
	28.08.2014
	Final
	Gianluca Marrazzo
Stefan Keller
Oliver Schrempf
	CR-59 Role Names
CR-62 Tracing to AIRM IM
CR-63 Cleanup from Exchange Models
CR-64 Allow Multiple Tracings to AIRM

	00.05.00
	16.12.2014
	Final
	Oliver Schrempf
Oliver Krüger
Niklas Häggström
Bjørn Solberg
Svein G. Johnsen
	CR-5 reorganize IER placement
CR-20 remove service functions
CR-60 Fix wording of IER description
CR-43 Make Capability Mapping mandatory
CR-45 Correct rule SM260
CR-61Extend rule SM320
CR-19 Example for optional views
CR-68 Drop Node to Interface mapping
CR-69 Handling new abbreviations
CR-70 Update Service Allocation/NSV-12 guidelines
CR-71 Reorganize Tasks within Service Identification and Service Design
CR-72 Consolidate modelling of Operational and Business Context into one chapter
CR-73 Move the Operational modelling to Support to OPS chapter
CR-74 Update use/modelling of Nodes in NSOV-4
CR-75 Restrictions on service naming.
CR-87 Fix modelling on items not owned by ISRM

	00.06.00
	27.05.2015
	Final
	Oliver Schrempf
Niklas Häggström
Svein G. Johnsen
Tom Erik White
	CR-09 Service and Data Modeller cooperation for payload modelling 
CR-95 Model dependencies between interfaces  
CR-91  Fix for Guidelines for NOV-2 NodeRealizationOfServices
CR-97 Add design goals
CR-92 Fix for SM600

	00.07.00
	5.12.2015
	Final
	Oliver Schrempf
Gianluca Marrazzo
Bjørn Solberg
Are Kjæraas
Tord Pola
	CR-98 Remove Taxonomy from ISRM
CR-119 Replace attribute-based NFRs by traces to text-based requirements (SPRs).
CR-113 Modelling of Enumeration, plus major improvement and simplification on all payload modelling section.
CR-117 Consistent use of diagram names
CR-123 Describe MEP usage
CR-125 Show Property Note in diagram
CR-130 Cleanup subpackage structure


	00.08.00
	25.05.2016
	Final
	Oliver Schrempf
Tord Pola
	Preparation of SESAR agnostic Foundation


Intellectual Property Rights (foreground)
This deliverable consists of SJU foreground. 
Table of Contents
Executive summary	9
1	Introduction	10
1.1	Purpose of the document	10
1.2	Intended readership	10
1.3	Inputs from other projects	10
1.4	Glossary of terms	10
1.5	Acronyms and Terminology	11
2	Design service	12
2.1	Design goals	12
2.2	Output	13
2.2.1	Package structure	13
2.3	Steps to be performed	14
2.3.1	Step 1: Identify and uniquely name service	15
2.3.2	Step 2: Map Service to Requirements (IER and NFR)	17
2.3.3	Step 3: Specify Ports and MEPs	18
2.3.4	Step 4: Specify Interfaces	21
2.3.5	Step 5: Specify Interface Operations	21
2.3.6	Step 6: Specify Operation Parameters	22
2.3.7	Step 7: Specify Service Payload design	23
2.3.8	Step 8: Trace Service Payload to AIRM	26
2.3.9	Step 9: Specify event trace description	26
3	References	29
Appendix A	ISRM SWIM Message Exchange Patterns	30
A.1	Synchronous request/reply	30
A.2	Asynchronous request/reply	31
A.3	Publish/Subscribe Push	32
A.4	Publish/Subscribe Pull	33
A.5	One Way	34
Appendix B	ISRM naming conventions	35
B.1	Service naming conventions	35
B.2	Service Port and Interface naming conventions	37
B.2.1	Interface naming in case of request/reply pattern (synchronous and asynchronous)	38
B.2.2	Interface naming in case of publish/subscribe pattern	38
B.2.3	Interface naming in case of one-way pattern	38
B.3	Service Interface Operations naming conventions	38
B.4	Messages/Service Interface Parameters naming conventions	40
Appendix C	Example of Service with two ports	41
Appendix D	Technical modelling support	46
D.1	SWIM Logical Service toolbox	46
D.1.1	Toolbox installation	46
D.1.2	Toolbox usage	49
D.2	Verification Script	51

List of tables
Table 1: Glossary and terms	10
Table 2: Acronyms	11

List of figures
Figure 1: Example project browser structure	13
Figure 2: The steps of the service design process	15
Figure 3: Example of Service Element in Package Structure	16
Figure 4: Example of Interface Definition Diagram	17
Figure 5: Example Requirements Traceability diagram	18
Figure 6: Example of Service port in package structure	20
Figure 7: Example of modelled MEP choice	20
Figure 8: Example of a Service with multiple interfaces	20
Figure 9: Example of a service interface	21
Figure 10: Example of an interface definition diagram with operations	22
Figure 11: Illustrative diagram showing service operation parameters and their payload elements.	23
Figure 12: Example of a payload structure	24
Figure 13: Example of a structured “Complete Model” payload	25
Figure 14: Example of a payload based on a standard exchange model	26
Figure 15: Example of Sequence Diagram	27
Figure 16: Example of Sequence Diagram with message	27
Figure 17: Example of Sequence Diagram with fragments	28
Figure 18: Synchronous request/reply MEP Event Trace diagram	30
Figure 19:  Synchronous request/reply MEP Interface Definition diagram	30
Figure 20: Asynchronous request/reply MEP Event Trace diagram	31
Figure 21: Asynchronous request/reply MEP Interface Definition diagram	31
Figure 22: Publish/Subscribe Push MEP Event Trace diagram	32
Figure 23: Publish/Subscribe Push MEP Interface Definition diagram	33
Figure 24: Publish/Subscribe Pull MEP Event Trace diagram	33
Figure 25:  Publish/Subscribe Pull MEP Interface Definition diagram	34
Figure 26: One Way MEP Event Trace diagram	34
Figure 27: One Way MEP Interface Definition diagram	34
Figure 28: METGriddedForecast Service Requirements Traceability Example	41
Figure 29: METGriddedForecast Service Interface Defintion Example	41
Figure 30: METGriddedForecast Service Interface Parameter Definition Example 1	42
Figure 31: METGriddedForecast Service Interface Parameter Definition Example 2	43
Figure 32: METGriddedForecast Service Interface Parameter Definition Example 3	44
Figure 33: METGriddedForecast Service Event trace description 1	44
Figure 34: METGriddedForecast Service Event trace description 2	45
Figure 35 The Resources window with Import Technology selected	46
Figure 36 The window used for technology import	47
Figure 37 Example of a MDG Technology file selected for import	48
Figure 38 Prompt for overwriting existing technology	48
Figure 39: List of possible SWIM logical service diagrams	49
Figure 40: Interface Definition Toolbox	50
Figure 41: Interface parameter Definition Toolbox	50
Figure 42: Event Trace Description Toolbox	50
Figure 43: Requirements Traceability Toolbox	50
Figure 44 EA Scripting window showing the added MDG Technology scripting groups	51
Figure 45 Selecting AutoVerify in the Project Browser Scripts menu	51
Figure 46: The process of AutoVerify execution and verification report generation	52

[bookmark: _Toc451951398][bookmark: _Toc225321499][bookmark: _Toc225325998][bookmark: _Toc225328161]Executive summary
The modelling guideline is part of the ISRM foundation and gives step by step instructions for the service modellers and service architects to design ATM SWIM services on a logical level. The guideline is not a SOA tutorial (the modellers are supposed to have full maturity in identifying and designing SOA services) and does not repeat the information found in the other documents.
This document shall be seen as a guideline for designing logical service models following the rules given in the ISRM Foundation Rulebook [4] and serving as a means of compliance as defined by the SWIM Compliance Framework [9].
ISRM SWIM service models are logical in the sense that they provide a formal systematic translation of operational and non-functional requirements into a standardised language using the Unified Modelling Language (UML) without making any technological assumptions or demands. This is achieved by describing service interfaces and service payloads. Interface descriptions are the building blocks for supporting technical interoperability between Service Providers and Consumers. Payloads of ISRM Services are traced to the ATM Information Reference Model (AIRM) [4] for achieving semantic interoperability.



[bookmark: _Toc451951399]Introduction
[bookmark: _Toc451951400]Purpose of the document
The modelling guideline is part of the ISRM foundation and gives step by step instructions for service modellers and service architects to achieve consistent service models by following a common methodology. The guideline is not a SOA tutorial. It is assumed that the modellers have full maturity in identifying and designing SOA services.
The modelling approach is based on the NATO Architectural Framework (NAF) [2] but has been tailored to needs of SWIM. Deeper knowledge on NAF is not needed to perform the modelling work. All information is given in this document and in the ISRM rulebook [1].
Chapter 2 describes the steps to be performed and the artefacts to be modelled in UML[3]. All steps are accompanied by examples which have been produced using Sparx Enterprise Architect. In general, any UML 2 Tool can be used to perform this modelling task. Nevertheless, restrictions may apply to hand over procedures for a common repository.
The Documents contains several Appendices which might be useful for accompanying the modelling Work.
Appendix A defines the available Message Exchange Patterns which may be used in the model.
Appendix B describes the applicable naming conventions for all model elements.
Appendix C shows an example of a service with two ports.
Appendix D contains some useful tooling support, if you are using Sparx Enterprise Architect as a modelling tool.
[bookmark: _Toc447100477][bookmark: _Toc448920513][bookmark: _Toc448920589][bookmark: _Toc449077429][bookmark: _Toc449077532][bookmark: _Toc449343873][bookmark: _Toc449343980][bookmark: _Toc449431437][bookmark: _Toc451249230][bookmark: _Toc451249337][bookmark: _Toc447100478][bookmark: _Toc448920514][bookmark: _Toc448920590][bookmark: _Toc449077430][bookmark: _Toc449077533][bookmark: _Toc449343874][bookmark: _Toc449343981][bookmark: _Toc449431438][bookmark: _Toc451249231][bookmark: _Toc451249338][bookmark: _Toc447100479][bookmark: _Toc448920515][bookmark: _Toc448920591][bookmark: _Toc449077431][bookmark: _Toc449077534][bookmark: _Toc449343875][bookmark: _Toc449343982][bookmark: _Toc449431439][bookmark: _Toc451249232][bookmark: _Toc451249339][bookmark: _Toc447100480][bookmark: _Toc448920516][bookmark: _Toc448920592][bookmark: _Toc449077432][bookmark: _Toc449077535][bookmark: _Toc449343876][bookmark: _Toc449343983][bookmark: _Toc449431440][bookmark: _Toc451249233][bookmark: _Toc451249340][bookmark: _Toc447100481][bookmark: _Toc448920517][bookmark: _Toc448920593][bookmark: _Toc449077433][bookmark: _Toc449077536][bookmark: _Toc449343877][bookmark: _Toc449343984][bookmark: _Toc449431441][bookmark: _Toc451249234][bookmark: _Toc451249341][bookmark: _Toc447100482][bookmark: _Toc448920518][bookmark: _Toc448920594][bookmark: _Toc449077434][bookmark: _Toc449077537][bookmark: _Toc449343878][bookmark: _Toc449343985][bookmark: _Toc449431442][bookmark: _Toc451249235][bookmark: _Toc451249342][bookmark: _Toc451951401]Intended readership
This document is targeted to all service modellers and architects creating logical service models to be used as means of compliance in the SWIM Compliance Framework [9].
Technical Service Designers and Implementers might benefit from reading this document as well, by gaining more insights on how the logical service models impact their work.
[bookmark: _Toc451951402]Inputs from other projects
See Chapter 3 for the list of applicable and reference documentation providing guidance and direct input to this document.
[bookmark: _Toc451951403]Glossary of terms
	Term
	Definition

	Service modeller
	In the context of ISRM, the Service Modeller is a SOA designer expert designing ATM services to be incorporated into the ISRM.

	Service architect
	In the context of the ISRM, the Service architect is a SOA architect focusing on the information exchanges. Contrary to a Service modeller, the work of a service architect is often closer to the operational environment where the service will be used.

	Information architect
	In the context of the ISRM, the Information architect is an information modeller focusing on the modelling of the information exchanges to be supported by a service. 


[bookmark: _Toc451951440]Table 1: Glossary and terms
[bookmark: _Toc451951404]Acronyms and Terminology

	Term
	Definition

	AIRM
	ATM Information Reference Model

	ATM
	Air Traffic Management

	CLDM
	Consolidated Logical Data Model (AIRM component)

	CR
	Change Request

	EA
	Sparx Enterprise Architect modelling tool

	EATMA
	European ATM Architecture

	IA
	Information Architect

	IER
	Information Exchange Requirement

	IM
	Information Model (AIRM component)

	ISRM
	Information Service Reference Model

	IT
	Information Technology

	NAF
	NATO Architecture Framework

	QoS
	Quality of Service

	SA
	Service Architect

	SESAR
	Single European Sky ATM Research Programme

	SJU
	SESAR Joint Undertaking (Agency of the European Commission)

	SOA
	Service Oriented Architecture

	SPR
	Safety and Performance Requirements

	SWIM
	System Wide Information Management

	SWIM-TI
	SWIM Technical Infrastructure

	UML
	Unified Modelling Language


[bookmark: _Toc451951441][bookmark: _Toc225321502][bookmark: _Toc225326001][bookmark: _Toc225328164]Table 2: Acronyms


