

# SESARSolution115SPR/INTEROP-OSEDV3-PartV-PerformanceAssessment Report (PAR)

| D3.1.040                | PU                                           |
|-------------------------|----------------------------------------------|
| Project Acronym:        | ERICA                                        |
| Grant:                  | 874474                                       |
| Call:                   | H2020-SESAR-2019-1                           |
| Topic:                  | ENABLE RPAS INSERTION IN CONTROLLED AIRSPACE |
| Topic.                  | (RPAS Accommodation)                         |
| Consortium coordinator: | LEONARDO                                     |
| Edition date:           | 22 December 2022                             |
| Edition:                | 01.00.02                                     |
| Template Edition:       | 00.00.09                                     |
|                         |                                              |



Co-funded by the European Union

**EUROPEAN PARTNERSHIP** 



#### Authoring & Approval

| Authors of the document |            |  |
|-------------------------|------------|--|
| Beneficiary             | Date       |  |
| Thales-AVS              | 20/09/2020 |  |

#### **Reviewers internal to the project**

| Beneficiary        | Date       |
|--------------------|------------|
| S115 OSED partners | 20/09/2022 |

#### **Reviewers external to the project**

| Beneficiary | Date |
|-------------|------|
| NA          | /    |

# Approved for submission to the S3JU By - Representatives of all beneficiaries involved in the project

| Beneficiary        | Date       |
|--------------------|------------|
| S115 OSED partners | 10/10/2022 |

#### Rejected By - Representatives of beneficiaries involved in the project

| Beneficiary | Date |
|-------------|------|
|-------------|------|

#### **Document History**

| Edition  | Date       | Status        | Beneficiary | Justification                                                         |
|----------|------------|---------------|-------------|-----------------------------------------------------------------------|
| 00.01.00 | 22/04/2021 | Accepted      | Thales-AVS  | Intermediate Performance Assessment<br>(PAGAR campaign 2021)          |
| 00.01.01 | 20/09/2022 | Draft Final   | Thales-AVS  | Final Performance Assessment (PAR) for review                         |
| 01.00.00 | 10/10/2022 | Final         | Thales-AVS  | Final Performance Assessment (PAR) delivered                          |
| 01.00.01 | 14/11/2022 | Final updated | Thales-AVS  | Final Performance Assessment (PAR)<br>after PJ19 Performance feedback |
| 01.00.02 | 22/12/2022 | Final releasd | Thales-AVS  | Minor text formatting for release                                     |

**Copyright Statement** © 2022 – PJ13 ERICA- Solution 115 OSED Partners. All rights reserved. Licensed to SESAR3 Joint Undertaking under conditions.



# **ERICA**

#### ENABLE RPAS INSERTION IN CONTROLLED AIRSPACE (RPAS ACCOMMODATION)

This Performance Assessment Report (PAR) of the is part of a project that has received funding from the SESAR3 Joint Undertaking under grant agreement No 874474 under European Union's Horizon 2020 research and innovation programme.



#### Abstract

This Performance Assessment Report (PAR) provides the outcomes of the key performance indicators of SESAR Project PJ.13 W2 ERICA, Solution 115 (PJ.13-W2-115) – Accommodation of IFR RPAS as General Air Traffic (GAT) in controlled airspace.

As a reminder, the solution's objective is to improve accessibility of existing/initial Medium Altitude Long Endurance Remotely Piloted Aircraft System (MALE RPAS) to access and fly transit routes in controlled class A-C airspace as General Air Traffic (GAT) under Instrument Flight Rules (IFR) with no segregation and no technical change to the ATM systems. The target is met, the **ATC controller can manage the MALE RPAS transit flight as just another IFR flight with neutral impacts on safety (SAF) and on human performance (HP)**.

No other Key Performance Areas are allocated to the solution, thus no specific Key Performance Indicators (KPI) are established. However, the solutions' cost benefit mechanism also provides **positive impacts (benefits)** on the following :

- RPAS airspace user accessibility
  - o reduced planning lead-time to "file and fly"
  - regular routine RPAS GAT flight access to the whole IFR airspace

#### • Equity is ensured to all airspace users, RPAS included

The results reported are summarized from the validation results and expert workshops.



#### **Table of Contents**

|   | Abstra | ct                                                                        | 3   |  |  |
|---|--------|---------------------------------------------------------------------------|-----|--|--|
| 1 | Ехес   | cutive Summary                                                            | . 8 |  |  |
| 2 | Intro  | oduction                                                                  |     |  |  |
|   | 2.1    | Purpose of the document                                                   | 13  |  |  |
|   | 2.2    | Intended readership                                                       | 13  |  |  |
|   | 2.3    | Inputs from other projects                                                | 13  |  |  |
|   | 2.4    | Glossary of terms                                                         | 14  |  |  |
|   | 2.5    | Acronyms and Terminology                                                  | 20  |  |  |
| 3 | Solu   | tion Scope                                                                | 28  |  |  |
|   | 3.1    | Detailed Description of the Solution                                      | 28  |  |  |
|   | 3.2    | Detailed Description of relationship with other Solutions                 |     |  |  |
| 4 |        | tion Performance Assessment                                               |     |  |  |
| - |        | Assessment Sources and Summary of Validation Exercise Performance Results |     |  |  |
|   |        |                                                                           |     |  |  |
|   | 4.2    | Conditions / Assumptions for Applicability                                |     |  |  |
|   |        | Safety                                                                    |     |  |  |
|   | 4.3.1  |                                                                           |     |  |  |
|   | 4.3.2  |                                                                           |     |  |  |
|   | 4.3.3  |                                                                           |     |  |  |
|   | 4.3.4  |                                                                           |     |  |  |
|   | 4.3.5  | Additional Comments and Notes                                             | 30  |  |  |
|   | 4.4    | Environment: Fuel Efficiency / CO2 emissions                              | 37  |  |  |
|   | 4.4.1  |                                                                           |     |  |  |
|   | 4.4.2  | Assessment Data (Exercises and Expectations)                              | 37  |  |  |
|   | 4.4.3  |                                                                           |     |  |  |
|   | 4.4.4  |                                                                           |     |  |  |
|   | 4.4.5  | Additional Comments and Notes                                             | 37  |  |  |
|   | 4.5    | Environment / Emissions, Noise and Local Air Quality                      | 38  |  |  |
|   | 4.5.1  | Performance Mechanism                                                     | 38  |  |  |
|   | 4.5.2  | Assessment Data (Exercises and Expectations)                              | 38  |  |  |
|   | 4.5.3  |                                                                           |     |  |  |
|   | 4.5.4  |                                                                           |     |  |  |
|   | 4.5.5  | Additional Comments and Notes                                             | 38  |  |  |
|   | 4.6    | Airspace Capacity (Throughput / Airspace Volume & Time)                   |     |  |  |
|   | 4.6.1  |                                                                           |     |  |  |
|   | 4.6.2  |                                                                           |     |  |  |
|   | 4.6.3  |                                                                           |     |  |  |
|   | 4.6.4  |                                                                           |     |  |  |
|   | 4.6.5  |                                                                           |     |  |  |
|   | 4.7    | Airport Capacity (Runway Throughput Flights/Hour)                         | 39  |  |  |