[bookmark: _Toc328579846][bookmark: _Toc329001497][bookmark: _Toc329696027][bookmark: _Toc329699127][bookmark: _Toc336860586][bookmark: _Ref356996519][bookmark: _Ref356996538][bookmark: _Toc384797276][bookmark: _Ref447088821][bookmark: _Toc451951405][bookmark: _Ref357619130]Design service 
[bookmark: _Toc444844212][bookmark: _Toc444844342][bookmark: _Toc444844418][bookmark: _Toc444844493][bookmark: _Toc444844833][bookmark: _Toc445296444][bookmark: _Toc445296549][bookmark: _Toc447100488][bookmark: _Toc448920524][bookmark: _Toc448920600][bookmark: _Toc449077440][bookmark: _Toc449077543][bookmark: _Toc449343884][bookmark: _Toc449343991][bookmark: _Toc449431448][bookmark: _Toc451249241][bookmark: _Toc451249348][bookmark: _Toc444844213][bookmark: _Toc444844343][bookmark: _Toc444844419][bookmark: _Toc444844494][bookmark: _Toc444844834][bookmark: _Toc445296445][bookmark: _Toc445296550][bookmark: _Toc447100489][bookmark: _Toc448920525][bookmark: _Toc448920601][bookmark: _Toc449077441][bookmark: _Toc449077544][bookmark: _Toc449343885][bookmark: _Toc449343992][bookmark: _Toc449431449][bookmark: _Toc451249242][bookmark: _Toc451249349][bookmark: _Toc444844214][bookmark: _Toc444844344][bookmark: _Toc444844420][bookmark: _Toc444844495][bookmark: _Toc444844835][bookmark: _Toc445296446][bookmark: _Toc445296551][bookmark: _Toc447100490][bookmark: _Toc448920526][bookmark: _Toc448920602][bookmark: _Toc449077442][bookmark: _Toc449077545][bookmark: _Toc449343886][bookmark: _Toc449343993][bookmark: _Toc449431450][bookmark: _Toc451249243][bookmark: _Toc451249350][bookmark: _Toc451951406][bookmark: _Toc384797277]Design goals
The main purpose of service design is to identify and design services that are relevant from a business and operational perspective and are aligned with the technical architecture. Further it shall be ensured that the services can be implemented in a way that enables the operational activities to be performed in a correct way and with the right information at hand.
To achieve this, a set of design goals have been identified that a Service Architect can use as guidance to ensure that the overall purpose is met. Below, each design goal is stated along with a set of considerations that the Service Architect should keep in mind in order to achieve the goal. It should be emphasised that these design goals and guidance are not to be interpreted as strict rules that always must be adhered to, but they are “best practice” and alignment is encouraged.
The services are governable
Services should be as coarse grained as possible to minimize the administrative burden, but fine grained enough to identify impacted ATM stakeholders (who is provider/consumer).
The services are discoverable
The services should have a clear fit into service categorisation/taxonomy. If the fit is unclear, i.e. the service fits in many places, it may be hard to reach the right target audience in the discovery process and may result in governance issues.
The services are reusable
The scope of the service should be precise enough to be able to support each specific operational scenario in a sufficient way. But at the same time it should be designed to be reusable in several contexts. During service identification the Service Architect may choose to avoid allocating the service to a specific type of stakeholder and take into consideration that the service could be provided by several stakeholders (instances) at the same time.
The services have minimal dependencies
The Service Architect should also aim to minimize inter-interface dependencies both within the same service and with other services. 
It should be considered if there are functions of the service that are optional, in this case it might be a good idea to create a separate interface for these.
Non-Functional Requirements are met
It should be considered to separate interfaces with very different Non-Functional Requirements such as security-, availability-, throughput-, change rate- requirements.
The services can be feasibly implemented
Consider usage of open and widely accepted standards in order to increase the chance of broad acceptance by the ATM stakeholders.
Ensure to have a dialogue with system architects regarding the links to SWIM-TI Profiles and specifically the bindings (protocols) that should be used for implementing the service.
The services support the operational dialogue
Service operations should be designed so that they can be related to the operational activities that will make use of the service. This normally means that there should be a verb in the operations name, (see chapter B.3 for more details on naming conventions). 
The Service Architect should consider sequencing/dependencies between provider/consumer processes, i.e. if there is a need for a dialogue at the operational level, this should be reflected in the operations of the service.
There is feasibility in the technical implementation
Standardised message exchange patterns as described in this document shall be used as a basis when designing the operations. In addition, the context specific information should be taken into account. 
Use standard data exchange models where possible to ensure maximum technical interoperability.
Loose couplings, i.e., stateless services should be promoted to minimise dependency between providers and consumers.
Thought should be given to balance number of operations vs invocation frequency, i.e. an operation which is going to be invoked very frequently can be optimised in terms of payload content while a less frequent operation could have a wider payload.
The service payload has an operational relevance
Service payload should be composed in a way that they have an operational meaning, i.e. that are (related to) information products that are output/input of activities.
The design should strive to explain the semantic meaning of the exchanged data to ensure operational interoperability among ATM stakeholders.
There is efficiency in the data distribution
Data filters should be used where applicable as a means to limit the number of operations needed and reduce the frequency and size of exchanged data.
There should be a balance between message/payload size vs distribution frequency, e.g. frequently exchanged data could be kept in small messages and in separate operations.
[bookmark: _Toc444844226][bookmark: _Toc444844356][bookmark: _Toc444844432][bookmark: _Toc444844507][bookmark: _Toc444844837][bookmark: _Toc445296448][bookmark: _Toc445296553][bookmark: _Toc447100492][bookmark: _Toc448920528][bookmark: _Toc448920604][bookmark: _Toc449077444][bookmark: _Toc449077547][bookmark: _Toc449343888][bookmark: _Toc449343995][bookmark: _Toc449431452][bookmark: _Toc451249245][bookmark: _Toc451249352][bookmark: _Toc308012438][bookmark: _Toc308775557][bookmark: _Toc308775683][bookmark: _Toc308775809][bookmark: _Toc308775935][bookmark: _Toc308779002][bookmark: _Toc308012469][bookmark: _Toc308775588][bookmark: _Toc308775714][bookmark: _Toc308775840][bookmark: _Toc308775966][bookmark: _Toc308779033][bookmark: _Toc308012470][bookmark: _Toc308775589][bookmark: _Toc308775715][bookmark: _Toc308775841][bookmark: _Toc308775967][bookmark: _Toc308779034][bookmark: _Toc308012471][bookmark: _Toc308775590][bookmark: _Toc308775716][bookmark: _Toc308775842][bookmark: _Toc308775968][bookmark: _Toc308779035][bookmark: _Toc444844227][bookmark: _Toc444844357][bookmark: _Toc444844433][bookmark: _Toc444844508][bookmark: _Toc444844838][bookmark: _Toc445296449][bookmark: _Toc445296554][bookmark: _Toc447100493][bookmark: _Toc448920529][bookmark: _Toc448920605][bookmark: _Toc449077445][bookmark: _Toc449077548][bookmark: _Toc449343889][bookmark: _Toc449343996][bookmark: _Toc449431453][bookmark: _Toc451249246][bookmark: _Toc451249353][bookmark: _Toc437937730][bookmark: _Toc437938059][bookmark: _Toc444844228][bookmark: _Toc444844358][bookmark: _Toc444844434][bookmark: _Toc444844509][bookmark: _Toc444844839][bookmark: _Toc445296450][bookmark: _Toc445296555][bookmark: _Toc447100494][bookmark: _Toc448920530][bookmark: _Toc448920606][bookmark: _Toc449077446][bookmark: _Toc449077549][bookmark: _Toc449343890][bookmark: _Toc449343997][bookmark: _Toc449431454][bookmark: _Toc451249247][bookmark: _Toc451249354][bookmark: _Ref356922514][bookmark: _Toc384797280][bookmark: _Toc451951407]Output
The output of the service design is a UML model representation of a service on a logical level. This means it is independent of implementation technologies but gives a formal description of the service interface and its behaviour. The main intended use case of this model is to serve as means of compliance for assessing technical service designs for SWIM compliance as described in [9].
The output of the service design consists of three model diagrams:
1. Service Interface Definitions
2. Service Interface Parameter Definition
3. Service event Trace Definition
It is encouraged to provide a Requirements Traceability Diagram as well, even if it is optional.
These Diagrams contain all the elements needed to support the SWIM compliance assessment. 
Further, the model contains statements about the usage of certain Message Exchange Patterns (MEPs) as well as Payload descriptions compliantly traced to the AIRM.
[bookmark: _Toc384797282][bookmark: _Toc451951408]Package structure
All logical services models must adhere to the same basic package structure (see Figure 1 for an Example). 
 [image: ]
[bookmark: _Ref378243486][bookmark: _Toc384740683][bookmark: _Toc451951442]Figure 1: Example project browser structure

The package structure has a root package which is named after the service which contains two sub-packages which are called Diagrams and Elements
[bookmark: _Toc384797283]The Diagrams package should contain all of the diagrams defined for the service and the Elements package is used to store different kinds of elements that are produced as part of the definition of a service. The following can be stated for each of these packages:
· Service:
This package is where the service element, the interface(s) and the consumer(s) are placed.
· Payload:
All messages directly used as parameter types of a service interface operation should be placed in this package. This includes also the data entities used for structuring the payload. 
· Event Trace:
All Elements of a sequence diagram for the service like life lines or interaction fragments should be placed in this package.
· Requirements:
If there are requirements available for the service (IERs or NFRs) they should be paced in this package.
· Abbreviations:
If there are abbreviations used for naming  service elements, they should be paced in this package.
It is assumed that the complete package structure can be delivered as an XMI file to a repository containing all ISRM services.
Applicable Rules
GR010, GR020, GR100, GR110, GR120, GR130, GR140, NC100, NC200, NC210, NC220, NC240, NC400
[bookmark: _Toc444844231][bookmark: _Toc444844361][bookmark: _Toc444844437][bookmark: _Toc444844512][bookmark: _Toc444844842][bookmark: _Toc445296453][bookmark: _Toc445296558][bookmark: _Toc447100497][bookmark: _Toc448920533][bookmark: _Toc448920609][bookmark: _Toc449077449][bookmark: _Toc449077552][bookmark: _Toc449343893][bookmark: _Toc449344000][bookmark: _Toc449431457][bookmark: _Toc451249250][bookmark: _Toc451249357][bookmark: _Toc384797284][bookmark: _Toc451951409]Steps to be performed
This chapter describes the steps to be performed in order to produce the output of the service design as aforementioned in chapter 2.2. In principle, the modeller elaborates these outputs along the process steps as shown in Figure 2. The order of the steps is not vitally important but has proved to be helpful. Especially for first time modellers this is considered to be a good guidance. 

[bookmark: _Ref404675086][bookmark: _Toc451951443]Figure 2: The steps of the service design process
[bookmark: _Toc404582360][bookmark: _Toc404598706][bookmark: _Toc404599280][bookmark: _Toc404599850][bookmark: _Toc404600420][bookmark: _Step_1_Identify][bookmark: _Ref357770796][bookmark: _Toc384797285][bookmark: _Toc451951410]Step 1: Identify and uniquely name service
In step 1 the modeller focuses on the identification of a service candidate. He or she identifies the service from given sources of Information on the operational process the service should support, e.g. Information Exchange Requirements (IERs). The identified candidate service should be named uniquely. 
See Appendix B.1 “Service naming conventions” for information on how to name services.
Design Goal: Merge/split criteria for Services
During the identification, it is recommended to assess the identified service candidate against the existing service portfolio to determine if there is a need or opportunity to reuse and update an existing service or whether the newly identified service should result in an addition to the service portfolio. Making this decision is not a trivial process that can be automated as there are many different parameters that can be considered. The following criterion should be considered in the discussion among service architects:
Consider merging services if TRUE and consider splitting if FALSE:
· Provided by the same actor (i.e. Node)
· Have the same/similar business model (free/pay per use etc.)
· Relate to the same/similar operational activities
· Relate to the same Flight- / Lifecycle- Phase
· Deal with same/similar information/data
Applicable Rules
GR010, GR020, NC200, NC210, NC220, NC240, NC300, NC310, NC500, SM010, SM020, SM030, SM040, SM050, SM110, SM400, SM410, SM420, SM430
[bookmark: _Create_Service_Element]Create Service Element
The service element is the fundamental building block of the logical service model. To create this element for a new service model, perform the following steps. (Examples shown in Figure 3 and Figure 4)
1. Create an interface definition diagram:
1.1. Add a UML class diagram to the Diagrams package of your service.
1.2. Name it “<Service name> Interface Definition” [footnoteRef:2]. You may optionally postfix it with further context if you need more than one of these diagrams.  [2:  The <ServiceName> represents the actual name of the service, or some shorthand of it. You should use a shorthand version if the service name is longer than 10-15 characters. If you use a shorthand version of the name, you must make sure to use the same shorthand in all the diagrams for the service. See rule NC400 in the ISRM Rulebook [11] for further clarification for this and other diagram names.] 

1.3. Set diagram properties not to show namespaces 
2. Create the Service element
2.1. Add a Class to the diagram and name it according to the service name[footnoteRef:3]. [3:  It should be noted that it is required not to end the name of the service with the word 'Service'. The reason for this is that the stereotype applied and visible already states that this is a service making the use of the word service as part of the name somewhat redundant.] 

2.2. Assign the stereotype <<Service>> to the element.
3. Move the service element into the Elements/Service package.
[image: ]
[bookmark: _Ref444680533][bookmark: _Toc451951444]Figure 3: Example of Service Element in Package Structure
[image: ]
[bookmark: _Ref444680546][bookmark: _Toc451951445]Figure 4: Example of Interface Definition Diagram

[bookmark: _Toc444844234][bookmark: _Toc444844364][bookmark: _Toc444844440][bookmark: _Toc444844515][bookmark: _Toc444844845][bookmark: _Toc445296456][bookmark: _Toc445296561][bookmark: _Toc447100500][bookmark: _Toc448920536][bookmark: _Toc448920612][bookmark: _Toc449077452][bookmark: _Toc449077555][bookmark: _Toc449343896][bookmark: _Toc449344003][bookmark: _Toc449431460][bookmark: _Toc451249253][bookmark: _Toc451249360][bookmark: _Toc404582365][bookmark: _Toc404598711][bookmark: _Toc404599285][bookmark: _Toc404599855][bookmark: _Toc404600425][bookmark: _Toc404582368][bookmark: _Toc404598714][bookmark: _Toc404599288][bookmark: _Toc404599858][bookmark: _Toc404600428][bookmark: _Toc404582371][bookmark: _Toc404598717][bookmark: _Toc404599291][bookmark: _Toc404599861][bookmark: _Toc404600431][bookmark: _Toc404582372][bookmark: _Toc404598718][bookmark: _Toc404599292][bookmark: _Toc404599862][bookmark: _Toc404600432][bookmark: _Toc404582374][bookmark: _Toc404598720][bookmark: _Toc404599294][bookmark: _Toc404599864][bookmark: _Toc404600434][bookmark: _Toc404582375][bookmark: _Toc404598721][bookmark: _Toc404599295][bookmark: _Toc404599865][bookmark: _Toc404600435][bookmark: _Toc404582378][bookmark: _Toc404598724][bookmark: _Toc404599298][bookmark: _Toc404599868][bookmark: _Toc404600438][bookmark: _Toc404582379][bookmark: _Toc404598725][bookmark: _Toc404599299][bookmark: _Toc404599869][bookmark: _Toc404600439][bookmark: _Toc404254919][bookmark: _Toc404582380][bookmark: _Toc404598726][bookmark: _Toc404599300][bookmark: _Toc404599870][bookmark: _Toc404600440][bookmark: _Toc404254920][bookmark: _Toc404582381][bookmark: _Toc404598727][bookmark: _Toc404599301][bookmark: _Toc404599871][bookmark: _Toc404600441][bookmark: _Toc404254921][bookmark: _Toc404582382][bookmark: _Toc404598728][bookmark: _Toc404599302][bookmark: _Toc404599872][bookmark: _Toc404600442][bookmark: _Toc404254922][bookmark: _Toc404582383][bookmark: _Toc404598729][bookmark: _Toc404599303][bookmark: _Toc404599873][bookmark: _Toc404600443][bookmark: _Toc404254923][bookmark: _Toc404582384][bookmark: _Toc404598730][bookmark: _Toc404599304][bookmark: _Toc404599874][bookmark: _Toc404600444][bookmark: _Toc404582386][bookmark: _Toc404598732][bookmark: _Toc404599306][bookmark: _Toc404599876][bookmark: _Toc404600446][bookmark: _Toc404582387][bookmark: _Toc404598733][bookmark: _Toc404599307][bookmark: _Toc404599877][bookmark: _Toc404600447][bookmark: _Toc404582388][bookmark: _Toc404598734][bookmark: _Toc404599308][bookmark: _Toc404599878][bookmark: _Toc404600448][bookmark: _Toc404582390][bookmark: _Toc404598736][bookmark: _Toc404599310][bookmark: _Toc404599880][bookmark: _Toc404600450][bookmark: _Ref437869225][bookmark: _Ref437869235][bookmark: _Toc451951411][bookmark: _Toc384797287]Step 2: Map Service to Requirements (IER and NFR)
If there are requirements available for the service, the modeller is encouraged to reference them in this model.
To support traceability to operational and non-functional requirements a class diagram shall be created. The purpose of this diagram is to reference requirements existing in other documents, not to host them as a source! Operational requirements (IER) and non-functional requirements (NFR/SPR) are treated equally in this diagram.
All requirements which justify the identified service, are created as UML Class elements with a <<Requirement>> stereotype and shall be placed in the 
Elements/Requirements package. 
All the content that is needed to identify the requirement shall be given in the name and the note field of the <<Requirement>> element plus some special tagged values. 
The <<Requirement>> element shall therefore contain the following content:
· Name:
Name of the Requirement as given in the original source or best fit if requirement is derived from text.
· Notes:
The original or derived text of the requirement. (This is optional)
· Tag: refLabel
Value: The ref tag is intended to contain a reference string (e.g. Number or ID) that allows for identifying the requirement at its source.
· Tag: refSource
Value: The Title of the document containing the requirement
· Tag: refURL
Value: URL where a digital copy of the source document can be found (optional)
· Tag: reqType:
Value: The type of the requirement. There are three possible values:
· Operational requirement
· Information exchange requirement
· Safety and performance requirement[footnoteRef:4] [4:  To be used for Non Functional requirements (NFR)] 

Applicable Rules
GR010, GR020, NC200, NC210, NC240, NC500, SM030, SM040, SM050, SM100, SM400, SM410, SM420, SM430	

The following steps need to be performed to create a valid requirements tracing:
1. Create UML class diagram in the Diagrams package of your service.
2. Name it “<Service name> Requirements Traceability[footnoteRef:5]”. [5:  You may decide to split the traceability of IERs and NFRs into two diagrams. In this case add the postfix IER or NFR to the name of the diagrams respectively.] 