| 4.7.1  | Performance Mechanism                                          |    |
|--------|----------------------------------------------------------------|----|
| 4.7.2  | Assessment Data (Exercises and Expectations)                   |    |
| 4.7.3  | Extrapolation to ECAC wide                                     |    |
| 4.7.4  | Discussion of Assessment Result                                |    |
| 4.7.5  | Additional Comments and Notes                                  | 39 |
| 4.8 R  | esilience (% Loss of Airport & Airspace Capacity Avoided)      | 40 |
| 4.8.1  | Performance Mechanism                                          |    |
| 4.8.2  | Assessment Data (Exercises and Expectations)                   | 40 |
| 4.8.3  | Extrapolation to ECAC wide                                     |    |
| 4.8.4  | Discussion of Assessment Result                                |    |
| 4.8.5  | Additional Comments and Notes                                  |    |
| 4.9 F  | light Times                                                    | 41 |
| 4.9.1  | Performance Mechanism                                          |    |
| 4.9.2  | Assessment Data (Exercises and Expectations)                   |    |
| 4.9.2  | Extrapolation to ECAC wide                                     |    |
| 4.9.3  | Discussion of Assessment Result                                |    |
| 4.9.4  | Additional Comments and Notes                                  |    |
|        |                                                                |    |
| 4.10 P | redictability                                                  |    |
| 4.10.1 | Performance Mechanism                                          |    |
| 4.10.2 | Assessment Data (Exercises and Expectations)                   |    |
| 4.10.3 | Extrapolation to ECAC wide                                     |    |
| 4.10.4 | Discussion of Assessment Result                                |    |
| 4.10.5 | Additional Comments and Notes                                  | 42 |
| 4.11 P | unctuality                                                     | 43 |
| 4.11.1 | Performance Mechanism                                          | 43 |
| 4.11.2 | Assessment Data (Exercises and Expectations)                   | 43 |
| 4.11.3 | Extrapolation to ECAC wide                                     |    |
| 4.11.4 | Discussion of Assessment Result                                |    |
| 4.11.5 | Additional Comments and Notes                                  |    |
| 4.12   | ivil-Military Cooperation and Coordination (Distance and Fuel) | лл |
| 4.12.1 | Performance Mechanism                                          |    |
| 4.12.2 | Assessment Data (Exercises and Expectations)                   |    |
| 4.12.3 | Extrapolation to ECAC wide                                     |    |
| 4.12.4 |                                                                |    |
| 4.12.5 | Additional Comments and Notes                                  |    |
|        |                                                                |    |
|        | lexibility                                                     |    |
| 4.13.1 | Performance Mechanism                                          |    |
| 4.13.2 | Assessment Data (Exercises and Expectations)                   |    |
| 4.13.3 | Extrapolation to ECAC wide                                     |    |
| 4.13.4 | Discussion of Assessment Result                                |    |
| 4.13.5 | Additional Comments and Notes                                  | 45 |
| 4.14 C | ost Efficiency                                                 | 46 |
| 4.14.1 | Performance Mechanism                                          | 46 |
| 4.14.2 | Assessment Data (Exercises and Expectations)                   | 46 |
| 4.14.3 | Extrapolation to ECAC wide                                     |    |
| 4.14.4 | Discussion of Assessment Result                                | 46 |
| 4.14.5 | Additional Comments and Notes                                  | 46 |
| 4.15 A | irspace User Cost Efficiency                                   | 47 |
| 4.15.1 | Performance Mechanism                                          |    |
|        |                                                                |    |



| 4.15.2<br>4.15.3 | Assessment Data (Exercises and Expectations)<br>Extrapolation to ECAC wide | 47 |
|------------------|----------------------------------------------------------------------------|----|
| 4.15.4           | Discussion of Assessment Result                                            |    |
| 4.15.5           | Additional Comments and Notes                                              |    |
| 4.16 Sec         | curity                                                                     | 48 |
| 4.16.1           | The SecRAM 2.0 methodology and the Security Performance Mechanism          |    |
| 4.16.2           | Security Assessment Data Collection                                        |    |
| 4.16.3           | Extrapolation to ECAC wide                                                 |    |
| 4.16.4           | Discussion of Assessment Result                                            |    |
| 4.16.5           | Additional Comments and Notes                                              |    |
| 4.17 Hu          | man Performance                                                            | 49 |
| 4.17.1           | HP arguments, activities and metrics                                       |    |
| 4.17.2           | Extrapolation to ECAC wide                                                 |    |
| 4.17.3           | Open HP issues/ recommendations and requirements                           | 53 |
| 4.17.4           | Concept interaction                                                        |    |
| 4.17.5           | Most important HP issues                                                   |    |
| 4.17.6           | Additional Comments and Notes                                              | 55 |
| 4.18 Otl         | her PIs                                                                    | 56 |
| 4.18.1           | Performance Mechanism                                                      |    |
| 4.18.2           | Assessment Data (Exercises and Expectations)                               |    |
| 4.18.3           | Additional Comments and Notes                                              |    |
| <b>4.19</b> Ga   | p Analysis                                                                 | 57 |
| 5 Referer        | nces                                                                       | 58 |
| Appendix A       | Detailed Description and Issues of the OI Steps                            | 60 |

#### **List of Tables**

| Table 1: KPI Assessment Results Summary    9                                    |
|---------------------------------------------------------------------------------|
| Table 2 Mandatory PIs Assessment Summary    12                                  |
| Table 4: Glossary                                                               |
| Table 3: Acronyms and terminology                                               |
| Table 5: Relationships with other Solutions                                     |
| Table 6: SESAR2020 Validation Exercises    30                                   |
| Table 7: Summary of Validation Results                                          |
| Table 8: Applicable Operating Environments                                      |
| Table 13. SRD (functionality & performance) to mitigate the operational hazards |
| Table 9: HP arguments, activities and metrics    52                             |
| Table 10: Open HP issues/ recommendations and requirements                      |
| Table 11: Most important HP issues                                              |
| Page I 6                                                                        |



| Table 13: Gap analysis Summary               | 57 |
|----------------------------------------------|----|
| Table 14: OI Steps allocated to the Solution | 60 |

#### List of Figures



# **1 Executive Summary**

This document provides the Performance Assessment Report (PAR) for SESAR PJ13 (ERICA) Solution 115. The Performance Assessment Report (PAR) consolidates Solution 115 performance validation results addressing KPAs, KPIs/PIs and metrics from the SESAR2020 Performance Framework [3].

#### **Solution Description:**

SESAR PJ13 (ERICA) Solution 115 is a V3 solution in the existing European Air Traffic Management (ATM). It accommodates existing/initial Medium Altitude Long Endurance Remotely Piloted Aircraft System (MALE RPAS) flying under Instrument flight rules (IFR), as a general air traffic (GAT) non-segregated amongst other manned controlled traffic in controlled airspace classes A to C.

Solution 115 improves the situation of MALE RPAS transit flight operations, which previously required lengthy preparation and required segregation mechanisms and operations for flight. The improvement, through the RPAS Accommodation concept, is that the RPAS user can now rapidly file a GAT IFR flight plan and access airspace for transit flights in shared civil controlled airspace, amongst all other traffic.

#### Assessment Results Summary:

The following tables summarises the assessment outcomes per KPI (Table 1) and mandatory PI (Table 2) puts them side-by side against Validation Targets in case of KPI from PJ19 [7]. The impact of a Solution on the performances are described in Benefit Impact Mechanism.



| КРІ                                                                                                  | Validation Targets<br>– Network Level<br>(ECAC Wide) | Performance Benefits at<br>Network Level (ECAC Wide or<br>Local depending on the KPI) <sup>1</sup> | Confidence<br>in Results <sup>2</sup> |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------|
| <b>SAF1:</b> Safety - Total number of estimated accidents with ATM Contribution per year             | Safety Neutral                                       | Safety Neutral                                                                                     | High                                  |
| FEFF1: Fuel Efficiency - Actual average fuel burn per flight                                         | NA                                                   |                                                                                                    |                                       |
| CAP1: TMA Airspace Capacity -<br>TMA throughput, in challenging<br>airspace, per unit time.          | NA                                                   |                                                                                                    |                                       |
| CAP2: En-Route Airspace<br>Capacity - En-route throughput, in<br>challenging airspace, per unit time | NA                                                   |                                                                                                    |                                       |
| CAP3: Airport Capacity – Peak<br>Runway Throughput<br>(Mixed mode).                                  | NA                                                   |                                                                                                    |                                       |
| TEFF1: Gate-to-gate flight time                                                                      | NA                                                   |                                                                                                    |                                       |
| PRD1: Predictability —<br>Average of Difference in actual & Flight<br>Plan or RBT durations          | NA                                                   |                                                                                                    |                                       |
| PUN1: Punctuality –<br>Average departure delay per flight                                            | NA                                                   |                                                                                                    |                                       |
| CEF2: ATCO Productivity –<br>Flights per ATCO -Hour on duty                                          | NA                                                   |                                                                                                    |                                       |
| CEF3: Technology Cost – Cost<br>per flight                                                           | NA                                                   |                                                                                                    |                                       |

Table 1: KPI Assessment Results Summary

<sup>1</sup> Negative impacts are indicated in red.

<sup>2</sup> High the results might change by +/-10% \_ change might the Medium +/-25% results by the results by +/-50% Low might change or greater \_ N/A – not applicable, i.e., the KPI cannot be influenced by the Solution



| Mandatory PI                                                               | PerformanceBenefitsExpectations atNetworkLevel (ECAC Wide or Localdepending on the KPI) <sup>3</sup> | Confidence in<br>Results <sup>4</sup> |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------|
| SAF1.X: Mid-air collision - En-Route                                       | Safety Neutral - Closed                                                                              |                                       |
| SAF2.X: Mid-air collision - TMA                                            | NA                                                                                                   |                                       |
| SAF3.X: RWY-collision accident                                             | NA                                                                                                   |                                       |
| SAF4.X: TWY-collision accident                                             | NA                                                                                                   |                                       |
| SAF5.X: CFIT accident                                                      | NA                                                                                                   |                                       |
| SAF6.X: Wake related accident                                              | NA                                                                                                   |                                       |
| SAF7.X: RWY-excursion accident                                             | NA                                                                                                   |                                       |
| SAF8.X: Other SAF Risks                                                    | NA                                                                                                   |                                       |
| SEC1: A security risk assessment has been carried out                      | NA                                                                                                   |                                       |
| SEC2: Risk Treatment has been carried out                                  | NA                                                                                                   |                                       |
| SEC3: Residual risk after treatment meets security objective.              | NA                                                                                                   |                                       |
| ENV1: Actual Average CO2 Emission per flight                               | NA                                                                                                   |                                       |
| NOI1: Relative noise scale                                                 | NA                                                                                                   |                                       |
| NOI2: Size and location of noise contours                                  | NA                                                                                                   |                                       |
| NOI4: Number of people exposed to noise levels exceeding a given threshold | NA                                                                                                   |                                       |
| LAQ1: Geographic distribution of pollutant concentrations                  | NA                                                                                                   |                                       |
| CAP3.1: Peak Departure throughput per hour (Segregated mode)               | NA                                                                                                   |                                       |
| CAP3.2: Peak Arrival throughput per hour (segregated mode)                 | NA                                                                                                   |                                       |
| CAP4: Un-accommodated traffic reduction                                    | NA                                                                                                   |                                       |

<sup>3</sup> Negative impacts are indicated in red.

the might chan₅~ ∵-∿+ change +/-5 4 might High results change by +/-10% the the e : \_ Medium +/-25% results by results change by +/-50% Low – might or greater N/A – not applicable, i.e., the KPI cannot be influenced by the Solution



| RES1: Loss of Airport Capacity Avoided                                                                                 | NA |
|------------------------------------------------------------------------------------------------------------------------|----|
| RES1.1: Airport time to recover from non-<br>nominal to nominal condition                                              | NA |
| RES2: Loss of Airspace Capacity Avoided.                                                                               | NA |
| RES2.1: Airspace time to recover from non-<br>nominal to nominal condition.                                            | NA |
| RES4: Minutes of delays.                                                                                               | NA |
| RES5: Number of cancellations.                                                                                         | NA |
| TEFF2: Taxi in time                                                                                                    | NA |
| TEFF3: Taxi out time                                                                                                   | NA |
| TEFF4: TMA arrival time                                                                                                | NA |
| TEFF5: TMA departure time                                                                                              | NA |
| TEFF6: En-Route time                                                                                                   | NA |
| PRD2: Variance of Difference in actual & Flight Plan or RBT durations                                                  | NA |
| PUN2: % Flights departing within +/- 3 minutes of scheduled departure time due to ATM and weather related delay causes | NA |
| CEF1: Direct ANS Gate-to-gate cost per flight                                                                          | NA |
| AUC3: Direct operating costs for an airspace user                                                                      | NA |
| AUC4: Indirect operating costs for an airspace user                                                                    | NA |
| AUC5: Overhead costs for an airspace user                                                                              | NA |
| CMC1.1: Allocated vs. Requested ARES duration                                                                          | NA |
| CMC1.2: Allocated vs. Requested ARES dimension                                                                         | NA |
| CMC1.3: Deviation of Transit Time to/from airbase to ARES                                                              | NA |
| CMC 1.3.1: Allocated ARES duration vs. total mission duration                                                          | NA |
| CMC 1.3.2: Deviation of total mission duration by iOAT FPL validation                                                  | NA |
| CMC 1.4.1: Rate of iOAT FPLs acceptance by NM systems                                                                  | NA |
| CMC 1.4.2: Rate of iOAT FPLs acceptance by ATC systems                                                                 | NA |



| CMC2.1: Fuel and Distance saved by GAT                                                                                     | NA                                    |      |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|
| HP1: Consistency of human role with respect to human capabilities and limitations                                          | Closed,<br>except Emergency (Partial) | High |
| HP2: Suitability of technical system in supporting the tasks of human actors                                               | Closed                                | High |
| HP3: Adequacy of team structure and team communication in supporting the human actors                                      | Closed                                | High |
| HP4: Feasibility with regard to HP-related transition factors                                                              | Closed                                | High |
| FLX1: Average delay for scheduled civil/military flights with change request and non-scheduled or late flight plan request | NA                                    |      |

Table 2 Mandatory PIs Assessment Summary



# **2** Introduction

The opinions expressed herein reflect the author's view only. Under no circumstances shall the SESAR3 Joint Undertaking be responsible for any use that may be made of the information contained herein.