3. Add the <<Service>> Element from the Elements/Service package to the created diagram.
4. Add Class Elements with stereotype <<Requirement>> to the diagram and place them into the Elements/Requirements package 
a. Give the Element the name of the requirement
b. Add the requirement text to the notes section.(optional)
c. Add a tagged value refLabel with the identifier of the requirement
d. Add a tagged value refSource with the title of the source document.
e. Add a tagged value refURL with a link to the source document. (optional)
f. Add a tagged value reqType indicating the type of the requirement
1. Create a dependency relationship between the <<Service>> and the <<Requirement>> elements and give it a stereotype <<satisfy>>. 
The requirements traceability diagram for the example services is shown in Figure 5.
[image: ]
[bookmark: _Ref404339360][bookmark: _Toc451951446]Figure 5: Example Requirements Traceability diagram
[bookmark: _Toc444844236][bookmark: _Toc444844366][bookmark: _Toc444844442][bookmark: _Toc444844517][bookmark: _Toc444844847][bookmark: _Toc445296458][bookmark: _Toc445296563][bookmark: _Toc447100502][bookmark: _Toc448920538][bookmark: _Toc448920614][bookmark: _Toc449077454][bookmark: _Toc449077557][bookmark: _Toc449343898][bookmark: _Toc449344005][bookmark: _Toc449431462][bookmark: _Toc451249255][bookmark: _Toc451249362][bookmark: _Toc444844237][bookmark: _Toc444844367][bookmark: _Toc444844443][bookmark: _Toc444844518][bookmark: _Toc444844848][bookmark: _Toc445296459][bookmark: _Toc445296564][bookmark: _Toc447100503][bookmark: _Toc448920539][bookmark: _Toc448920615][bookmark: _Toc449077455][bookmark: _Toc449077558][bookmark: _Toc449343899][bookmark: _Toc449344006][bookmark: _Toc449431463][bookmark: _Toc451249256][bookmark: _Toc451249363][bookmark: _Toc444844238][bookmark: _Toc444844368][bookmark: _Toc444844444][bookmark: _Toc444844519][bookmark: _Toc444844849][bookmark: _Toc445296460][bookmark: _Toc445296565][bookmark: _Toc447100504][bookmark: _Toc448920540][bookmark: _Toc448920616][bookmark: _Toc449077456][bookmark: _Toc449077559][bookmark: _Toc449343900][bookmark: _Toc449344007][bookmark: _Toc449431464][bookmark: _Toc451249257][bookmark: _Toc451249364][bookmark: _Ref384202443][bookmark: _Toc384797288][bookmark: _Toc451951412]Step 3: Specify Ports and MEPs
The interface definition diagram is among the most crucial of all of the diagrams dealing with services. The topmost element specifying the structure of the service are ports. To define them the following should be done:
1. Open the interface definition diagram from the Diagrams package created in Step 1. 
2. Add one or more UML ports to the service element and name them appropriately[footnoteRef:6]. 
See Appendix B.2 “Service Port and Interface naming conventions” for information on how to name the port(s). [6:  Note that the port should always end up as owned by the service within the package structure, i.e. below the service element that was created in Step 1.] 

A service may have more than one port depending on its use cases. Criteria for choosing which option are given in the following section.
Merge/split criteria for Service Ports
When deciding whether to create a new port or to merge two ports the following criteria can be used by the service architects in their discussion:
Consider merging service ports if TRUE and consider splitting if FALSE:
· Relate to the same provider operational activity
· Have similar non-functional requirements (performance, security etc.)
· Have same/similar operations
· Operations have a sequential dependency to each other
· Deal with same/similar information/data
Applicable Rules
GR010, GR020, NC200, NC210, NC220, NC240, SM020, SM030, SM040, SM050, SM120, SM130
Select Message Exchange Pattern for Port
This step does not fully specify the service interface, which will be done in the next step. Instead it is now time to indicate which Message Exchange Pattern (MEP) will be used on a specific Service port. For that purpose a list of chosen MEPs is available. The restriction to a specific set of MEPs serves the purpose of standardization. The set of possible MEPs is described in Appendix A. Note that this also sets the stage for the naming convention to use for the operations to be modelled later on.
To model the choice of a specific MEP for a port perform the following steps. Add a stereotype to the Service Port from the list of available MEPs:
· SyncReqRep
· AsyncReqRep
· PubSubPush
· PubSubPull
· OneWay
An example of a service port with assigned MEP can be seen in Figure 6 and Figure 7.
[image: ]
[bookmark: _Ref444695960][bookmark: _Toc451951447]Figure 6: Example of Service port in package structure
[image: ] 
[bookmark: _Ref404580863][bookmark: _Toc451951448]Figure 7: Example of modelled MEP choice
Services with more than one port
If a service has more than one port, this has some impact on the downstream implementation of this service. It cannot generally be said that all ports of a service need to be implemented or if the implementation of only one port is sufficient. It strongly depends on the purpose of the service and the intended use cases. Hence, this is a “per service” design decision that needs to be stated explicitly by the service modellers.
The basic rule is that at least one service port needs to be implemented. The model needs to convey the dependencies between service ports in order to enforce the implementation of more than one port.
For that purpose draw dependency relationships between the ports in the interface definition diagram. The semantic of this relationship is as follows:
If the source port of the relationship is implemented the target port must be implemented as well. If there are no dependencies modelled, the implementer is free to choose which ports to implement.
Do not use bi-directional dependency links! Every dependency needs to be modelled explicitly.
[image: ]
[bookmark: _Ref416678292][bookmark: _Toc451951449]Figure 8: Example of a Service with multiple interfaces

Figure 8 shows an example of a service with three ports (Aport, BPort, and CPort).
APort depends on BPort, BPort depends on APort, and CPort depends on BPort. The consequence is an implementation of BPort requires an implementation of APort. Hence, an Implementation of CPort requires the implementation of BPort and APort.
[bookmark: _Toc404598740][bookmark: _Toc404599314][bookmark: _Toc404599884][bookmark: _Toc404600454][bookmark: _Toc404582396][bookmark: _Toc404598742][bookmark: _Toc404599316][bookmark: _Toc404599886][bookmark: _Toc404600456][bookmark: _Toc404582397][bookmark: _Toc404598743][bookmark: _Toc404599317][bookmark: _Toc404599887][bookmark: _Toc404600457][bookmark: _Toc404582398][bookmark: _Toc404598744][bookmark: _Toc404599318][bookmark: _Toc404599888][bookmark: _Toc404600458][bookmark: _Toc404582399][bookmark: _Toc404598745][bookmark: _Toc404599319][bookmark: _Toc404599889][bookmark: _Toc404600459][bookmark: _Toc404582400][bookmark: _Toc404598746][bookmark: _Toc404599320][bookmark: _Toc404599890][bookmark: _Toc404600460][bookmark: _Toc404582401][bookmark: _Toc404598747][bookmark: _Toc404599321][bookmark: _Toc404599891][bookmark: _Toc404600461][bookmark: _Toc404582402][bookmark: _Toc404598748][bookmark: _Toc404599322][bookmark: _Toc404599892][bookmark: _Toc404600462][bookmark: _Toc404582408][bookmark: _Toc404598754][bookmark: _Toc404599328][bookmark: _Toc404599898][bookmark: _Toc404600468][bookmark: _Toc404582410][bookmark: _Toc404598756][bookmark: _Toc404599330][bookmark: _Toc404599900][bookmark: _Toc404600470][bookmark: _Toc404582412][bookmark: _Toc404598758][bookmark: _Toc404599332][bookmark: _Toc404599902][bookmark: _Toc404600472][bookmark: _Toc404582414][bookmark: _Toc404598760][bookmark: _Toc404599334][bookmark: _Toc404599904][bookmark: _Toc404600474][bookmark: _Toc404582416][bookmark: _Toc404598762][bookmark: _Toc404599336][bookmark: _Toc404599906][bookmark: _Toc404600476][bookmark: _Toc404582418][bookmark: _Toc404598764][bookmark: _Toc404599338][bookmark: _Toc404599908][bookmark: _Toc404600478][bookmark: _Toc404582420][bookmark: _Toc404598766][bookmark: _Toc404599340][bookmark: _Toc404599910][bookmark: _Toc404600480][bookmark: _Toc404582423][bookmark: _Toc404598769][bookmark: _Toc404599343][bookmark: _Toc404599913][bookmark: _Toc404600483][bookmark: _Toc404582427][bookmark: _Toc404598773][bookmark: _Toc404599347][bookmark: _Toc404599917][bookmark: _Toc404600487][bookmark: _Toc404582431][bookmark: _Toc404598777][bookmark: _Toc404599351][bookmark: _Toc404599921][bookmark: _Toc404600491][bookmark: _Toc404582432][bookmark: _Toc404598778][bookmark: _Toc404599352][bookmark: _Toc404599922][bookmark: _Toc404600492][bookmark: _Toc404582433][bookmark: _Toc404598779][bookmark: _Toc404599353][bookmark: _Toc404599923][bookmark: _Toc404600493][bookmark: _Toc404582434][bookmark: _Toc404598780][bookmark: _Toc404599354][bookmark: _Toc404599924][bookmark: _Toc404600494][bookmark: _Toc404582435][bookmark: _Toc404598781][bookmark: _Toc404599355][bookmark: _Toc404599925][bookmark: _Toc404600495][bookmark: _Toc372789970][bookmark: _Toc372792427][bookmark: _Toc372795015][bookmark: _Toc372795095][bookmark: _Toc373134953][bookmark: _Toc373136258][bookmark: _Toc373143788][bookmark: _Toc404582436][bookmark: _Toc404598782][bookmark: _Toc404599356][bookmark: _Toc404599926][bookmark: _Toc404600496][bookmark: _Toc404582439][bookmark: _Toc404598785][bookmark: _Toc404599359][bookmark: _Toc404599929][bookmark: _Toc404600499][bookmark: _Toc404582442][bookmark: _Toc404598788][bookmark: _Toc404599362][bookmark: _Toc404599932][bookmark: _Toc404600502][bookmark: _Toc404582443][bookmark: _Toc404598789][bookmark: _Toc404599363][bookmark: _Toc404599933][bookmark: _Toc404600503][bookmark: _Toc404582444][bookmark: _Toc404598790][bookmark: _Toc404599364][bookmark: _Toc404599934][bookmark: _Toc404600504][bookmark: _Toc404582446][bookmark: _Toc404598792][bookmark: _Toc404599366][bookmark: _Toc404599936][bookmark: _Toc404600506][bookmark: _Toc404582447][bookmark: _Toc404598793][bookmark: _Toc404599367][bookmark: _Toc404599937][bookmark: _Toc404600507][bookmark: _Toc404582448][bookmark: _Toc404598794][bookmark: _Toc404599368][bookmark: _Toc404599938][bookmark: _Toc404600508][bookmark: _Toc404582450][bookmark: _Toc404598796][bookmark: _Toc404599370][bookmark: _Toc404599940][bookmark: _Toc404600510][bookmark: _Toc404582454][bookmark: _Toc404598800][bookmark: _Toc404599374][bookmark: _Toc404599944][bookmark: _Toc404600514][bookmark: _Toc404582455][bookmark: _Toc404598801][bookmark: _Toc404599375][bookmark: _Toc404599945][bookmark: _Toc404600515][bookmark: _Toc404582459][bookmark: _Toc404598805][bookmark: _Toc404599379][bookmark: _Toc404599949][bookmark: _Toc404600519][bookmark: _Toc404582460][bookmark: _Toc404598806][bookmark: _Toc404599380][bookmark: _Toc404599950][bookmark: _Toc404600520][bookmark: _Toc404582462][bookmark: _Toc404598808][bookmark: _Toc404599382][bookmark: _Toc404599952][bookmark: _Toc404600522][bookmark: _Toc404582465][bookmark: _Toc404598811][bookmark: _Toc404599385][bookmark: _Toc404599955][bookmark: _Toc404600525][bookmark: _Toc404582466][bookmark: _Toc404598812][bookmark: _Toc404599386][bookmark: _Toc404599956][bookmark: _Toc404600526][bookmark: _Toc404582468][bookmark: _Toc404598814][bookmark: _Toc404599388][bookmark: _Toc404599958][bookmark: _Toc404600528][bookmark: _Toc404582469][bookmark: _Toc404598815][bookmark: _Toc404599389][bookmark: _Toc404599959][bookmark: _Toc404600529][bookmark: _Toc404582472][bookmark: _Toc404598818][bookmark: _Toc404599392][bookmark: _Toc404599962][bookmark: _Toc404600532][bookmark: _Toc404582473][bookmark: _Toc404598819][bookmark: _Toc404599393][bookmark: _Toc404599963][bookmark: _Toc404600533][bookmark: _Toc404582476][bookmark: _Toc404598822][bookmark: _Toc404599396][bookmark: _Toc404599966][bookmark: _Toc404600536][bookmark: _Toc404582477][bookmark: _Toc404598823][bookmark: _Toc404599397][bookmark: _Toc404599967][bookmark: _Toc404600537][bookmark: _Toc404582480][bookmark: _Toc404598826][bookmark: _Toc404599400][bookmark: _Toc404599970][bookmark: _Toc404600540][bookmark: _Toc404582483][bookmark: _Toc404598829][bookmark: _Toc404599403][bookmark: _Toc404599973][bookmark: _Toc404600543][bookmark: _Toc404582487][bookmark: _Toc404598833][bookmark: _Toc404599407][bookmark: _Toc404599977][bookmark: _Toc404600547][bookmark: _Toc404582491][bookmark: _Toc404598837][bookmark: _Toc404599411][bookmark: _Toc404599981][bookmark: _Toc404600551][bookmark: _Toc404254930][bookmark: _Toc404582497][bookmark: _Toc404598843][bookmark: _Toc404599417][bookmark: _Toc404599987][bookmark: _Toc404600557][bookmark: _Toc404254932][bookmark: _Toc404582499][bookmark: _Toc404598845][bookmark: _Toc404599419][bookmark: _Toc404599989][bookmark: _Toc404600559][bookmark: _Toc404254933][bookmark: _Toc404582500][bookmark: _Toc404598846][bookmark: _Toc404599420][bookmark: _Toc404599990][bookmark: _Toc404600560][bookmark: _Toc404254934][bookmark: _Toc404582501][bookmark: _Toc404598847][bookmark: _Toc404599421][bookmark: _Toc404599991][bookmark: _Toc404600561][bookmark: _Toc404254935][bookmark: _Toc404582502][bookmark: _Toc404598848][bookmark: _Toc404599422][bookmark: _Toc404599992][bookmark: _Toc404600562][bookmark: _Toc404254937][bookmark: _Toc404582504][bookmark: _Toc404598850][bookmark: _Toc404599424][bookmark: _Toc404599994][bookmark: _Toc404600564][bookmark: _Toc404254938][bookmark: _Toc404582505][bookmark: _Toc404598851][bookmark: _Toc404599425][bookmark: _Toc404599995][bookmark: _Toc404600565][bookmark: _Toc404254939][bookmark: _Toc404582506][bookmark: _Toc404598852][bookmark: _Toc404599426][bookmark: _Toc404599996][bookmark: _Toc404600566][bookmark: _Toc404582508][bookmark: _Toc404598854][bookmark: _Toc404599428][bookmark: _Toc404599998][bookmark: _Toc404600568][bookmark: _Toc404582509][bookmark: _Toc404598855][bookmark: _Toc404599429][bookmark: _Toc404599999][bookmark: _Toc404600569][bookmark: _Toc404582510][bookmark: _Toc404598856][bookmark: _Toc404599430][bookmark: _Toc404600000][bookmark: _Toc404600570][bookmark: _Toc404582511][bookmark: _Toc404598857][bookmark: _Toc404599431][bookmark: _Toc404600001][bookmark: _Toc404600571][bookmark: _Toc404582512][bookmark: _Toc404598858][bookmark: _Toc404599432][bookmark: _Toc404600002][bookmark: _Toc404600572][bookmark: _Toc404582513][bookmark: _Toc404598859][bookmark: _Toc404599433][bookmark: _Toc404600003][bookmark: _Toc404600573][bookmark: _Toc404582514][bookmark: _Toc404598860][bookmark: _Toc404599434][bookmark: _Toc404600004][bookmark: _Toc404600574][bookmark: _Toc404582520][bookmark: _Toc404598866][bookmark: _Toc404599440][bookmark: _Toc404600010][bookmark: _Toc404600580][bookmark: _Toc404582521][bookmark: _Toc404598867][bookmark: _Toc404599441][bookmark: _Toc404600011][bookmark: _Toc404600581][bookmark: _Toc404582522][bookmark: _Toc404598868][bookmark: _Toc404599442][bookmark: _Toc404600012][bookmark: _Toc404600582][bookmark: _Toc404582523][bookmark: _Toc404598869][bookmark: _Toc404599443][bookmark: _Toc404600013][bookmark: _Toc404600583][bookmark: _Toc404582525][bookmark: _Toc404598871][bookmark: _Toc404599445][bookmark: _Toc404600015][bookmark: _Toc404600585][bookmark: _Toc404582529][bookmark: _Toc404598875][bookmark: _Toc404599449][bookmark: _Toc404600019][bookmark: _Toc404600589][bookmark: _Toc404582530][bookmark: _Toc404598876][bookmark: _Toc404599450][bookmark: _Toc404600020][bookmark: _Toc404600590][bookmark: _Toc404582531][bookmark: _Toc404598877][bookmark: _Toc404599451][bookmark: _Toc404600021][bookmark: _Toc404600591][bookmark: _Toc404582532][bookmark: _Toc404598878][bookmark: _Toc404599452][bookmark: _Toc404600022][bookmark: _Toc404600592][bookmark: _Toc404582533][bookmark: _Toc404598879][bookmark: _Toc404599453][bookmark: _Toc404600023][bookmark: _Toc404600593][bookmark: _Toc373135019][bookmark: _Toc373136325][bookmark: _Toc373143855][bookmark: _Toc372789972][bookmark: _Toc372789973][bookmark: _Toc372789974][bookmark: _Toc372789975][bookmark: _Toc372789976][bookmark: _Toc372789977][bookmark: _Toc372789978][bookmark: _Toc372789979][bookmark: _Toc372789980][bookmark: _Toc372789981][bookmark: _Toc372789982][bookmark: _Toc404582549][bookmark: _Toc404598895][bookmark: _Toc404599469][bookmark: _Toc404600039][bookmark: _Toc404600609][bookmark: _Toc404582559][bookmark: _Toc404598905][bookmark: _Toc404599479][bookmark: _Toc404600049][bookmark: _Toc404600619][bookmark: _Toc404582603][bookmark: _Toc404598949][bookmark: _Toc404599523][bookmark: _Toc404600093][bookmark: _Toc404600663][bookmark: _Toc372795019][bookmark: _Toc372795099][bookmark: _Toc373134957][bookmark: _Toc373136262][bookmark: _Toc373143792][bookmark: _Toc372795020][bookmark: _Toc372795100][bookmark: _Toc373134958][bookmark: _Toc373136263][bookmark: _Toc373143793][bookmark: _Toc372795021][bookmark: _Toc372795101][bookmark: _Toc373134959][bookmark: _Toc373136264][bookmark: _Toc373143794][bookmark: _Toc372795022][bookmark: _Toc372795102][bookmark: _Toc373134960][bookmark: _Toc373136265][bookmark: _Toc373143795][bookmark: _Toc372795023][bookmark: _Toc372795103][bookmark: _Toc373134961][bookmark: _Toc373136266][bookmark: _Toc373143796][bookmark: _Toc372795024][bookmark: _Toc372795104][bookmark: _Toc373134962][bookmark: _Toc373136267][bookmark: _Toc373143797][bookmark: _Toc372795025][bookmark: _Toc372795105][bookmark: _Toc373134963][bookmark: _Toc373136268][bookmark: _Toc373143798][bookmark: _Toc372795026][bookmark: _Toc372795106][bookmark: _Toc373134964][bookmark: _Toc373136269][bookmark: _Toc373143799][bookmark: _Toc372795027][bookmark: _Toc372795107][bookmark: _Toc373134965][bookmark: _Toc373136270][bookmark: _Toc373143800][bookmark: _Toc372795028][bookmark: _Toc372795108][bookmark: _Toc373134966][bookmark: _Toc373136271][bookmark: _Toc373143801][bookmark: _Toc372795029][bookmark: _Toc372795109][bookmark: _Toc373134967][bookmark: _Toc373136272][bookmark: _Toc373143802][bookmark: _Toc372795030][bookmark: _Toc372795110][bookmark: _Toc373134968][bookmark: _Toc373136273][bookmark: _Toc373143803][bookmark: _Toc372795031][bookmark: _Toc372795111][bookmark: _Toc373134969][bookmark: _Toc373136274][bookmark: _Toc373143804][bookmark: _Toc372795032][bookmark: _Toc372795112][bookmark: _Toc373134970][bookmark: _Toc373135022][bookmark: _Toc373136275][bookmark: _Toc373136328][bookmark: _Toc373143805][bookmark: _Toc373143858][bookmark: _Toc404582608][bookmark: _Toc404598954][bookmark: _Toc404599528][bookmark: _Toc404600098][bookmark: _Toc404600668][bookmark: _Toc404582611][bookmark: _Toc404598957][bookmark: _Toc404599531][bookmark: _Toc404600101][bookmark: _Toc404600671][bookmark: _Toc404582614][bookmark: _Toc404598960][bookmark: _Toc404599534][bookmark: _Toc404600104][bookmark: _Toc404600674][bookmark: _Toc404582617][bookmark: _Toc404598963][bookmark: _Toc404599537][bookmark: _Toc404600107][bookmark: _Toc404600677][bookmark: _Toc404582619][bookmark: _Toc404598965][bookmark: _Toc404599539][bookmark: _Toc404600109][bookmark: _Toc404600679][bookmark: _Toc404582621][bookmark: _Toc404598967][bookmark: _Toc404599541][bookmark: _Toc404600111][bookmark: _Toc404600681][bookmark: _Toc404582625][bookmark: _Toc404598971][bookmark: _Toc404599545][bookmark: _Toc404600115][bookmark: _Toc404600685][bookmark: _Toc404582628][bookmark: _Toc404598974][bookmark: _Toc404599548][bookmark: _Toc404600118][bookmark: _Toc404600688][bookmark: _Toc404582631][bookmark: _Toc404598977][bookmark: _Toc404599551][bookmark: _Toc404600121][bookmark: _Toc404600691][bookmark: _Toc404582634][bookmark: _Toc404598980][bookmark: _Toc404599554][bookmark: _Toc404600124][bookmark: _Toc404600694][bookmark: _Toc404582637][bookmark: _Toc404598983][bookmark: _Toc404599557][bookmark: _Toc404600127][bookmark: _Toc404600697][bookmark: _Toc404582640][bookmark: _Toc404598986][bookmark: _Toc404599560][bookmark: _Toc404600130][bookmark: _Toc404600700][bookmark: _Toc404582644][bookmark: _Toc404598990][bookmark: _Toc404599564][bookmark: _Toc404600134][bookmark: _Toc404600704][bookmark: _Toc404582647][bookmark: _Toc404598993][bookmark: _Toc404599567][bookmark: _Toc404600137][bookmark: _Toc404600707][bookmark: _Toc404582650][bookmark: _Toc404598996][bookmark: _Toc404599570][bookmark: _Toc404600140][bookmark: _Toc404600710][bookmark: _Toc404582654][bookmark: _Toc404599000][bookmark: _Toc404599574][bookmark: _Toc404600144][bookmark: _Toc404600714][bookmark: _Toc404582659][bookmark: _Toc404599005][bookmark: _Toc404599579][bookmark: _Toc404600149][bookmark: _Toc404600719][bookmark: _Toc404582661][bookmark: _Toc404599007][bookmark: _Toc404599581][bookmark: _Toc404600151][bookmark: _Toc404600721][bookmark: _Toc404582664][bookmark: _Toc404599010][bookmark: _Toc404599584][bookmark: _Toc404600154][bookmark: _Toc404600724][bookmark: _Toc404582665][bookmark: _Toc404599011][bookmark: _Toc404599585][bookmark: _Toc404600155][bookmark: _Toc404600725][bookmark: _Toc404582667][bookmark: _Toc404599013][bookmark: _Toc404599587][bookmark: _Toc404600157][bookmark: _Toc404600727][bookmark: _Toc404582669][bookmark: _Toc404599015][bookmark: _Toc404599589][bookmark: _Toc404600159][bookmark: _Toc404600729][bookmark: _Toc404254944][bookmark: _Toc404582677][bookmark: _Toc404599023][bookmark: _Toc404599597][bookmark: _Toc404600167][bookmark: _Toc404600737][bookmark: _Toc404254949][bookmark: _Toc404582682][bookmark: _Toc404599028][bookmark: _Toc404599602][bookmark: _Toc404600172][bookmark: _Toc404600742][bookmark: _Toc404254951][bookmark: _Toc404582684][bookmark: _Toc404599030][bookmark: _Toc404599604][bookmark: _Toc404600174][bookmark: _Toc404600744][bookmark: _Toc404254954][bookmark: _Toc404582687][bookmark: _Toc404599033][bookmark: _Toc404599607][bookmark: _Toc404600177][bookmark: _Toc404600747][bookmark: _Toc404254955][bookmark: _Toc404582688][bookmark: _Toc404599034][bookmark: _Toc404599608][bookmark: _Toc404600178][bookmark: _Toc404600748][bookmark: _Toc404254958][bookmark: _Toc404582691][bookmark: _Toc404599037][bookmark: _Toc404599611][bookmark: _Toc404600181][bookmark: _Toc404600751][bookmark: _Toc404254961][bookmark: _Toc404582694][bookmark: _Toc404599040][bookmark: _Toc404599614][bookmark: _Toc404600184][bookmark: _Toc404600754][bookmark: _Toc404254963][bookmark: _Toc404582696][bookmark: _Toc404599042][bookmark: _Toc404599616][bookmark: _Toc404600186][bookmark: _Toc404600756][bookmark: _Toc451951413][bookmark: _Ref401131802]Step 4: Specify Interfaces 
During the last step a certain Message Exchange Pattern was chosen to be applied to a port. Now it is time to fully specify the interface for all the ports of the service based on the chosen MEP. In order to perform this work, please consider Appendix A “ISRM SWIM Message Exchange Patterns” and Appendix B “ISRM naming conventions”.
Applicable Rules
GR010, GR020, NC200, NC210, NC220, NC240, SM020, SM030, SM040, SM050, SM200, SM210, SM220, SM240, SM250, SM260, SM270, SM280
The following steps need to be performed per port (for example see Figure 9):
1. Open the interface definition diagram from the Diagrams package created in Step 1. 
2. Add one or more UML Actor Element representing the Service consumer to the diagram and name it appropriately. Give it the stereotype <<ServiceConsumer>> and move it into the Elements/Service package.
3. Based on the chosen MEP add one or two UML Interface elements and name them according to Appendix B.2. Move the elements into the Elements/Service package.
4. Drag realization links to the interface(s) from the port element and/or the Service Consumer as demanded by the chosen MEP and add the stereotype <<provide>> to the link.
5. Drag dependency links to the interface(s) from the port element and/or the Service Consumer as demanded by the chosen MEP and add the stereotype <<require>> to the link.
[image: ]
[bookmark: _Ref444759941][bookmark: _Toc451951450]Figure 9: Example of a service interface