#### **2.1** Purpose of the document

The Performance Assessment covers the Key Performance Areas (KPAs) defined in the SESAR2020 Performance Framework [3]. Assessed are at least the Key Performance Indicators (KPIs) and the mandatory Performance Indicators (PIs), but also additional PIs as needed to capture the performance impacts of the Solution. It considers the guidance document on KPIs/PIs [3] for practical considerations, for example on metrics.

The purpose of this document is to present the performance assessment results from the validation exercises at SESAR Solution level. The KPA performance results are used for the performance assessment at strategy level and provide inputs to the SESAR3 Joint Undertaking (S3JU) for decisions on the SESAR2020 Programme.

In addition to the results, this document presents the assumptions and mechanisms (how the validation exercises results have been consolidated) used to achieve this performance assessment result.

One Performance Assessment Report shall be produced or iterated per Solution.

#### 2.2 Intended readership

In general, this document provides the ATM stakeholders (e.g. airspace users, ANSPs, airports, airspace industry) and S3JU performance data for the Solution addressed.

Produced by the Solution project, the main recipient in the SESAR performance management process is PJ19, which will aggregate all the performance assessment results from the SESAR2020 solution projects PJ1-18, and provide the data to PJ20 for considering the performance data for the European ATM Master Plan. The aggregation will be done at higher levels suitable for use at Master Planning Level, such as deployment scenarios.

#### **2.3** Inputs from other projects

The document includes information from the following SESAR 2020 Wave1 projects:

- PAGAR 2019: Performance Assessment and Gap Analysis Report (2019), where are collected the final benefits from SESAR 2020 Wave1.

PJ19 will manage and provide:

- SESAR Performance Framework (2019) [3], guidance on KPIs and Data collection supports.
- S2020 Common Assumptions, used to aggregate results obtained during validation exercises (and captured into validation reports) into KPIs at the ECAC level, which will in turn be captured in Performance Assessment Reports and used as inputs to the CBAs produced by



the Solution projects. Where are also included performance aggregation assumptions, with traffic data items.

- For guidance and support PJ19 have put in place the Community of Practice (CoP)<sup>5</sup> within STELLAR, gathering experts and providing best practices.

#### 2.4 Glossary of terms

See the AIRM Glossary [5] for a comprehensive glossary of terms.

The following is a list of the concepts, terms or definitions introduced or commonly referred to in this document.

| Term                                              | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Source                        |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Airport Capacity<br>Focus Area                    | Capture the peak runway throughput in the most challenging (or constrained) environments at busy hours, i.e. the capacity at a "maximum observed throughput" airport.                                                                                                                                                                                                                                                                                                                                                                                                                      | PAGAR                         |
| Airspace<br>Capacity Focus<br>Area                | Capture the capability of a challenging volume of airspace to handle<br>an increasing number of movements per unit time – through<br>changes to the operational concept and technology.                                                                                                                                                                                                                                                                                                                                                                                                    | PAGAR                         |
| Airspace<br>Reservation/<br>Restriction<br>(ARES) | Airspace Reservation means a defined volume of airspace<br>temporarily reserved for exclusive or specific use by categories of<br>users (Temporary Segregated Area (TSA), Temporary Reserved Area<br>(TRA), and Cross-Border Area (CBA)) wheras Airspace Restriction<br>designates Danger, Restricted and Prohibited Areas.                                                                                                                                                                                                                                                                | EC Regulation No<br>2150/2005 |
| Airspace User<br>Cost-Efficiency<br>Focus Area    | Cost-Efficiency obtained by Airspace Users other than direct gate-to-<br>gate ATS costs (CEF1) or AU cost improvements assessed through<br>other KPIs: Fuel Efficiency, Punctuality, etc.<br>Note: Benefits assessed through other KPIs should not be included in<br>this focus area to avoid double counting of benefits. AU Cost-<br>Efficiency includes reduction of direct (AUC3) and indirect (AUC4)<br>operational costs of the AU, as well as overhead costs (AUC5). In<br>addition there are two specific PIs, Strategic Delay (AUC1) and<br>Sequence Optimisation Benefit (AUC2). | PAGAR                         |
| ARES Capacity                                     | The ability of an ATM system to accommodate specific training<br>events which require airspace reservations and/or restrictions<br>during a specific period of time, taking into account the duration of<br>the training events, ATM inefficiency, planning inefficiency and<br>weather impact on training and operations.                                                                                                                                                                                                                                                                 | Performance<br>Framework 2017 |

<sup>5</sup> Go to "Advanced Portfolio Manager" on the left navigation menu, and select "<u>Coordination Group – ATM Performance</u> <u>Assessment (APA)</u>" in STELLAR



| Term                                              | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Source                                                                       |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| ATM Master<br>Plan                                | The European ATM Master Plan is the agreed roadmap to bring ATM R&I to the deployment phase, introducing the agreed vision for the future European ATM system. It provides the main direction and principles for SESAR R&I, as well as the deployment planning and an implementation view with agreed deployment objectives. Through the SESAR Key Features, the ATM Master Plan identifies the Essential Operational Changes (both Essential Operational Changes featured in the Pilot Common Project and New Essential Operational Changes) and key R&I activities that support the identified performance ambition. The ATM Master Plan is updated on a regular basis in collaboration and consultation with the entire ATM community. Amendments are submitted to the S3JU Administrative Board for adoption. The content of the European ATM Master Plan is structured in three levels (Level 1 – Executive View, Level 2 – Planning and Architecture View, and Level 3 – Implementation View) to allow stakeholders to access the information at the level of detail that is most relevant to their area of interest. The intended readership for Level 1 is executive-level stakeholders. Levels 2 and 3 of the ATM Master Plan provide more detail on the operational changes and related elements and therefore the target audience is expert-level stakeholders. | SESAR2020 Project<br>Handbook,<br>European ATM<br>Master Plan (9<br>Edition) |
| Civil-military<br>coordination<br>and cooperation | The coordination between the civil and military parties authorised to make decisions and agree a course of action.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Performance<br>Framework 2017                                                |
| Cost-Benefit<br>Analysis                          | A Cost-Benefit Analysis is a process for quantifying in economic terms the costs and benefits of a project or a programme over a certain period, and those of its alternatives (within the same period), in order to have a single scale of comparison for unbiased evaluation.<br>This process helps decision-makers to compare an investment with other possible investments and/or to make a choice between different options / scenarios and to select the one that offers the best value for money while considering all the key criteria affecting the decision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PAGAR                                                                        |
| Deployment<br>Scenario                            | Set of SESAR Solutions selected to satisfy the specific Performance<br>Needs of operating environments in the European ATM System and<br>based on the timescales in which their performance contribution is<br>needed in the respective operating environments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PAGAR                                                                        |
| Flexibility KPA                                   | The ability of the ATM System and airports to respond to changes in planned flights and missions.<br>It covers late trajectory modification requests as well as ATFCM measures and departure slot swapping and it is applicable to military and civil airspace users covering both scheduled and unscheduled flights. In terms of specific military requirements, it also covers the ability of the ATM System to address military requirements related to the use of airspace and reaction to short-notice changes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Performance<br>Framework 2017                                                |



| Term                                      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                             | Source        |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Focus Area                                | Within each KPA, a number of more specific "Focus Areas" are<br>identified in which there are potential intentions to establish<br>performance management. Focus Areas are typically needed where<br>performance issues have been identified.                                                                                                                                                                                                          | ICAO Doc 9883 |
| Fuel Efficiency<br>Focus Area             | The SESAR performance Focus Area concerned with fuel efficiency.<br>How much fuel is used by aviation or by extension "Fuel efficiency"<br>(how much fuel can be saved?) is one of the performance aspects.<br>Note: Policy places considerable focus on this. Fuel efficiency<br>contributes to 3 of the 11 KPAs defined by ICAO: Cost-efficiency,<br>Efficiency, and Environment.                                                                    | PAGAR         |
| Gap Analysis                              | <ul> <li>Difference between the validation targets and the performance assessment.</li> <li>It is used to: <ol> <li>Anticipate any deviation from the design performance targets;</li> <li>Identify the underlying reasons;</li> <li>Derive the appropriate recommendations to be taken on board to redirect the R&amp;D activities within the Programme towards the ultimate achievement of SESAR2020's performance ambitions.</li> </ol> </li> </ul> | PAGAR         |
| G2G ANS Cost-<br>Efficiency Focus<br>Area | One of the SESAR performance Focus Areas concerned with Cost<br>Efficiency.Performance<br>Performance<br>Framework neDirect G2G ANS costs are those costs that are charged to Airspace<br>Users via unit rates, including ATM/CNS costs, regulatory costs, Met<br>costs and EUROCONTROL Agency costs.Performance<br>Performance<br>Framework ne                                                                                                        |               |
| Human<br>Performance<br>(HP)              | Human capabilities and limitations which have an impact on the safety, security and efficiency of aeronautical operations.                                                                                                                                                                                                                                                                                                                             |               |
| Key<br>Performance<br>Area                | A way of categorising performance subjects related to high level<br>ambitions and expectations. ICAO Global ATM Concept sets out<br>these expectations in general terms for each of the 11 ICAO defined<br>KPAs.                                                                                                                                                                                                                                       |               |



| Term                               | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Source                                    |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Key<br>Performance<br>Indicator    | Current/past performance, expected future performance (estimated<br>as part of forecasting and performance modelling), as well as actual<br>progress in achieving performance objectives is quantitatively<br>expressed by means of indicators (sometimes called Key<br>Performance Indicators, or KPIs). To be relevant, indicators need to<br>correctly express the intention of the associated performance<br>objective. Since indicators support objectives, they should not be<br>defined without having a specific performance objective in mind.<br>Indicators are not often directly measured. They are calculated from<br>supporting metrics according to clearly defined formulas, e.g. cost-<br>per-flight-indicator = Sum (cost)/Sum (flights). Performance<br>measurement is therefore carried out through the collection of data<br>for the supporting metrics."<br>In SESAR2020 Performance Framework, Key Performance Indicators<br>are those that have a validation target associated derived from the<br>corresponding Performance Ambition. | ICAO Doc 9883<br>Performance<br>Framework |
| Local Air Quality<br>Focus Area    | One of the SESAR performance Focus Areas concerned with<br>Environment.<br>Local air quality is a term commonly used to designate the state of<br>the ambient air to which humans and the ecosystem are typically<br>exposed at a specific location. In the case of aviation, local air quality<br>studies are generally conducted near airports.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PAGAR                                     |
| Noise Focus<br>Area                | One of the SESAR performance Focus Areas concerned with<br>Environment.<br>The term Noise is used in this document to designate noise<br>pollution, which is defined as unwanted sound. The impact of<br>unwanted sounds on the recipients (in this case, people living<br>around airports) causes adverse effects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PAGAR                                     |
| Operational<br>Environment<br>(OE) | An environment with a consistent type of flight operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EUROCONTROL<br>ATM Lexicon                |
| Performance<br>Ambitions           | Performance capability that may be achieved if SESAR Solutions are made available through R&D activities, deployed in a timely and, when needed, synchronised way and used to their full potential.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EUROCONTROL<br>ATM Lexicon                |
| Performance<br>assessment          | This term relates to the quantitative estimate of the potential performance benefit of an operational improvement based on outputs from validation projects, collected and analysed by PJ19.04.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ICAO Doc 9883<br>updated in PAGAR         |



| Term                         | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Source                           |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Performance<br>Framework     | <ol> <li>The overall performance-driven development approach that is<br/>applied within the SESAR development programme to ensure that<br/>the programme develops the operational concept and technology<br/>needed to meet long-term performance expectations.</li> <li>The set of definitions and terminology describing the building<br/>blocks used by a group of ATM community members to collaborate<br/>on performance management activities.</li> <li>This set of definitions includes the levels in the global ATM<br/>performance hierarchy, the eleven , a set of process capability areas,<br/>focus areas, performance objectives, indicators, targets, , lists of<br/>dimension objects, their aggregation hierarchies and .</li> </ol> | EUROCONTROL<br>ATM Lexicon       |
| Performance<br>Indicator     | PIs are defined in the SESAR performance framework and relate to<br>performance benefits in specific KPAs. However, no validation<br>targets are assigned to PIs. SESAR Solutions projects use the results<br>of validation exercises to report performance assessment in terms of<br>the PIs, reporting the expected positive and negative impacts.<br>Certain PIs are mandatory for measurement and reporting by<br>Solution projects.                                                                                                                                                                                                                                                                                                              | SESAR2020 Project<br>Handbook    |
| Performance<br>metrics       | Sometimes proxies may be used in a validation exercise when it is<br>not possible to measure an impact directly using the specified KPIs<br>and PIs. In these cases, other metrics may be used provided the<br>solution project later converts the results into the reporting KPIs and<br>PIs.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SESAR2020 Project<br>Handbook    |
| Predictability<br>Focus Area | Predictability is focused on in-flight (i.e. off-block to on-block) variability of flight duration compared to the planned duration.<br>It is expected that this area will be extended in the future to reflect the improvement derived from better planning in pre-tactical phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Performance<br>Framework 2019    |
| Punctuality<br>Focus Area    | Refers to "ATM Punctuality". It captures ATM issues as well as events related to ATM that cause a temporal perturbation to airspace user schedules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PAGAR                            |
| Resilience Focus<br>Area     | Resilience focuses on the ability to withstand and recover from<br>planned and unplanned events and conditions which cause a loss of<br>nominal performance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Performance<br>Framework updated |
| Safety                       | The state to which the possibility of harm to persons or damage to property is reduced, and maintained at or below, an acceptable level through a continuing process of hazard identification and .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EUROCONTROL<br>ATM Lexicon       |