[bookmark: _Toc444844241][bookmark: _Toc444844371][bookmark: _Toc444844447][bookmark: _Toc444844522][bookmark: _Toc444844852][bookmark: _Toc445296463][bookmark: _Toc445296568][bookmark: _Toc444844242][bookmark: _Toc444844372][bookmark: _Toc444844448][bookmark: _Toc444844523][bookmark: _Toc444844853][bookmark: _Toc445296464][bookmark: _Toc445296569][bookmark: _Toc444844249][bookmark: _Toc444844379][bookmark: _Toc444844455][bookmark: _Toc444844530][bookmark: _Toc444844860][bookmark: _Toc445296471][bookmark: _Toc445296576][bookmark: _Toc444844250][bookmark: _Toc444844380][bookmark: _Toc444844456][bookmark: _Toc444844531][bookmark: _Toc444844861][bookmark: _Toc445296472][bookmark: _Toc445296577][bookmark: _Toc444844251][bookmark: _Toc444844381][bookmark: _Toc444844457][bookmark: _Toc444844532][bookmark: _Toc444844862][bookmark: _Toc445296473][bookmark: _Toc445296578][bookmark: _Toc451951414]Step 5: Specify Interface Operations 
In this step operations are added to the interfaces of the service according to the MEPs applied
See Appendix B.3 “Service Interface Operations naming conventions” for information on how to name the operations. The verb (prefix) of the operation name should be as given in the chosen MEP (see Appendix A) for those operations that pertain to the MEP. 
In the case that more service interface operations are needed than provided by the MEP example, they can be added. This is very common for Request/Reply patterns where real services in general often have many of those operations available. 
Please do not yet add operation parameters and return values since they will be defined in the next step. An example of the complete diagram can be seen in Figure 10.
[image: ]
[bookmark: _Ref438107084][bookmark: _Toc451951451]Figure 10: Example of an interface definition diagram with operations

Merge/split criteria for service interface operations
When deciding whether to create a new interface or to merge two service interface operations the following criteria can be used by the service architects in their discussion:
Consider merging service interface operations if TRUE and consider splitting if FALSE:
· Do the same/similar thing (verb)
· Deal with the same subject (noun)
· Similar characteristics on the payload (data format, delivery pattern, persistency etc.)
· Are always invoked in the same sequence (within one interface)
Applicable Rules
GR010, GR020, NC200, NC210, NC230, NC240, NC320, SM020, SM030, SM050, SM576, SM240, SM250, SM260, SM270, SM280

[bookmark: _Toc420478638][bookmark: _Toc421104709][bookmark: _Toc421104811][bookmark: _Toc404254980][bookmark: _Toc404582713][bookmark: _Toc404599059][bookmark: _Toc404599633][bookmark: _Toc404600203][bookmark: _Toc404600773][bookmark: _Toc404254981][bookmark: _Toc404582714][bookmark: _Toc404599060][bookmark: _Toc404599634][bookmark: _Toc404600204][bookmark: _Toc404600774][bookmark: _Toc404254982][bookmark: _Toc404582715][bookmark: _Toc404599061][bookmark: _Toc404599635][bookmark: _Toc404600205][bookmark: _Toc404600775][bookmark: _Toc404254983][bookmark: _Toc404582716][bookmark: _Toc404599062][bookmark: _Toc404599636][bookmark: _Toc404600206][bookmark: _Toc404600776][bookmark: _Toc404254984][bookmark: _Toc404582717][bookmark: _Toc404599063][bookmark: _Toc404599637][bookmark: _Toc404600207][bookmark: _Toc404600777][bookmark: _Toc404254985][bookmark: _Toc404582718][bookmark: _Toc404599064][bookmark: _Toc404599638][bookmark: _Toc404600208][bookmark: _Toc404600778][bookmark: _Toc404254986][bookmark: _Toc404582719][bookmark: _Toc404599065][bookmark: _Toc404599639][bookmark: _Toc404600209][bookmark: _Toc404600779][bookmark: _Toc404254987][bookmark: _Toc404582720][bookmark: _Toc404599066][bookmark: _Toc404599640][bookmark: _Toc404600210][bookmark: _Toc404600780][bookmark: _Toc404254988][bookmark: _Toc404582721][bookmark: _Toc404599067][bookmark: _Toc404599641][bookmark: _Toc404600211][bookmark: _Toc404600781][bookmark: _Toc404254989][bookmark: _Toc404582722][bookmark: _Toc404599068][bookmark: _Toc404599642][bookmark: _Toc404600212][bookmark: _Toc404600782][bookmark: _Toc404254990][bookmark: _Toc404582723][bookmark: _Toc404599069][bookmark: _Toc404599643][bookmark: _Toc404600213][bookmark: _Toc404600783][bookmark: _Toc404254991][bookmark: _Toc404582724][bookmark: _Toc404599070][bookmark: _Toc404599644][bookmark: _Toc404600214][bookmark: _Toc404600784][bookmark: _Toc404254992][bookmark: _Toc404582725][bookmark: _Toc404599071][bookmark: _Toc404599645][bookmark: _Toc404600215][bookmark: _Toc404600785][bookmark: _Toc404254993][bookmark: _Toc404582726][bookmark: _Toc404599072][bookmark: _Toc404599646][bookmark: _Toc404600216][bookmark: _Toc404600786][bookmark: _Toc404254994][bookmark: _Toc404582727][bookmark: _Toc404599073][bookmark: _Toc404599647][bookmark: _Toc404600217][bookmark: _Toc404600787][bookmark: _Toc404254995][bookmark: _Toc404582728][bookmark: _Toc404599074][bookmark: _Toc404599648][bookmark: _Toc404600218][bookmark: _Toc404600788][bookmark: _Toc404254996][bookmark: _Toc404582729][bookmark: _Toc404599075][bookmark: _Toc404599649][bookmark: _Toc404600219][bookmark: _Toc404600789][bookmark: _Toc404254997][bookmark: _Toc404582730][bookmark: _Toc404599076][bookmark: _Toc404599650][bookmark: _Toc404600220][bookmark: _Toc404600790][bookmark: _Toc404254998][bookmark: _Toc404582731][bookmark: _Toc404599077][bookmark: _Toc404599651][bookmark: _Toc404600221][bookmark: _Toc404600791][bookmark: _Toc404254999][bookmark: _Toc404582732][bookmark: _Toc404599078][bookmark: _Toc404599652][bookmark: _Toc404600222][bookmark: _Toc404600792][bookmark: _Toc404255000][bookmark: _Toc404582733][bookmark: _Toc404599079][bookmark: _Toc404599653][bookmark: _Toc404600223][bookmark: _Toc404600793][bookmark: _Toc404255001][bookmark: _Toc404582734][bookmark: _Toc404599080][bookmark: _Toc404599654][bookmark: _Toc404600224][bookmark: _Toc404600794][bookmark: _Toc404255002][bookmark: _Toc404582735][bookmark: _Toc404599081][bookmark: _Toc404599655][bookmark: _Toc404600225][bookmark: _Toc404600795][bookmark: _Toc404255003][bookmark: _Toc404582736][bookmark: _Toc404599082][bookmark: _Toc404599656][bookmark: _Toc404600226][bookmark: _Toc404600796][bookmark: _Toc404255004][bookmark: _Toc404582737][bookmark: _Toc404599083][bookmark: _Toc404599657][bookmark: _Toc404600227][bookmark: _Toc404600797][bookmark: _Toc404255005][bookmark: _Toc404582738][bookmark: _Toc404599084][bookmark: _Toc404599658][bookmark: _Toc404600228][bookmark: _Toc404600798][bookmark: _Toc404255006][bookmark: _Toc404582739][bookmark: _Toc404599085][bookmark: _Toc404599659][bookmark: _Toc404600229][bookmark: _Toc404600799][bookmark: _Toc404255007][bookmark: _Toc404582740][bookmark: _Toc404599086][bookmark: _Toc404599660][bookmark: _Toc404600230][bookmark: _Toc404600800][bookmark: _Toc404255008][bookmark: _Toc404582741][bookmark: _Toc404599087][bookmark: _Toc404599661][bookmark: _Toc404600231][bookmark: _Toc404600801][bookmark: _Toc404255009][bookmark: _Toc404582742][bookmark: _Toc404599088][bookmark: _Toc404599662][bookmark: _Toc404600232][bookmark: _Toc404600802][bookmark: _Toc404255010][bookmark: _Toc404582743][bookmark: _Toc404599089][bookmark: _Toc404599663][bookmark: _Toc404600233][bookmark: _Toc404600803][bookmark: _Toc404255011][bookmark: _Toc404582744][bookmark: _Toc404599090][bookmark: _Toc404599664][bookmark: _Toc404600234][bookmark: _Toc404600804][bookmark: _Toc404255012][bookmark: _Toc404582745][bookmark: _Toc404599091][bookmark: _Toc404599665][bookmark: _Toc404600235][bookmark: _Toc404600805][bookmark: _Toc404255013][bookmark: _Toc404582746][bookmark: _Toc404599092][bookmark: _Toc404599666][bookmark: _Toc404600236][bookmark: _Toc404600806][bookmark: _Toc404255014][bookmark: _Toc404582747][bookmark: _Toc404599093][bookmark: _Toc404599667][bookmark: _Toc404600237][bookmark: _Toc404600807][bookmark: _Toc404255015][bookmark: _Toc404582748][bookmark: _Toc404599094][bookmark: _Toc404599668][bookmark: _Toc404600238][bookmark: _Toc404600808][bookmark: _Toc404255016][bookmark: _Toc404582749][bookmark: _Toc404599095][bookmark: _Toc404599669][bookmark: _Toc404600239][bookmark: _Toc404600809][bookmark: _Toc404255017][bookmark: _Toc404582750][bookmark: _Toc404599096][bookmark: _Toc404599670][bookmark: _Toc404600240][bookmark: _Toc404600810][bookmark: _Toc404255018][bookmark: _Toc404582751][bookmark: _Toc404599097][bookmark: _Toc404599671][bookmark: _Toc404600241][bookmark: _Toc404600811][bookmark: _Toc404255019][bookmark: _Toc404582752][bookmark: _Toc404599098][bookmark: _Toc404599672][bookmark: _Toc404600242][bookmark: _Toc404600812][bookmark: _Toc404255020][bookmark: _Toc404582753][bookmark: _Toc404599099][bookmark: _Toc404599673][bookmark: _Toc404600243][bookmark: _Toc404600813][bookmark: _Toc404255021][bookmark: _Toc404582754][bookmark: _Toc404599100][bookmark: _Toc404599674][bookmark: _Toc404600244][bookmark: _Toc404600814][bookmark: _Toc404255022][bookmark: _Toc404582755][bookmark: _Toc404599101][bookmark: _Toc404599675][bookmark: _Toc404600245][bookmark: _Toc404600815][bookmark: _Toc404255023][bookmark: _Toc404582756][bookmark: _Toc404599102][bookmark: _Toc404599676][bookmark: _Toc404600246][bookmark: _Toc404600816][bookmark: _Toc451951415][bookmark: _Ref378574605][bookmark: _Toc384797307]Step 6: Specify Operation Parameters
The types of the input and output parameters for operations defined in the interface of the service shall be modelled as separate <<Message>> elements. They will be detailed into actual payloads in the next step.  The relationship between payload and service interface operation is shown in Figure 11. Please note, that this is only an illustrative diagram which is not part of the actual service model! The Interface and the Message elements do not have to be shown in one diagram. It is further not necessary to show parameter names in the diagrams, only types.
Applicable Rules
GR010, GR020, NC200, NC210, NC220, NC240, NC500, SM020, SM030, SM040, SM050, SM230, SM240, SM250, SM260, SM270, SM280, SM300, SM400, SM410, SM420, SM430

[image: ]
[bookmark: _Ref445967295][bookmark: _Toc451951452]Figure 11: Illustrative diagram showing service operation parameters and their payload elements.
The following steps need to be done:
1. Create one (or more) class diagram(s) in the Elements/Diagrams package and name it “<ServiceName> Interface Parameter Definition”[footnoteRef:7], with an optional postfix text to denote further context, if more than one diagram is needed.  [7:  See rule NC400 in the ISRM Rulebook [11]] 

2. Create UML Class Elements for each Operation parameter needed and name them according to Appendix B.4 “Messages/Service Interface Parameters naming conventions”.
3. Add the stereotype <<Message>> to the Elements and move them to the Elements/Payload package.
4. Add the created <<Message>> elements as parameter types for input, output or return type to your interface operations.
[bookmark: _Toc451951416]Step 7: Specify Service Payload design 
The design of the service payload concerns the formal representation of the content and structure of the input and output parameters of each service interface operation. 
The payload is to be modelled as a tree structure, where the root is the message used as parameter in the service interface operation as the example in Figure 12.
[image: ]
[bookmark: _Ref444845969][bookmark: _Toc451951453]Figure 12: Example of a payload structure

Two design options can be chosen:

1. “Complete Model” approach: The service payload cannot rely on an available exchange model, therefore it must be modelled ex-novo or a portion of AIRM CLDM is already fit for shaping the service payload, therefore the payload can be built by sub-setting the CLDM. 
2. “Use standard” approach: Refer to an existing exchange model (like AIXM, FIXM, etc…) which already contains a complete representation for the payload.
These approaches are explained in the next sections. 
Applicable Rules
GR010, GR020, NC200, NC210, NC220, NC230, NC240, SM010, SM020, SM030, SM040, SM050, SM300, SM310, SM320,SM330, ,SM340, SM350, SM370,
[bookmark: _Ref421106735][bookmark: _Ref381790730][bookmark: _Toc384797308]Option 1: “Complete Model” approach
This approach can be used to create a payload model from scratch or in some cases the payload may be built by manually recreating a portion of the AIRM CLDM. It is up to the modeller to decide which approach suites best, but since the payload will have to be traced to the AIRM to ensure semantic interoperability (see Step 8: Trace Service Payload to AIRM) the reuse of AIRM structures can save some work.
The payload model is built by Classes stereotyped as <<Message>>[footnoteRef:8] or <<DataEntity>> and <<enumeration>> elements. You should consider naming conventions according to Appendix B.4. The elements shall be placed in the Elements/Payload package.  [8:  These are the elements already created in the previous step.] 

Please note that attributes shall be named in lowerCamelCase[footnoteRef:9]. The type of the attribute shall be normally left blank (<none>), unless: [9:  https://en.wikipedia.org/wiki/CamelCase] 

a. the attribute is an enumerated value: in this case the corresponding <<enumeration>> shall be indicated as type for the attribute;
b. the attribute is out of the scope of AIRM, it shall be given a type chosen among base and foundation types available in the AIRM. 
Relationships between <<Message>> and <<DataEntity>> or between <<DataEntity>> and <<DataEntity>> elements shall be created using UML compositions. You shall add a role name for the target role of the compostion. Attribute multiplicity should be set as well.
An example of a fully defined structured payload model using the “Complete Model” approach is shown below in Figure 13:

[image: ]
[bookmark: _Ref417638374][bookmark: _Toc451951454]Figure 13: Example of a structured “Complete Model” payload

[bookmark: _Ref394496194]Option 2: payload derived from an exchange model
[bookmark: _Toc381795401][bookmark: _Toc381795488][bookmark: _Toc381800993]The structure of the payload highly depends on the structure of the Information Elements conveyed by a service interface operation. In some cases a complex payload structure is required where the service being modelled is an instance of a more generic service whose payload is a defined standard. In this case an existing standard model can be referenced right away, thus reducing modelling effort.
In this case the payload will be just made of messages without attributes. Payload messages shall be given a description note in the Notes field, explaining that its actual data content is fully documented in an existing standard model. The Service Modeller shall describe precisely:

· what standard exchange model is used, including version and links to web resources;
· which entity from the standard exchange model does the new message actually stand for, so that the entry point to the standard model is clearly understood.
The descriptive text of the message shall be kept visible in the diagrams in order to document the link to the standard exchange model it refers to. See example for METAR in Figure 14.

[image: ]
[bookmark: _Ref417636916][bookmark: _Toc451951455]Figure 14: Example of a payload based on a standard exchange model

[bookmark: _Toc437937761][bookmark: _Toc437938090][bookmark: _Ref445120287][bookmark: _Ref445120300][bookmark: _Toc451951417][bookmark: _Ref419988178]Step 8: Trace Service Payload to AIRM 
For defining the semantics of the payload and providing a means for compliance assessment, the payloads have to be mapped to the AIRM following the steps provided in Section 3 of the AIRM Compliance Handbook [5]. 
Applicable Rules
[bookmark: _Ref375298529][bookmark: _Ref375298551]SM360, SM370, SM380, SM390
[bookmark: _Toc451951418][bookmark: _Ref404674802][bookmark: _Ref381801461][bookmark: _Toc384797309]Step 9: Specify event trace description 
The service behaviour is modelled using a sequence diagram. This diagram can be split up into several diagrams if there is more than one port with respective MEP to be applied. 
Applicable Rules
GR010, GR020, NC200, NC210, NC220, NC240, NC500, SM010, SM030, SM050, SM240, SM250, SM260, SM270, SM280, SM400, SM410, SM420, SM430

1. Create a Sequence diagram called “<ServiceName> Event Trace Description” in the Diagrams package.  
2. Add the Service element together with the relevant port and the relevant service consumer from the Elements/Services package onto the diagram. (see Figure 15 for example)

[image: ]
[bookmark: _Ref445188401][bookmark: _Ref445188385][bookmark: _Toc451951456]Figure 15: Example of Sequence Diagram

3. Draw Messages from the Consumer to the lifeline of the service port representing the operations defined in the service interface. Make sure to correctly indicating synchronous or asynchronous call types, depending on chosen MEP.

[image: ]
[bookmark: _Toc451951457]Figure 16: Example of Sequence Diagram with message
4. In case it is desirable to identify different groups or possibilities in the same diagram the UML element Fragment can be used. It should be noted that fragments are distinct elements and they must therefore always be named in order to keep them distinct. Further they should be kept in the Elements/Event Trace package.

[image: ]
[bookmark: _Toc451951458]Figure 17: Example of Sequence Diagram with fragments

[bookmark: _Ref387656675][bookmark: _Ref387656690][bookmark: _Toc451951419]References
[1] [bookmark: _Ref357362698][bookmark: _Ref447092490][bookmark: _Ref401237911][bookmark: _Ref421743855]08.03.10, ISRM Foundation Rulebook, D45, 00.08.00, 31/05/2016  
[2] [bookmark: _Ref447092305][bookmark: _Ref357071368]NATO ARCHITECTURE FRAMEWORK Version 3, 22/05/2013 
[3] [bookmark: _Ref358297091]"UML® Resource Page." Object Management Group. N.p., n.d. Web. 26 May 2013, http://uml.org/ 
[4] [bookmark: _Ref449341540][bookmark: _Ref455750786][bookmark: _Ref381260790]08.01.03, AIRM Foundation Rulebook, D42, 00.08.00 31/05/2016 
[5] [bookmark: _Ref381273809]08.01.03, AIRM Compliance Handbook, 00.01.03, 26/02/2016
[6] [bookmark: _Ref381273865]08.01.01, AIRM Compliance Report, D49, 00.01.01, 22/03/2016
[7] [bookmark: _Ref388425043]14.01.03, SWIM Profiles for Step 3.1, D38, 17/12/2015
[8] [bookmark: _Ref405899164]08.01.01, AIRM Governance Handbook, 01.00.06, 24/07/2014
[9] [bookmark: _Ref445969220]08.01.01, SWIM Compliance Framework Criteria, D49, 00.01.01, 22/03/2016
[10] [bookmark: _Ref448992006]08.03.10, ISRM Foundation Primer, D45, 00.08.00, 31/05/2016



Appendix A [bookmark: _Ref364250599][bookmark: _Toc364443640][bookmark: _Toc384797318][bookmark: _Toc451951420]ISRM SWIM Message Exchange Patterns
ISRM identifies a set of SWIM Message Exchange Patterns (MEPs). These are defined on a logical level and can be translated into technical MEPs defined by SWIM TI profiles in Appendix F of [9] and in  [7].
The Service Modeller will have to decide which of the different MEPs described below the interface will have to implement. The choice shall in general be motivated by operational requirements. 
A.1 [bookmark: _Toc364443642][bookmark: _Toc384797320][bookmark: _Ref406154518][bookmark: _Toc451951421]Synchronous request/reply
[image: ]
[bookmark: _Ref378498671][bookmark: _Toc364346049][bookmark: _Toc384740802][bookmark: _Toc451951459]Figure 18: Synchronous request/reply MEP Event Trace diagram
Figure 18 shows a synchronous operation based on the definition of an operation called request with an XXXRequest parameter and an XXXReply return parameter. This can be used to set something on the Provider side or to get something from the Provider. 
[image: ]
[bookmark: _Toc451951460]Figure 19:  Synchronous request/reply MEP Interface Definition diagram
A.2 [bookmark: _Toc406151925][bookmark: _Toc364443643][bookmark: _Toc384797321][bookmark: _Ref406154520][bookmark: _Toc451951422]Asynchronous request/reply
[image: ]
[bookmark: _Ref378498589][bookmark: _Toc364346051][bookmark: _Toc384740804][bookmark: _Toc451951461]Figure 20: Asynchronous request/reply MEP Event Trace diagram
Figure 20 shows the asynchronous equivalent of the synchronous MEP described previously. The main difference is, that the Service Consumer must provide an Interface Operation reply, which will be invoked by the Service Provider in order to send back the requested data. 
[image: ]
[bookmark: _Toc451951462]Figure 21: Asynchronous request/reply MEP Interface Definition diagram
A.3 [bookmark: _Ref406154399][bookmark: _Toc451951423]Publish/Subscribe Push
[image: ]
[bookmark: _Ref378498967][bookmark: _Toc364346053][bookmark: _Toc384740806][bookmark: _Toc451951463]Figure 22: Publish/Subscribe Push MEP Event Trace diagram
Figure 22 shows the Publish/Subscribe Push MEP.
In this MEP the Service Consumer subscribes to some Data available at the Service Provider by calling the subscribe operation. The XXXSubscription parameter may include information about what the Consumer is interested in (e.g. Filter Rules etc.).
Whenever Data is available the Provider sends that Data to the subscribed Consumer via the publish operation. This operation is part of the Interface Definition provided by the Consumer.
The Consumer can unsubscribe from the Data by calling unsubscribe.
[image: ]
[bookmark: _Toc451951464]Figure 23: Publish/Subscribe Push MEP Interface Definition diagram
A.4 [bookmark: _Toc364443645][bookmark: _Toc384797323][bookmark: _Ref406154400][bookmark: _Toc451951424]Publish/Subscribe Pull
[image: ]
[bookmark: _Ref378499008][bookmark: _Toc364346055][bookmark: _Toc384740808][bookmark: _Toc451951465]Figure 24: Publish/Subscribe Pull MEP Event Trace diagram
Figure 24 shows Publish/Subscribe Pull MEP. 
The main difference to the Publish/Subscribe Push MEP is, that the Consumer does not have to provide an Interface. The consumer has to request the Data actively by calling the pull operation of the service Provider.
The main idea of this pattern is to give the Service Provider some awareness about the interest of Service Consumers.
[image: ]
[bookmark: _Toc451951466]Figure 25:  Publish/Subscribe Pull MEP Interface Definition diagram