| Term                                       | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source                                             |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Security                                   | <ul> <li>(aviation) Safeguarding civil aviation against . This objective is achieved by a combination of measures and human and material resources.</li> <li>Note: ATM Security is concerned with those threats that are aimed at the ATM System directly, such as attacks on ATM assets, or where ATM plays a key role in the prevention of or response to threats aimed at other parts of the aviation system (or national and international assets of high value). ATM security aims to limit the effects of a threats on the overall ATM Network. ATM Security is a subset of Aviation Security (as defined by ICAO in Annex 17).</li> </ul> | EUROCONTROL<br>ATM Lexicon,<br>Note are from PAGAR |
| SESAR2020                                  | The Programme for SESAR2020 was created with a clear and agreed<br>need for continuing research and innovation in ATM beyond the<br>SESAR 1 development phase. SESAR2020 is structured into three<br>main research phases, starting with Exploratory Research, which is<br>then further expanded within a Public-Private-Partnership (PPP) to<br>conduct Industrial Research and Validation. Finally, it further<br>exploits the benefits of the PPP in Demonstrating at Large Scale the<br>concepts and technologies in representative environments to firmly<br>establish the performance benefits and risks.                                  | Performance<br>Framework 2017                      |
| SESAR<br>Programme                         | The programme which defines the Research and Development activities and Projects for the S3JU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EUROCONTROL<br>ATM Lexicon                         |
| SESAR Solution                             | A term used when referring to both SESAR ATM Solution and SESAR Technological Solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SESAR2020 Project<br>Handbook                      |
| SESAR ATM<br>Solution                      | SESAR Solutions relate to either an Operational Improvement (OI)<br>step or a group of OI steps with associated Enablers (technical<br>system, procedure or human), which have been designed,<br>developed and validated in response to specific Validation Targets<br>and that are expected deliver operational and/or performance<br>improvements to European ATM, when translated into their<br>effective realisation.<br>SESAR Technological Solutions relate to verified technologies proven<br>to be feasible and profitable, which may therefore be considered to<br>enable future SESAR Solutions.                                       | SESAR2020 Project<br>Handbook                      |
| Single European<br>Sky High Level<br>Goals | The SES High Level Goals are political targets set by the European Commission. Their scope is the full ATM performance outcome resulting from the combined implementation of the SES pillars and instruments, as well as industry developments not driven directly by the EU.                                                                                                                                                                                                                                                                                                                                                                    | SESAR2020 Project<br>Handbook                      |
| Sub-OE                                     | A subcategory of an Operating environment, classified according to<br>its complexity (e.g. high complexity TMA, medium complexity TMA,<br>low complexity TMA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EUROCONTROL<br>ATM Lexicon                         |
| Validation<br>targets                      | Validation targets are the targets that focus on the development of<br>enhanced capabilities by the SESAR Solutions. They aim to secure<br>from R&D the required performance capability to contribute to the<br>achievement of the Performance Ambitions and, thus, to the SES<br>high-level goals.<br>In SESAR2020 validation targets are associated with a KPI.                                                                                                                                                                                                                                                                                | EUROCONTROL<br>ATM Lexicon                         |



Table 3: Glossary

## 2.5 Acronyms and Terminology

| Acronym | Definition                                                    |
|---------|---------------------------------------------------------------|
| A/C     | Aircraft                                                      |
| AFCS    | Auto Flight Control System                                    |
| ACC     | Area Control Centre                                           |
| A/G     | Air/Ground                                                    |
| AIP     | Aeronautical Information Publication                          |
| AIS     | Aeronautical Information Services                             |
| ANS     | Air Navigation Service                                        |
| ANSP    | Air Navigation Service Provider                               |
| ΑΟ      | Aircraft Operator                                             |
| AOC     | Airline Operation Centre                                      |
| AOCC    | Airline Operations and Control Centre                         |
| AOP     | Airport Operations Plan                                       |
| AoR     | Air of Responsibility                                         |
| APP     | Approach                                                      |
| ARES    | Airspace Reservation/Restriction                              |
| ARS     | Air control center, RPA production center, Sensor fusion post |
| ASAP    | As Soon As Possible                                           |
| ASM     | Airspace Management                                           |
| ATC     | Air Traffic Control                                           |
| ΑΤCΟ    | Air Traffic Controller                                        |
| ATFCM   | Air Traffic Flow and Capacity Management                      |
| ATM     | Air Traffic Management                                        |
| ATMS    | Air Traffic Management System                                 |
| ATS     | Air Traffic Service                                           |
| ATSU    | Air Traffic Service Unit                                      |
| AU      | Airspace User                                                 |



| Acronym | Definition                                  |
|---------|---------------------------------------------|
| BAD     | Benefits Assessment Date                    |
| BADA    | Base of Aircraft Data                       |
| BAER    | Benefit Assessment Equipment Rate           |
| BIM     | Benefit Impact Mechanism                    |
| BMT     | Business Mission Trajectory                 |
| BRLOS   | Beyond Radio Line Of Sight                  |
| BVLOS   | Beyond Visual Line of Sight                 |
| C2      | Command and Control                         |
| C2LL    | C2 Link Loss                                |
| С3      | Command, Control and Communication          |
| CASA    | Civil Aviation Safety authority             |
| СВА     | Cost Benefit Analysis                       |
| CESNAC  | "Systèmes de Navigation Aérienne Centraux"  |
| CDM     | Collaborative Decision-Making               |
| CFMU    | Central Flow Management Unit                |
| CNS     | Communication Navigation and Surveillance   |
| СОМ     | Communication                               |
| CONOPS  | Concept of Operations                       |
| CR      | Change Request                              |
| CRNA    | "Centre en Route de la Navigation Aérienne" |
| СТА     | Control Area                                |
| CTR     | Control Area                                |
| CWP     | Controller Working Position                 |
| DA      | Decision Altitude                           |
| DAA     | Detect And Avoid                            |
| DAP     | Data Operation Provider                     |
| DB      | Deployment Baseline                         |
| DCB     | Demand Capacity Balancing                   |
| DOD     | Detailed Operational Description            |
| EASA    | European Airspace Safety Agency             |
| EATMA   | European ATM Architecture                   |



| Acronym     | Definition                                                |  |
|-------------|-----------------------------------------------------------|--|
| E-ATMS      | European Air Traffic Management System                    |  |
| EC          | European Commission                                       |  |
| ECAC        | European Civil Aviation Conference                        |  |
| ERA         | Enhanced RPAS Automation                                  |  |
| EREA        | European Research Establishments in Aeronautics           |  |
| ERICA       | Enable RPAS Insertion in Controlled Airspace              |  |
| ERSG        | European RPAS Steering Group                              |  |
| ΕΤΑ         | Estimated Time of Arrival                                 |  |
| ETD         | Estimate Timed of Departure                               |  |
| EUROCAE     | European Organisation for Civil Aviation Equipment        |  |
| EUMC        | European Union Military Committee                         |  |
| EU          | European Union                                            |  |
| EUR         | Europe                                                    |  |
| FAA         | Federal Aviation Administration                           |  |
| FF-ICE      | Flight & Flow Information for a Collaborative Environment |  |
| FIS-B       | Flight Information Services - Broadcast                   |  |
| FIR         | Flight Information Region                                 |  |
| FL          | Flight Level                                              |  |
| FOC         | Flight Operation Centre                                   |  |
| FPL or FPLN | Flight Plan                                               |  |
| Ft (ft)     | Feet                                                      |  |
| FTA         | Flight Termination Area                                   |  |
| FUA         | Flexible Use of Airspace                                  |  |
| GA          | General Aviation                                          |  |
| GAT         | General Air Traffic                                       |  |
| G/G         | Ground/Ground                                             |  |
| GND         | Ground                                                    |  |
| GPS         | Global Positioning System                                 |  |
| GS          | Ground Station                                            |  |
| HALE        | High Altitude Long Endurance                              |  |
| HL          | High Level                                                |  |