A.5 [bookmark: _Ref406154648][bookmark: _Toc451951425]One Way
[image: ]
[bookmark: _Ref378499173][bookmark: _Toc364346061][bookmark: _Toc384740814][bookmark: _Toc451951467]Figure 26: One Way MEP Event Trace diagram
Figure 26 shows the One Way MEP.
This is a special case of the Request/Reply patterns without a response from the Service Provider.
[image: ]
[bookmark: _Toc451951468]Figure 27: One Way MEP Interface Definition diagram
[bookmark: _Toc373136299][bookmark: _Toc373143829]
Appendix B [bookmark: _Toc437937820][bookmark: _Toc437938149][bookmark: _Toc437937823][bookmark: _Toc437938152][bookmark: _Toc437937826][bookmark: _Toc437938155][bookmark: _Toc437937902][bookmark: _Toc437938231][bookmark: _Toc437937912][bookmark: _Toc437938241][bookmark: _Toc437937915][bookmark: _Toc437938244][bookmark: _Toc437937918][bookmark: _Toc437938247][bookmark: _Toc437937922][bookmark: _Toc437938251][bookmark: _Toc437937925][bookmark: _Toc437938254][bookmark: _Toc437937928][bookmark: _Toc437938257][bookmark: _Toc437937931][bookmark: _Toc437938260][bookmark: _Toc437937935][bookmark: _Toc437938264][bookmark: _Toc437937936][bookmark: _Toc437938265][bookmark: _Ref444757673][bookmark: _Ref444757677][bookmark: _Toc451951426]ISRM naming conventions
The naming conventions presented in this section are recommendations to service architects and are currently not mandated. Mandatory naming convention are given in section 2.2 of the ISRM Foundation Rulebook [4].
It is recommended that the SA endeavours to use natural language in the naming of elements in order to make the model comprehensible by people that are not used to modelling notations. This is particularly important for services that have a strong connection to operational concepts. 
The naming conventions have been shaped in order to give a quick insight to the viewer of the element as to what it does and what it is. I.e. in most cases this will be a combination of verbs and nouns. The aim is to make the element comprehensible on its own without having to look at the related elements in the model. This is important because sometimes the elements are presented in isolation or in a partial context despite the fact that the ISRM is a model-based architecture and should normally be viewed in a whole-of-model perspective. I.e. an element is presented with all its relations. The effect of this on the element naming is that some parts will be repeated or similar throughout the names of related elements.
The style of element names in the ISRM model uses UpperCamelCase[footnoteRef:10] for all names except the name of operations, attributes, and parameters which uses the lowerCamelCase. This means that all names are written in one word without spaces. The reason for this is that it shall be possible to do an unambiguous transformation from model to code when implementing the services. [10:  http://en.wikipedia.org/wiki/CamelCase] 

If elements are mentioned in text, it is recommended to use sentence case and include the type of element to enhance readability. As the element name is a proper name[footnoteRef:11], all parts of the name should be initialised with a capital letter. E.g. Airport Flight Information service or Arrival Manager interface.  [11:  http://en.wikipedia.org/wiki/Proper_noun] 

Abbreviations and acronyms can be used if they are commonly known in the ATM community. A good check is to see if the abbreviation/acronym is in ICAO doc 8400[footnoteRef:12]. All abbreviations/acronyms are expressed as capital letters.  [12:  ISBN 978-92-9231-626-6] 

The syntax description in this document uses the Backus-Naur Form[footnoteRef:13]. <> are used to surround each word and | is used as an OR operator. E.g. <process-name> | <capability-name> means that either a process name or a capability name can be used. Note that this is not for the sake of formal notation, but provides a structured way of expressing the syntax. [13:  http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form] 

B.1 [bookmark: _Toc405207547][bookmark: _Toc406151943][bookmark: _Toc406482924][bookmark: _Toc420478672][bookmark: _Toc421104743][bookmark: _Toc421104845][bookmark: _Toc422497610][bookmark: _Toc422497858][bookmark: _Toc422499505][bookmark: _Toc422500461][bookmark: _Toc432660112][bookmark: _Toc437846645][bookmark: _Toc437870070][bookmark: _Toc437871601][bookmark: _Toc437937939][bookmark: _Toc437938268][bookmark: _Toc438104836][bookmark: _Toc438106347][bookmark: _Toc438106524][bookmark: _Toc438106990][bookmark: _Toc443636135][bookmark: _Ref405194609][bookmark: _Ref405194852][bookmark: _Toc451951427]Service naming conventions
Service names should place the service in the appropriate context and define the service scope[footnoteRef:14]. From an ISRM perspective this means that the name should explain what the operational and/or information context is. In addition, it is valuable to indicate the high level function of the service. To achieve this, service names should be assigned differently, depending on service type. In this case the Thomas Erl[footnoteRef:15] definition of service types/models. [14:  Inspired by http://soa-ind.blogspot.se/2009/12/some-thoughts-on-service-naming-service.html]  [15:  http://serviceorientation.com/soaglossary/service_model] 
<service-name> ::= <entity-service-name> | <task-service-name> | <utility-service-name>


“An entity service is a form of business service with a functional context that is derived from one or more related business entities. Examples of business entities include order, client, timesheet, and invoice. 
Because their functional boundary is based on business entities, entity services are naturally agnostic to business processes. This allows them to be repeatedly reutilized in support of multiple tasks and business process, positioning them as highly reusable services.”
All services whose purpose is only to provide ATM-specific information are to be considered as entity services. But also services where entities can be manipulated (created/updated/deleted) without a complex operational interaction between provider and consumer or without dependencies to other services can be considered entity services.
Entity services should use the <entity-name> service naming. <entity-service-name> ::= <entity-name> 

Examples:
· Order
· Invoice
· FlightPlan
· FlightInformation
· ArrivalSequence
· METforecast 

 “A task service is a form of business service with a functional context based on a specific business process. As a result, task services are not generally considered agnostic and therefore have less reuse potential than other service models. By allowing for the abstraction of single-purpose or business process-specific logic into task services, the opportunity to increase the amount of agnostic logic within services based on entity and utility service models is improved.”
Task services should use the <process-name> service naming. <task-service-name> ::= <process-name> 

Project Number 08.03.10	Edition 00.08.00
D45 - ISRM Modelling Guidelines

	[image: ]
	2 of 53

	©SESAR JOINT UNDERTAKING, 2015. Created by DFS, EUROCONTROL, NORACON, NATMIG, FINMECCANICA for the SESAR Joint Undertaking within the frame of the SESAR Programme co-financed by the EU and EUROCONTROL. Reprint with approval of publisher and the source properly acknowledged



Examples:
· 
· OrderManagement
· CreditManagement
· FlightPlanning
· ArrivalManagement

It's perfectly fine to sub-categorize if necessary, like in this example: OrderFulfillment instead of OrderManagement.

“A utility service is intentionally based on a non-business-centric functional context. It typically encapsulates common, cross-cutting functionality that is useful to many service compositions, but which is not related to or derived from existing business models.”
Utility services should use the <verb> | <noun> service naming. <utility-service-name> ::= <verb> | <noun> 

Examples:
· [bookmark: OLE_LINK1]
· Notification
· Logging
· Alerting
· Messaging
· Video
· Audio 

Note that Utility services are most of the times defined in the SWIM Technical Infrastructure, i.e. outside the WP8 scope.
Service names shall not end with the suffix 'service' since the element type is given by the stereotype of the model element. The word service may be used in the service name if the service is related to services in one way or another, e.g. a task service named Service Management or an entity service named Service Registry. But that shall not be as a suffix.
B.2 [bookmark: _Ref405195060][bookmark: _Ref444758473][bookmark: _Toc451951428]Service Port and Interface naming conventions
Service Ports are used to advertise interfaces in runtime. The name of the port is written from the perspective of the provider of the interface.
The Service Interface names should at least differentiate provider interfaces from consumer interfaces. It is also recommended to name the interface so that it is possible to understand to which service the interface belongs by telling what the topic (or sub-topic) is. This is important since the interface may be presented among other interfaces, but without the service context explained.
Service Port and Service Interface names should use the <noun> <role> where <noun> is a topic related to the service and <role> describes the roles in a composition/interaction sequence. The roles can therefore be divided based on the Message Exchange Pattern that is used. <service-interface-name> ::= <noun> <role> 

Examples:
· 
· FlightPlanCoordinator
· FlightPlanSubmitter
· ForecastProvider
· ForecastConsumer
· ClearanceRequester
· ClearanceManager
· RunwayConfigurationManager
· PreDepartureSequencer
· FlightInformationPublisher
· FlightInformationConsumer
· AlertListener
· VideoProvider

Port Examples:
· FlightPlanPort
· ForecastPort
· ClearancePort
B.2.1 [bookmark: _Toc451951429]Interface naming in case of request/reply pattern (synchronous and asynchronous)
For entity and utility services in which the interfaces uses the request/reply message exchange pattern (see A.1 and A.2) the default roles of the interfaces are expressed based on the direction of interaction.
· Provider. Provided interface where an entity is exposed through the interface. Pull type interaction.
· Consumer. Required interface used in asynchronous interaction patterns.
or
· Receiver. Provided interface that allows for information to be pushed to it.
· Requester. Required interface used to enable asynchronous replies to a request.
In some cases there is also a need to separate interfaces that are used to provide (read) information from those that are used to manage information (create/update/delete). In this case, the management interface can be named:
· Manager. Provided interface in a task/entity/utility service. Indicates need for restricted access.
For task services, the role will reflect the role of the actors in the operational process. A number of roles can be used, such as:
· Monitor
· Surveyor
· Scheduler
· Planner
· Balancer
· Synchroniser
· Executor
· Issuer
B.2.2 [bookmark: _Toc451951430]Interface naming in case of publish/subscribe pattern
For interfaces that uses the publish/subscribe message exchange pattern (see A.3 and A.4), the role of the actor is indicated in the interface name:
· Publisher. Provided interface if a pub/sub pattern is used.
· Subscriber. Required interface if a pub/sub pattern is used.
B.2.3 [bookmark: _Toc451951431]Interface naming in case of one-way pattern
If a one-way message exchange pattern (seeA.5) is to be implemented, then use:
· Listener. Provided interface that indicates a passive recipient of messages, i.e. a one-way pattern
No required/consumer interface is implemented in one-way interactions.
B.3 [bookmark: _Ref405195213][bookmark: _Toc451951432]Service Interface Operations naming conventions
Service interface operations describes how a client can interact with a service interface, i.e. how it can be invoked. It is important that the client understands what can be done as well as with what. 
Service interface operation names should follow the format <verb> <noun> where the <verb> indicates the operation as seen from the invoker perspective and the <noun> indicates the subject of the operation. <service-interface-operation-name> ::= <verb> <noun> 

Note 1: The <noun> in an operation name may be omitted if it does not add any additional value. That is if both conditions below are fulfilled:
a) the message that the operation uses as input parameter clearly states what is the subject of the operation. E.g. submit(FlightPlan). 
b) there are no other operations in the same interface that uses the same verb.
Note 2: If a <noun> is used in publish/subscribe operation names, the noun should be prefixed by To and From. E.g. subscribeToFlightInformation and unsubscribeFromFlightInformation.
Note 3: lowerCamelCase is used throughout the operation name.

Different verbs should be used depending on the message exchange pattern:

Request/Reply – Synchronous 
· Pull information: get
· Push information without a callback reply: put
Request/Reply – Asynchronous 
· Ask for something (information/permission/action): request
· Push information expecting a reply: submit
· Asynchronous reply: reply
For request/reply patterns there might be other verbs that are applicable in certain operational situations such as: list, search, create, update, clear, activate, deactivate, acknowledge etcetera.

Publish/Subscribe - Push
· Initiate subscription: subscribe
· Send notification to a consumer: publish
· End subscription: unsubscribe
Publish/Subscribe - Pull
· Initiate subscription: subscribe
· Get notifications: pull
· End subscription: unsubscribe
One-way
· Send notification to a provided service interface: post
Examples:
· getAlerts
· putAirspaceInformation
· submitFlightPlan
· requestClearance
· clearFlight
· requestTrajectoryAnalysis
· replyTrajectoryAnalysis
· createAccount
· updateArrivalTime
· searchArrivalList
· listServiceProviders
· subscribeToAirportFlightInformation
· publishAirportFlightInformation
· pullAircraftInformation
· unsubscribeFromAirportFlightInformation
· postForecast 
B.4 [bookmark: _Ref405195339][bookmark: _Toc451951433]Messages/Service Interface Parameters naming conventions
Messages represents the business payload or technical information that is transmitted between a provider and consumer. The correct stereotype in ISRM is Service Interface Parameter. It may travel in both directions and may be parameters passed when invoking a service interface through an operation or be the reply to that invocation.
Message names should follow the format <information-product> <message-type> where <information-product> is a noun describing the information being passed between provider and consumer like FlightPlan, Alert etc.
<message-type> is a noun describing the type of message, indicating how the recipient is intended to act. E.g. a request where the recipient is expected to reply, a filter that the recipient is expected to take into consideration when replying, a notification where a response is not expected.
Common message types in operation invocations are: request, update, query, filter, subscription, notification. Common message types in replies are: fault, exception, acknowledgement, reply, response, list etc. The <message-type> may be omitted if it is only information being passed.
<service-interface-parameter-name> ::= <information-product> <message-type> 


Examples where the first part is the message passed to the interface and the second part is the reply message:
· FlightPlanUpdate : void (i.e. no return message)
· AccountCreationRequest : CreationResponse 
· AlertSelectionCriteria : AlertList
· FlightArrivalTime : TimeSetAcknowledgement
· ArrivalSearchQuery : FlightArrivalList
· ClearanceRequest : ClearanceRequestAcknowledgement
· ServiceProviderFilter : ServiceProviderList
· FlightInformationSubscription : FlightInformationSubscriptionResponse
· FlightInformationNotification : void
· UnsubscriptionNotification : UnsubscriptionResponse
Appendix C [bookmark: _Ref449344086][bookmark: _Toc451951434][bookmark: _Ref447089602]Example of Service with two ports
This Appendix contains the diagrams of a service model with two ports offering two different Message exchange patterns. It is meant as another example visualising the outcome of the modelling steps described in this document.
[image: ]
[bookmark: _Toc451951469]Figure 28: METGriddedForecast Service Requirements Traceability Example
[image: ]
[bookmark: _Toc451951470]Figure 29: METGriddedForecast Service Interface Defintion Example

[image: ]
[bookmark: _Toc451951471]Figure 30: METGriddedForecast Service Interface Parameter Definition Example 1
[image: ]
[bookmark: _Toc451951472]Figure 31: METGriddedForecast Service Interface Parameter Definition Example 2
[image: ]
[bookmark: _Toc451951473]Figure 32: METGriddedForecast Service Interface Parameter Definition Example 3
[image: ]
[bookmark: _Toc451951474]Figure 33: METGriddedForecast Service Event trace description 1
[image: ]
[bookmark: _Toc451951475]Figure 34: METGriddedForecast Service Event trace description 2
Appendix D [bookmark: _Ref449344084][bookmark: _Ref449344085][bookmark: _Toc451951435]Technical modelling support
During the creation of the ISRM in SESAR several tools supporting the work of Service Modellers have been developed using Sparx Enterprise Architect for UML modelling. In case this program is used two tools for post-SESAR usage are made available as attachments to the primer document [10].
The following two sections provide introduction to these tools.
D.1 [bookmark: _Toc451951436]SWIM Logical Service toolbox
In order to create the specific artefacts described in this guideline a special supporting toolbox named SWIM logical service has been added to the Sparx Enterprise Architect tool. The toolbox enables the modeller to more easily create the relevant artefacts. Below, the installation of the toolbox is described. A general introduction to the toolbox support is provided followed by a description of the use of each of the available views and associated toolbox.
D.1.1 [bookmark: _Toc451951437]Toolbox installation
Integration of Model Driven Generation (MDG) Technologies into Enterprise Architect extends the capability of the tool beyond the core modelling capabilities. For the ISRM modelling, several MDG technology components have been developed for integration in EA with the purpose of simplifying the modelling and verification tasks. In this chapter, general aspects of the MDG technology integration and management are presented.
In order to get the MDG components to work, they must be imported to EA. This is done by the Import MDG technology feature, accessible by the menu items: 
Tools -> MDG Technology import 
or
Project -> Resources
The latter item brings up the project resource window, in which a right-click on MDG Technology will make the import feature available. 
[image: ]
[bookmark: _Toc438108913][bookmark: _Toc451951476]Figure 35 The Resources window with Import Technology selected
Both items will open the window Copy Technology to Application Data.
[image: ]
[bookmark: _Ref404697327][bookmark: _Toc438108914][bookmark: _Toc451951477]Figure 36 The window used for technology import
When importing MDG technology, there are two options for making the technology available (by the radio buttons bottom left in the Copy Technology to Application Data window in Figure 36):
Import to Model
This option will import the technology into the current model. Any users of your (local) model will have access to the technology. The technology will be accessible to the current model only. The option allows for integration of separate technologies for different models.
Import to User
This option will import the technology to the current user, making the technology available for the user across models accessed by the user. For this option, the technology files will be stored in the folder %APPDATA%\Sparx Systems\EA\MDGTechnologies on your workstation.
Selection of the file representing the MDG technology to be imported is done by using the browse button upper right in the Copy Technology to Application Data window. When the technology file is selected, information about the technology is presented in the window as shown in Figure 37. 
[image: ]
[bookmark: _Ref404697368][bookmark: _Toc438108915][bookmark: _Toc451951478]Figure 37 Example of a MDG Technology file selected for import
If the MDG Technology already exists, Enterprise Architect displays a prompt for confirmation to overwrite the existing version and import the new one. The typical case for re-import of technologies is when a new version of a technology is released.
[image: ]
[bookmark: _Toc438108916][bookmark: _Toc451951479]Figure 38 Prompt for overwriting existing technology
When the import is completed, a restart of Enterprise Architect is needed.
It can be checked if the toolbox is loaded OK by selecting “More tools” from the Toolbox window and verifying that the option “SWIM logical service is available.