| Acronym    | Definition                                                |  |
|------------|-----------------------------------------------------------|--|
| HLR        | High Level Requirement(s)                                 |  |
| НР         | Human Performance                                         |  |
| HPAR       | Human Performance Assessment Report                       |  |
| HV         | Horizontal Vertical                                       |  |
| ICAO       | International civil Aviation Organisation                 |  |
| IFACTCA    | International Federation of Air Traffic Controllers       |  |
| IFALPA     | International Federation of Air Line Pilots' Associations |  |
| IFPS       | Integrated Initial Flight Plan Processing System          |  |
| IFPSZ      | Integrated Initial Flight Plan Processing System Zone     |  |
| IFR        | Instrumental Flight Rules                                 |  |
| ILS        | Instrumental Landing System                               |  |
| INS        | Inertial Navigation System                                |  |
| INTEROP    | Interoperability Requirements                             |  |
| iOAT (FPL) | improved Operational Air Traffic (Flight Plan)            |  |
| ЮР         | Input Output Processor                                    |  |
| IRS        | Interface Requirements Specification                      |  |
| JAA        | Joint Aviation Authorities                                |  |
| JARUS      | Joint Authorities for Rulemaking on Unmanned Systems      |  |
| JFAC       | Joint Force Air Component Commander                       |  |
| LALE       | Low-Altitude Long-Endurance                               |  |
| Lat        | Latitude                                                  |  |
| LoA        | Letters of Agreement                                      |  |
| Long       | Longitude                                                 |  |
| КРА        | Key Performance Area                                      |  |
| КРІ        | Key Performance Indicator                                 |  |
| MAC        | Mid-Air Collision                                         |  |
| MALE       | Medium Altitude Long Endurance                            |  |
| MASPS      | Minimum Aviation System Performance Standards             |  |
| MIL        | Military                                                  |  |
| MSA        | Minimum Sector Altitude                                   |  |
| MSOC       | Mission Operations Support Centre                         |  |



| Acronym   | Definition                                     |  |
|-----------|------------------------------------------------|--|
| MTCD      | Mid-Term Conflict Detection                    |  |
| N/A or NA | Not Applicable                                 |  |
| NAA       | National Aviation Authority                    |  |
| NASA      | National Aeronautics and Space Administration  |  |
| ΝΑΤΟ      | North Atlantic Treaty Organization             |  |
| NAV       | Navigation                                     |  |
| NB        | Nota-Bene                                      |  |
| NM        | Nautical Mile or Network Manager               |  |
| NMF       | Network Management Function                    |  |
| NMOC      | Network Manager Operations Centre              |  |
| NOP       | Network Operation Plan                         |  |
| NOTAM     | Notice To Airmen                               |  |
| OAT       | Operational Air Traffic                        |  |
| OC        | Operation Centre                               |  |
| OE        | Operating Environment                          |  |
| 01        | Operational Improvement                        |  |
| OPAR      | Operational Performance Assessment Report      |  |
| OPs       | Operations                                     |  |
| OSED      | Operational Service and Environment Definition |  |
| PAR       | Performance Assessment Report                  |  |
| PBN       | Performance Based Navigation                   |  |
| PCA       | Prior Coordination Airspace                    |  |
| PI        | Performance Indicator                          |  |
| PIC       | Pilot In Command                               |  |
| PRU       | Performance Review Unit                        |  |
| QoS       | Quality of Service                             |  |
| RBT       | Reference Business Trajectory                  |  |
| RBMT      | Reference Mission/Business Trajectory          |  |
| RBT       | Reference Business Trajectory                  |  |
| R/C       | Radio Control                                  |  |
| ReqMT     | Required Mission Trajectory                    |  |



| Acronym                | Definition                                                                                    |  |
|------------------------|-----------------------------------------------------------------------------------------------|--|
| R&D                    | Research & Development                                                                        |  |
| RLOS                   | Radio Line of Sight                                                                           |  |
| RMT                    | Reference Mission Trajectory                                                                  |  |
| RMM                    | Risks Mitigation Means                                                                        |  |
| RNP                    | Required Navigation Performance                                                               |  |
| RNP AR                 | RNP Authorized                                                                                |  |
| RP                     | Remote Pilot                                                                                  |  |
| RPA                    | Remotely Piloted Aircraft                                                                     |  |
| RPAS                   | Remotely Piloted Aircraft Systems                                                             |  |
| RPASP                  | Remotely Piloted Aircraft Systems Panel                                                       |  |
| RPS                    | Remote Pilot Station                                                                          |  |
| R/T                    | Receiver/Transceiver <u>or</u> Radiotelephony (EASA)                                          |  |
| RVSM                   | Reduced Vertical Separation Minima                                                            |  |
| RWC                    | Remain Well Clear                                                                             |  |
| SAC                    | Safety Criteria                                                                               |  |
| SAR                    | Safety Assessment Report                                                                      |  |
| SARPS                  | Standards And Recommended Practices                                                           |  |
| SBMT                   | Shared Business Mission Trajectory                                                            |  |
| SBT                    | Shared Business Trajectory                                                                    |  |
| SCTA                   | Short Term Conflict Alert                                                                     |  |
| SMT                    | Shared Mission Trajectory                                                                     |  |
| SDM                    | Service Delivery Management                                                                   |  |
| SecAR                  | Security Assessment Report                                                                    |  |
| SERA                   | Standardised European Rules of the Air                                                        |  |
| SES                    | Single European Sky                                                                           |  |
| SESAR                  | Single European Sky ATM Research Programme                                                    |  |
| SESAR2020<br>Programme | The programme which defines the Research and Development activities and Projects for the S3JU |  |
| SID                    | Standard Instrument Departure                                                                 |  |
| SJU or S3JU            | SESAR 3 Joint Undertaking (Agency of the European Commission)                                 |  |
| SoS                    | System of System                                                                              |  |
| SPO                    | Single Person Operations                                                                      |  |