D.1.2 [bookmark: _Toc451951438]Toolbox usage
When a modeller wants to create a new diagram (Add diagram), a window describing the different groups of diagrams that the tool supports is presented. By selecting SWIM logical service, the following list appears.
[image: ] 
[bookmark: _Toc451951480]Figure 39: List of possible SWIM logical service diagrams
As can be seen from the icons associated with the different diagrams, most are class diagrams although diagrams of other types are included as well. Irrespective of the choice of diagram, the following steps should be performed when a diagram type has been chosen.
1. Select the diagram type and press ok.
2. Name the diagram so that the choice made is apparent in the name. The reason for this is to make the diagram easy to see in the project browser. The default name is taken from the name of the package the diagram is owned by.
3. Show Property Note in diagram (from menu in EA choose Diagram -> Advanced -> Show Property Note)
When the diagram is opened the type and name of the diagram is shown in the border on top of the writing area and the correct toolbox associated with the diagram is opened.
For each type of diagram there is a corresponding toolbox containing all the elements that need to be shown on that diagram. If you use these elements by dragging and dropping them onto the diagram, they will automatically contain the correct stereotypes and tagged values. 
Please keep in mind, that the toolbox is used for creating new elements. If you need to reuse existing elements you may use them from the packages of the service in the project browser.
Here are the four available toolboxes:
[image: ]
[bookmark: _Toc451951481]Figure 40: Interface Definition Toolbox
 [image: ]
[bookmark: _Toc451951482]Figure 41: Interface parameter Definition Toolbox
  [image: ]
[bookmark: _Toc451951483]Figure 42: Event Trace Description Toolbox
   [image: ]
[bookmark: _Toc451951484]Figure 43: Requirements Traceability Toolbox



D.2 [bookmark: _Toc451951439]Verification Script
[bookmark: _Toc437871611][bookmark: _Toc437937949][bookmark: _Toc437938278][bookmark: _Toc438104846][bookmark: _Toc438106357][bookmark: _Toc438106534][bookmark: _Toc438107000][bookmark: _Toc443636145][bookmark: _Toc437871612][bookmark: _Toc437937950][bookmark: _Toc437938279][bookmark: _Toc438104847][bookmark: _Toc438106358][bookmark: _Toc438106535][bookmark: _Toc438107001][bookmark: _Toc443636146]To help verify that the ISRM model follows the ISRM Foundation Rulebook [1] a set of verification scripts have been developed for the Sparx EA environment. These scripts are available as attachment to the ISRM Primer document [10] and have to be imported into Enterprise Architect before they can be used. How this is done and the additional actions to make the scripts appear in the Project Browser menu (to execute the verification) is described below.
Please note, that the available scripts do only cover the rules of ISRM Foundation 00.07.00 and not the rules explained in the document! This is for documentation purpose only (describing the approach used in SESAR) and can be used as input for a version 00.08.00 implementation.
Step 1: Get MDG Technology verification scripts into EA
Import the isrm_verification_rules.xml and the library_functions.xml files by following the procedure described in the previous chapter.
After a restart of EA, you should have the folders ISRM Verification Rules and Library Functions present in your script window.
[image: ]
[bookmark: _Toc438108998][bookmark: _Toc451951485]Figure 44 EA Scripting window showing the added MDG Technology scripting groups
If you don’t see your script window enable it by choosing "Scripting" in Tools menu of EA.
Step 2: Create Project Browser menu with verification scripts into EA.
1) Access the Scripting window by selecting the menu item Tools -> Scripting. Create a Project Browser group and name it “ISRM Verification menu” 
2) Open the new group's properties and make sure the group type is Project Browser.
3) In your new (or existing) Project Browser group, create a new JScript and name it “AutoVerify”
4) By opening the script for edit, replace the generic skeleton for the script with the contents of the file AutoVerify.js
5) Click Save when done.
You should now have the Project Browser menu item as shown in Figure 45 for verifying the model content.
[image: ]

[bookmark: _Ref449340298][bookmark: _Toc438109000][bookmark: _Toc451951486]Figure 45 Selecting AutoVerify in the Project Browser Scripts menu


Step 3: Running the verification script on packages, elements and diagrams.
1) In the project browser in EA select and right-click on a package, element or diagram. You should now on the top see a menu item Scripts with a sub menu with the AutoVerify entry based on the JScript you imported. Select it.
2) When you select the sub menu item, EA runs the corresponding verification script (which calls the right verification rules scripts) and generates a verification report in a default folder (C:\tmp). The AutoVerify menu item generates a file called nsov-all-verification.csv in the C:\tmp folder. It is a comma-separated file with the verification result for each applicable rule for each node in the ISRM. If you want to change the default output from C:\tmp to something else, you have to manually change the Config JScript in the Library Function folder in the Script window.
3) From the CSV file, you can generate Excel spreadsheet reports according to the procedures described.

[image: ]
[bookmark: _Toc451951487]Figure 46: The process of AutoVerify execution and verification report generation
[bookmark: _Ref390330464][bookmark: _Toc438108871]Step 4: Generating verification reports (optional)
The EA script AutoVerify described above creates a source CSV file that contains information needed to create the verification reports per service. This CSV file is in turn fed into an external tool that creates an Excel document. It contains one sheet for the automatic rules and one for the manual rules, so that the verification log of the manual rules may be maintained separately and copied and pasted into the final verification report.
In order to run the script, you need Perl. This is included in Cygwin (as well as readily available on Unix-based systems), and may also be downloaded from ActiveState for Windows, at http://www.activestate.com/activeperl/downloads. Assuming you know how to install Perl or already have a working Perl environment, you will need to also install the Perl module Spreadsheet::WriteExcel (using “CPAN”). 
The perl script is available in the attachment of the ISRM Primer in the verification_reporting directory.
Running the script
1) In the command window, type "perl makeexcel.pl –f [location of your CSV file]” – make sure to use the full or relative path to your CSV file
2) The script will proceed to produce one Excel sheet per service contained in the CSV file, if you ran the AutoVerify script at a level above one particular service
-END OF DOCUMENT-



Identify and uniquely name a service


Map Service to Requirements


Specify Ports and MEPs


Specify Service Interface Operations


Specify Service Payload design


Trace Service Payload to AIRM


Specify event trace description


Specify Interfaces


Specify Operation Parameters












image1.png
***




image2.png
5] TargetOffBlockTimeSettingService





image3.png
4[5 TargetOffBlockTimeSettingService
4 1 Diagrams
% TOBTSetting Interface Definition
4 [ Blements
4 [ Service
5] <Services TargetOffBlockTimeSetting
o 1 Payload
b [ Event Trace
» (1 Requirements




image4.emf
class TOBTSetting Interface ...

«Service»

TargetOffBlockTimeSetting


image5.emf
class TOBT Setting Requirements Traceability IER

«Service»

TargetOffBlockTimeSetting

«Requirement»

Allow setting of TOBT 

tags

refLabel = Milestone 9, p.3-26

refSource = Airport CDM Implementation Manual Version 4

refURL = http://www.eurocontrol.int/sites/default/files/publication/files/2012-airport-cdm-manual-v4.pdf

reqType = Information exchange requirement

notes

Allow the Aircraft Operator or Ground Handler to set, update or delete the value of the Target

Off-Block Time

«Requirement»

Allow setting TOBT in special case

tags

refLabel = Milestone 9, p. 3-26

refSource = Airport CDM Implementation Manual Version 4

refURL = http://www.eurocontrol.int/sites/default/files/publication/files/2012-airport-cdm-manual-v4.pdf

reqType = Information exchange requirement

notes

Allow the competent authority to set the value of TOBT time value for a given aircraft in specific

circumstances.

«satisfy»

«satisfy»


image6.png
4 [E] TargetOffBlockTimeSettingService
4 1 Diagrams
% TOBTSetting Interface Definition
4 [ Blements
4 [ Service
4 [ «Senvice» TargetOffBlockTimeSetting
< eSyncReqRep» TOBTSettingPort
(1 Payload
3 Event Trace
(1 Requirements




image7.emf
Interface Definition TOBTSetting Interface D...

«SyncReqRep»

TOBTSettingPort

«Service»

TargetOffBlockTimeSetting

«SyncReqRep»

TOBTSettingPort


image8.emf
Interface Definition Multi Port Example

«SyncReqRep»

APort

«PubSubPush»

BPort

«AsyncReqRep»

CPort

«Service»

myService

«SyncReqRep»

APort

«PubSubPush»

BPort

«AsyncReqRep»

CPort


image9.emf
Interface Definition TOBTSetting Interface Definition

«SyncReqRep»

TOBTSettingPort

«Service»

TargetOffBlockTimeSetting

«SyncReqRep»

TOBTSettingPort

«ServiceConsumer»

TOBTSetting consumer

«interface»

ProvidedTOBTSetting

«require»

«provide»


image10.emf
Interface Definition TOBTSetting Interface Definition

«SyncReqRep»

TOBTSettingPort

«Service»

TargetOffBlockTimeSetting

«SyncReqRep»

TOBTSettingPort

«ServiceConsumer»

TOBTSetting consumer

«interface»

ProvidedTOBTSetting

+ deleteTOBT()

+ setTOBT()

«require»

«provide»


image11.emf
class 

TOBT Setting Interface Parameter Definition for set TOBT

TOBTSetting Interface Definition

«interface»

ProvidedTOBTSetting

+ deleteTOBT(TOBTDeleteRequest): TOBTDeleteResponse

+ setTOBT(TOBTSettingRequest): TOBTSettingResponse

«Message»

TOBTSettingRequest

«Message»

TOBTSettingResponse


image12.emf
class TOBT Setting Interface Parameter Definition for set TOBT

«Message»

TOBTSettingRequest

«DataEntity»

OffBlockReady

+ targetTime

«DataEntity»

FlightID

«Message»

TOBTSettingResponse

«DataEntity»

A-CDMServiceResponseStatus

+ reasonForRejection: CharacterString

+ status: CharacterString

Details of this DataEntity 

are explained separately.

+flightID 1 +offBlockReady 1 +responseStatus 1


image13.emf
class  ArrivalManagementInformation Interface Parameter Definition Arrival Sequence 

«DataEntity»

ProposedProcedureInformation

+ advisedHoldingProcedure [0..1]

+ advisedSTAR [0..1]

+ advisedTransition [0..1]

«Message»

ArrivalSequence

«DataEntity»

RunwayAssignmentInformation

+ assignedRunwayDirection

+ landingSequencePosition [0..1]

A

«DataEntity»

AdvisoryInformation

+ routeAdvisory [0..1]

+ speedAdvisory [0..1]

+ constraintCTA [0..1]

+ timeToGainOrLose [0..1]

«DataEntity»

MeteringInformation

+ pointName

+ pointUsage: ArrivalPointUsage

+ planningStatus: PlanningStatus

+ AMANPlannedTimeOver

+ delayAtPoint [0..1]

«DataEntity»

DepartureManagementInformation

+ departureAerodrome

+ timeToLoseOnTheGround [0..1]

«DataEntity»

ArrivalManagementInformation

+ flightID

+ AMANPlannedThresholdTime

+ sequenceNumber [0..1]

+ arrivalDelay [0..1]

+ delayShare [0..1]

+ arrivalManagementHandlingIndicator [0..*]

+ typeOfAircraft [0..1]

+ wakeTurbulenceCategory [0..1]

+ AMANStrategy [0..1]

«enumeration»

ArrivalPointUsage

  INITIAL_METERING_FIX

  COORDINATION

  METERING_FIX

  INITIAL_APPROACH_FIX

  FINAL_APPROACH_FIX

  OTHER

«enumeration»

PlanningStatus

  ESTIMATED_TIME

  TARGET_TIME

  CONTROLLED_TIME

+runwayAssignment 0..1

+sequenceEntries 0..*

+proposedProcedure

0..1

+advisoryInformation 1

+meteringInformation 0..*

+departureAirport

0..1


image14.emf
class METAR Interface Parameter Definition

«Message»

UnsubscriptionResponse

«Message»

METAROrSPECISubscription

«Message»

METAROrSPECIUnsubscription

«Message»

SubscriptionResponse

«Message»

METAR

notes

The METAR bulletin is based on the IWXXM 1.0 standard model (http://schemas.wmo.int/index.php?dir=/iwxxm/1.0)

This EntityItem corresponds to the following element in the IWXXM standard:

- ./iWXXM/v1.0/MetarSpeci/METAR

«Message»

METAROrSPECI

notes

The METAR and SPECI bulletins are based on the IWXXM 1.0 standard model

(http://schemas.wmo.int/index.php?dir=/iwxxm/1.0)

This EntityItem can be specialized into either of the two actual bulletins.

«Message»

SPECI

notes

The SPECI bulletin is based on the IWXXM 1.0 standard model (http:

//schemas.wmo.int/index.php?dir=/iwxxm/1.0)

This EntityItem corresponds to the following element in the IWXXM standard:

- ./iWXXM/v1.0/MetarSpeci/SPECI

«DataEntity»

Aerodrome

«EntityItemAttribute»

+ locationIndicatorICAO

+aeroframeFilter

+aeroframeFilter


image15.emf
sd TOBT Event Trace Description

«Service»

TargetOffBlockTimeSetting

«ServiceConsumer»

TOBTSetting consumer

TOBTSettingPort


image16.emf
sd TOBT Event Trace Description

«Service»

TargetOffBlockTimeSetting

«ServiceConsumer»

TOBTSetting consumer

TOBTSettingPort

setTOBT(TOBTSettingRequest): TOBTSettingResponse


image17.emf
sd TOBT Event Trace Description

«Service»

TargetOffBlockTimeSetting

«ServiceConsumer»

TOBTSetting consumer

TOBTSettingPort

opt Set request

opt Delete request

deleteTOBT(TOBTDeleteRequest): TOBTDeleteResponse

setTOBT(TOBTSettingRequest): TOBTSettingResponse


image18.emf
sd sync req/rep Event Trace Description

«ServiceConsumer»

serviceConsumer

«Service»

ServiceName

ServicePort

request(XXXRequest): XXXReply


image19.emf
class sync req/rep Interface Definition

«ServiceConsumer»

serviceConsumer

«interface»

XXXProvider

+ request(XXXRequest): XXXReply

«SyncReqRep»

ServicePort

«Service»

ServiceName

«SyncReqRep»

ServicePort

«require»

«provide»


image20.emf
sd async req/rep Event Trace Description

«Service»

ServiceName

«ServiceConsumer»

serviceConsumer

ServicePort

request(XXXRequest)

reply(XXXReply)


image21.emf
class async req/rep Interface Definition

«interface»

XXXProvider

+ request(XXXRequest): void

«interface»

XXXConsumer

+ reply(XXXReply): void

«AsyncReqRep»

ServicePort

«Service»

ServiceName

«AsyncReqRep»

ServicePort

«ServiceConsumer»

serviceConsumer

«require»

«provide»

«provide»

«require»


image22.emf
sd pub/sub push Event Trace Description

«Service»

ServiceName

«ServiceConsumer»

serviceConsumer

ServicePort

loop Data Publication

opt Unsubscription

subscribe(XXXSubscription): SubscriptionResponse

unsubscribe(XXXUnsubscription):

UnsubscriptionResponse

publish(XXXPublication)


image23.emf
class pub/sub push Interface Definition

«PubSubPush»

ServicePort

«Service»

ServiceName

«PubSubPush»

ServicePort

«ServiceConsumer»

serviceConsumer

«ServiceInterfaceDefinition»

XXXSubscriber

+ publish(XXXPublication): void

«interface»

XXXPublisher

+ subscribe(XXXSubscription): SubscriptionResponse

+ unsubscribe(XXXUnsubscription): UnsubscriptionResponse

«provide»

«require»

«provide»

«require»


image24.emf
sd pub/sub pull Event Trace Description

«ServiceConsumer»

serviceConsumer

«Service»

ServiceName

ServicePort

loop Data Publication

opt Unsubscription

unsubscribe(XXXUnsubscription):

UnsubscriptionResponse

pull(XXXRequest): XXXReply

subscribe(XXXSubscription): SubscriptionResponse


image25.emf
class pub/sub pull Interface Definition

«interface»

XXXPublisher

+ pull(XXXRequest): XXXReply

+ subscribe(XXXSubscription): SubscriptionResponse

+ unsubscribe(XXXUnsubscription): UnsubscriptionResponse

«PubSubPull»

ServicePort

«Service»

ServiceName

«PubSubPull»

ServicePort

«ServiceConsumer»

serviceConsumer

«provide»

«require»


image26.emf
sd one way Event Ttrace Description

«Service»

ServiceName

«ServiceConsumer»

serviceConsumer

ServicePort

post(XXXNotification)


image27.emf
class one way Interface Definition

«interface»

XXXListener

+ post(XXXNotification): void

«OneWay»

ServicePort

«Service»

ServiceName

«OneWay»

ServicePort

«ServiceConsumer»

serviceConsumer

«provide»

«require»


image29.emf
class METGriddedForecast Requirements Traceability

«Service»

METGriddedForecast

tags

megaid = 

Name: METGriddedForecast Requirements Traceability

Author: SVA010 Oliver Krueger

Version: 1.0

Created: 14.04.2016 00:00:00

Updated: 18.04.2016 00:00:00

«Requirement»

Airport MET elements

tags

refLabel = IER-11.02.01-OSED-LOC1.1002

refSource = MET OSED part A (Local OUE) - update

refURL = 

reqType = Information exchange requirement

«Requirement»

Approach MET elements

tags

refLabel = IER-11.02.01-OSED-LOC1.1001

refSource = MET OSED part A (Local OUE) - update

refURL = 

reqType = Information exchange requirement

«Requirement»

Network Nominal MET elements

tags

refLabel = IER-11.02.01-OSED-NET1.1001

refSource = MET-OSED part C (Network OUE) - update

refURL = 

reqType = Information exchange requirement

«Requirement»

TMA & En-route Nominal MET elements

tags

refLabel = IER-11.02.01-OSED-TER1.1001

refSource = MET-OSED part B (Sub-regional OUE) - update

refURL = 

reqType = Information exchange requirement

«Requirement»

Winds aloft: mean wind speed 

tags

refLabel = IER-06.05.04-OSED-MET2.0011

refSource = OFA 05.01.01 Operational Service and Environment Definition

refURL = 

reqType = Information exchange requirement

«Requirement»

Winds aloft: mean wind direction

tags

refLabel = IER-06.05.04-OSED-MET2.0012

refSource = OFA 05.01.01 Operational Service and Environment Definition

refURL = 

reqType = Information exchange requirement

«Requirement»

Probabilistic winds aloft forecast, wind speed

tags

refLabel = IER-06.05.04-OSED-MET2.0013

refSource = OFA 05.01.01 Operational Service and Environment Definition

refURL = 

reqType = Information exchange requirement

«Requirement»

Probabilistic winds aloft forecast, wind direction

tags

refLabel = IER-06.05.04-OSED-MET2.0014

refSource = OFA 05.01.01 Operational Service and Environment Definition

refURL = 

reqType = Information exchange requirement

«Satisfy»

«Satisfy»

«Satisfy»

«Satisfy»

«Satisfy» «Satisfy»

«Satisfy» «Satisfy»


image30.emf
class METGriddedForecast Interface Definition

«Pub/sub push»

METGriddedForecastSubscriber

«Sync req/rep»

METGriddedForecastProvider

«Service»

METGriddedForecast

«Pub/sub push»

METGriddedForecastSubscriber

«Sync req/rep»

METGriddedForecastProvider

«interface»

METGriddedForecastSubscriber

+ publishMETGriddedForecast(Coverage): void

«interface»

METGriddedForecastPublisher

+ subscribeToForecast(CoverageRequest): GetCoverageException

+ unsubscribeFromForecast(CoverageRequest): void

«interface»

METGriddedForecastProvider

+ describeCoverage(DescribeCoverageRequest): CoverageDescriptions

+ getCapabilities(CapabilityRequest): CoverageCapabilities

+ getCoverage(CoverageRequest): Coverage

«ServiceConsumer»

METGriddedForecastConsumer

Name: METGriddedForecast Interface Definition

Author: SVA005 Oliver Krueger

Version: 1.0

Created: 14.04.2016 00:00:00

Updated: 20.04.2016 00:00:00

«require»

«provide»

«provide»

«provide»

«require»

«require»


image31.emf
class METGriddedForecast Interface Parameter Definition Coverage

«DataEntity»

METGriddedForecastCoverage

+ coverageFunction: CharacterString

+ coverageID: Integer

+ metadata: CharacterString

«DataEntity»

METGriddedForecastDataRecord

+ clearAirTurbulence [0..1]

+ cumulonimbusCloudFlightLevelBase [0..1]

+ cumulonimbusCloudFlightLevelTop [0..1]

+ cumulonimbusCloudHorizontalExtend [0..1]

+ humidity [0..1]

+ icing [0..1]

+ inCloudTurbulence [0..1]

+ maxWindDirection [0..1]

+ maxWindLevel [0..1]

+ maxWindSpeed [0..1]

+ qnh [0..1]

+ temperature [0..1]

+ tropopauseLevel [0..1]

+ tropopauseTemperature [0..1]

+ windDirection [0..1]

+ windSpeed [0..1]

«DataEntity»

ForecastForLevel

+ flightLevel

«DataEntity»

ForecastForGridPoint

+ gridPointCoordinates

«DataEntity»

ForecastAtTimestep

+ validTime

«Message»

Coverage

«Message»

CoverageRequest

+ coverageID: Integer

+ extension: CharacterString

+ format: CharacterString

+ mediaType: CharacterString [0..1]

«Message»

RequestBase

+ request: CharacterString

+ service: CharacterString

+ version: CharacterString

«DataEntity»

DimensionSubset

+ dimension: GM_GriddedSurface

«DataEntity»

DimensionSlice

+ slicePoint [0..1]

«DataEntity»

DimensionTrim

+ trimHigh [0..1]

+ trimLow [0..1]

«Message»

GML::Feature

«DataEntity»

GML::DomainSet

«DataEntity»

SWE Common::

DataRecord

«DataEntity»

GML::

GridCoverage

«DataEntity»

RangeSet

«DataEntity»

GML::RangeSet

«DataEntity»

METGriddedForecastDomainSet

+ gridResolution: Real

+ issuer

+ issueTime

there is a one to one 

relationship between this 

entity items

«DataEntity»

GetCoverageException

+ getCoverageException: GetCoverageExceptionOptions

Name: METGriddedForecast Interface Parameter Definition Coverage

Author: SVA010 Oliver Krueger

Version: 1.0

Created: 15.04.2016 00:00:00

Updated: 18.04.2016 00:00:00

The response to a 

successful GetCoverage 

request is a coverage as 

per [OGC 09-146r2]. 

«enumeration»

GetCoverageExceptionOptions

Attributes

+ INVALID_AXIS_LABEL

+ INVALID_SUBSETTING

+ NO_SUCH_COVERAGE

+domainSet

1

+rangeSet 1

+timeStamp 1

+gridpointInView *

+dimensionSubset 1..

+getCoverageException

0..*

+flightLevelInView

*

+area 1

+rangeType *


image32.emf
class METGriddedForecast Interface Parameter Definition Coverage Capabilities

«DataEntity»

CoverageSubtypeParent

+ coverageType: CharacterString

«DataEntity»

OWS Common::

DatasetSummary

«Message»

CoverageCapabilities

«DataEntity»

OWS Common::

OWSContents

«Message»

CapabilityRequest

+ acceptFormats: CharacterString

+ acceptLanguages: CharacterString

+ acceptVersions: CharacterString

+ request: CharacterString

+ sections: Section

+ service: CharacterString

+ updateSequence: Real

«DataEntity»

CoverageSummary

+ coverageID: Integer

+ coverageSubtype: CharacterString

+ extensions: CharacterString

«DataEntity»

ServiceMetadata

+ formatSupported: CharacterString

«DataEntity»

Contents

not all details provided, 

for further details see 

OWS common [OGC09-

110r4, OGC06-121r9]

further details see [OGC 

06-121r9]

«Message»

OWS Common::

GetCapabilities

«DataEntity»

GetCapabilityException

+ getCapabilitesExceptions: GetCapabilityExceptionOptions

Name: METGriddedForecast Interface Parameter Definition Coverage Capabilities

Author: SVA010 Oliver Krueger

Version: 1.4

Created: 15.04.2016 00:00:00

Updated: 15.04.2016 00:00:00

«enumeration»

GetCapabilityExceptionOptions

Attributes

+ MISSING_PARAMETER_VALUE

+ INVALID_PARAMETER_VALUE

«enumeration»

Section

Attributes

+ SERVICE_PROVIDER

+ SERVICE_IDENTIFICATION

+ OPERATIONS_METADATA

+ CONTENTS

+ ALL

+getCapabilityExecption 0..1

+contents 0..1

+summary

0..*

+serviceMetadata 1

+coveragesubtypeParent 0..*


image33.emf
class METGriddedForecast Interface Parameter Definition Coverage Description

«Message»

CoverageDescriptions

«Message»

DescribeCoverageRequest

+ coverageID: Integer [1..*]

«Message»

RequestBase

+ request: CharacterString

+ service: CharacterString

+ version: CharacterString

«Message»

OWS Common::

OWSRequestBase

«DataEntity»

RequestExtension

+ any: CharacterString

«DataEntity»

ServiceParameters

+ coverageSubtype: CharacterString

+ coverageSubtypeParent: CharacterString

+ extension: CharacterString

+ nativeFormat: CharacterString

«DataEntity»

CoverageDescriptionExtension

+ any: CharacterString

«DataEntity»

GML::Feature

«DataEntity»

SWE Common::

DataRecord

«DataEntity»

DataRecord

+ rangeType: CharacterString

«DataEntity»

GML::DomainSet

«DataEntity»

DomainSet

«DataEntity»

CoverageDescription

+ coverageFunction: CharacterString

+ coverageID: Integer

DataRecord is defined in 

SWE Common 2.0 [OGC 

08-094]

«DataEntity»

DescribeCoverageException

+ exception: DescribeCoverageExceptionOptions

Name: METGriddedForecast Interface Parameter Definition Coverage Description

Author: SVA005 Oliver Krueger

Version: 1.0

Created: 15.04.2016 00:00:00

Updated: 18.04.2016 00:00:00

«enumeration»

DescribeCoverageExceptionOptions

Attributes

+ EMPTY_COVERAGE_IDLIST 

+ NO_SUCH_COVERAGE

+extends 0..1

+serviceParameter 1

«SubtypeRelationship»

+domainSet 1

+dataRecord 1

+coverageDescription

1..*

+describeCapabilityException

0..1

+requestExtension 0..1


image34.emf
sd METGriddedForecast Event Trace Description pub/sub

«ServiceConsumer»

METGriddedForecastConsumer

«Service»

METGriddedForecast

METGriddedForecastSubscriber

loop Data Publication

opt Unsubscription

unsubscribeFromForecast(CoverageRequest)

publishMETGriddedForecast(Coverage)

subscribeToForecast(CoverageRequest): GetCoverageException


image35.emf
sd METGriddedForecast Event Trace Description req/reply

Name: METGriddedForecast Event Trace Description req/reply

Author: SVA005 Oliver Krueger

Version: 1.0

Created: 15.04.2016 00:00:00

Updated: 19.04.2016 00:00:00

«Service»

METGriddedForecast

«ServiceConsumer»

METGriddedForecastConsumer

MgfProvider

alt 

alt 

alt 

describeCoverage(DescribeCoverageRequest): CoverageDescriptions

getCapabilities(CapabilityRequest): CoverageCapabilities

getCoverage(CoverageRequest): Coverage


image36.JPG
> (£ Document Generation
> (2] Linked Document Templates
2] MDG Technologies

Mo Prories I |
23 Favorites P " import tecnnalogy

23 Stylesheets
53 UMLprofies
53 UM pattems





image37.JPG
o

Copy Technology to Application Data =]

o =

Technology: Version:

Notes:

Import To Model
Import To User





image38.png
Copy Technology to.

Fiename:  C:ISRM\Software\SWIM logica service\SWIM logicalserviee [
Technology:  SWIM logicalservice: Verson: 1,00
Notes: Thisis 2 profle created in oderto enable the crestion of the SWIN|

logical service proie require. This s version 1.00

Import To Model

LRats o] o J [k ]





image39.JPG
Copy Technology to Application Data. .

Flename:  C:\SESAR_8.3_ISRM\unk\Software\ISRM-EAMDGNbrary fi [

Technology:

B2

Enterprise Architect

Notes:

e ——)

Import To Model
Import To User





image40.png
Disgram Types:

3 Dota Flow Disrams

[ Entity Relationship Diagram
B3] Erksson-Penker Extensions
S

=< Mind Mapping

[SEcl]

(5 oom

[#] sovF 2.1

(o) spem

&

T2 Requrements Tracesbity
2 Inteface Defriton

5 Event Trace Descrpton

3 Inteface Parameter Defriton





image41.png
|
i

oy ol e uT o

AsyncReaRep Port
Oneway Port
Provide
PubsubPull Port
PubSubPush Port
Require

Senvice
SyncReaRep Port
Interface

Senvice consumer

Moretooks.




image42.png
N B N 0 @

Datakntity
Message
Composition
Enumeration
Generalization




image43.png
Mo tols.
5 Event Tace Description
E2 Fragment
> Message
£ service consumer




image44.png
Wore tooks.
=1 Requirements Traceability

= Requirement

A satisty.




image45.png




image46.png
=S TR GTE PRt THEEETE
4 483 NSOV views snd elements
» 8 Common
4 483 Senvice specific
4 483 Designed Senvices
ot

Extensions

Autoverity saipts.

& Properties
Package Control

Package Browser





image47.emf
Business Process AutoVerify - CSV file upload process

Name: AutoVerify - CSV file upload process

Author: cabsl

Version: 1.0

Created: 09.08.2013 00:00:00

Updated: 09.08.2013 00:00:00

User selects Autoverify

from the Project Browser

menu

«BusinessProcess»

Create CSV files

«BusinessProcess»

Create CSV files

Loop over all elements below selected

element

For each element, loop over all

relevant rules

Run "check" on the

element for each rule

Create CSV file from

data gathered during

rule checks

CSV file

«BusinessProcess»

Create Excel files

«BusinessProcess»

Create Excel files

Excel files

Done

Upload CSV file to

web site, click

"Submit"

Download ZIP and/or

Excel files

System runs script to

create Excel files,

redirects user to

download site


image28.png
Avenue de Cortenbergh 100 | 8 -1000 Bruxelles
wiww.sesarju.eu