| Acronym | Definition                                     |  |
|---------|------------------------------------------------|--|
| SPR     | Safety and Performance Requirements            |  |
| SSR     | Secondary Surveillance Radar                   |  |
| STAR    | Standard Terminal Arrival                      |  |
| STCA    | Short-Term Conflict Alert                      |  |
| SURV    | Surveillance                                   |  |
| SWaP    | Size, Weight and Power                         |  |
| ΤΑΑ     | Terminal Area Altitude                         |  |
| ТВС     | To Be Confirmed                                |  |
| TBD     | To Be Defined                                  |  |
| TCAS    | Traffic Alert and Collision Avoidance System   |  |
| TIS-B   | Traffic Information Services - Broadcast       |  |
| ТМА     | Terminal Area                                  |  |
| ТоС     | Top of Climb                                   |  |
| ToD     | Top of Descent                                 |  |
| TRA     | Temporary Reserved Area                        |  |
| TS      | Technical Specification                        |  |
| TSA     | Temporary Segregated Area                      |  |
| TWR     | Tower                                          |  |
| UAS     | Unmanned Aircraft system                       |  |
| UAV     | Unmanned Aerial Vehicle                        |  |
| UC      | Use Case                                       |  |
| UDPP    | User Driven Prioritisation Process             |  |
| UHF     | Ultra High Frequency                           |  |
| ULTRA   | Unmanned Aerial Systems in European Airspace   |  |
| USAF    | United States Air Forces                       |  |
| UTM     | Unmanned (Aircraft Systems) Traffic Management |  |
| VALP    | Validation Plan                                |  |
| VALR    | Validation Report                              |  |
| VFR     | Visual flight Rules                            |  |
| VHF     | Very High Frequency                            |  |
| VLL     | Very Low Level                                 |  |



| Acronym | Definition                                               |
|---------|----------------------------------------------------------|
| VLOS    | Visual Line Of Sight                                     |
| VMC     | Visual Meteorological Conditions                         |
| VNAV    | Vertical Navigation                                      |
| VOR/DME | VHF Omnidirectional Range/Distance measurement Equipment |
| V&V     | Validation and Verification                              |
| WG      | Working Group                                            |
| WOC     | Wing Operation Centre                                    |
| WP      | Work Package                                             |
| WPT     | Waypoint                                                 |
| WRC     | World Radio communication Conference                     |
| XPDR    | Transponder                                              |
| ZIT     | Zones Interdites (French) / Prohibited zones             |
| ZRT     | Zones Règlementées (French) / Restricted zones           |

Table 4: Acronyms and terminology



# **3** Solution Scope

#### **3.1 Detailed Description of the Solution**

SESAR PJ13 (ERICA) Solution 115 is a V3 solution in the short-medium term within the existing European Air Traffic Management (ATM) which accommodates existing/initial Medium Altitude Long Endurance Remotely Piloted Aircraft System (MALE RPAS) in controlled airspace.

Solution 115 improves the situation of MALE RPAS transit flight operations, which previously required lengthy preparation and required segregation mechanisms and operations for flight. The improvement, through the RPAS Accommodation concept, is that the RPAS user can now rapidly access and fly a transit flight in shared airspace, amongst all other traffic, in airspaces classified Low/ Medium complexity and derived also to High complexity airspace during low traffic periods

In more detail, Solution S115's concept covers:

- Flight preparation/planned flight changes. This process becomes as short as for a manned aircraft IFR (Instrument Flight Rules) flight. The RPAS flight can be routinely planned with no segregation/reserved airspace for its IFR transit flight as GAT.
- MALE RPAS management by civil Air Traffic Control (ATC) where the RPAS benefits from the available shared controlled airspace. In this airspace low numbers of RPAS (a single RPAS per control sector) fly under Instrument flight rules (IFR), as a general air traffic (GAT). The RPAS is non-segregated amongst other manned controlled traffic in controlled airspace classes A to C. No priorities are applied, resulting in equitable traffic management of all airspace users as well as the RPAS in the controlled airspace. A derived benefit to other airspace users of the controlled airspace is that their flights can be more efficient as the airspace reservations are no longer required for the RPAS transit flight.

The concept requires no or a minor technical change to the ATM systems and procedures already exist and are in operation. The RPAS are have already been acquired by the operators and the solution is defined for such RPAS to be used at no additional cost in their existing configuration.



### **3.2** Detailed Description of relationship with other Solutions

| Solution<br>Number | Solution<br>Title                      | Relationship             | Rational for the relationship                                                                                                                                                                                                                |
|--------------------|----------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sol. 117           | IFR RPAS<br>integration<br>in Airspace | Independent,<br>No cross | Although both solutions PJ.13-W2-115 and PJ.13-W2-117 address RPAS flight is controlled airspace, their timeframe and solution scope are independent.                                                                                        |
|                    | Class A to<br>C                        | effect                   | PJ.13-W2-115 may be seen as a precursor in time to PJ.13-W2-117.                                                                                                                                                                             |
|                    |                                        |                          | However PJ.13-W2-115 addresses procedural accommodation based on existing ATM systems and initial existing RPAS, whereas PJ.13-W2-117 independently addresses integration based on evolved ATM and RPAS systems/technologies and procedures. |

Table 5: Relationships with other Solutions



# **4** Solution Performance Assessment

#### 4.1 Assessment Sources and Summary of Validation Exercise Performance Results

No previous validation Exercises (pre-SESAR2020 Wave 2, etc.) are relevant for this assessment.

No preceding project on RPAS accommodation exists. Preceding Wave 1 PJ 10.05 did not perform RPAS accommodation validation, and no previous performance can be derived from this source.

SESAR Validation Exercises of this Solution (completed ones and planned ones) are listed below.

| Exercise ID | Exercise ID Exercise Title   |     | Maturity | Status   |
|-------------|------------------------------|-----|----------|----------|
| EXE_115_001 | RTS INTEGRATED V3 VALIDATION | R12 | V3       | Complete |

Table 6: SESAR2020 Validation Exercises

The following table provides a summary of information collected from available performance outcomes.

| Exercise    | OI Step      | Exercise scenario & scope                                                                                                                                                 | Performance<br>Results | Notes |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|
| EXE_115_001 | AUO-<br>0619 | Operationally significant RTS<br>with qualified ATCOs & RPAS<br>Remote Pilot : IFR<br>management of RPAS transit<br>in controlled airspace with C2<br>link loss procedure |                        |       |

Table 7: Summary of Validation Results.



#### 4.2 Conditions / Assumptions for Applicability

| OE               | Applicable sub-OE                   | Special characteristics                                                                                                                                                                                                  |
|------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| En-Route -<br>ER | Medium Complexity<br>Low Complexity | One RPAS per control sector is operating under IFR as GAT.<br>Traffic conditions are low to mid density.<br>High & Very-High complexity sub-OEs are possible operating<br>environments, only during low traffic periods. |
|                  |                                     | <ul> <li>Class A-C controlled airspace, all traffic under ATC cooperative surveillance</li> <li>Transit operations as GAT (Climb/Descent/Cruise between ~FL100 to FL200)</li> </ul>                                      |
|                  |                                     | <ul> <li>Accommodation is performed through operational<br/>procedures, using the existing mechanisms and systems<br/>already in place, also considering RPAS are not fully<br/>compliant with ICAO standards</li> </ul> |
|                  |                                     | •Low RPAS numbers (estimated 1 RPAS per controlling sector)                                                                                                                                                              |

The following Table 8 summarises the applicable operating environments.

Table 8: Applicable Operating Environments.

#### Additional notes:

TMA associated Departure/Arrival/Terminal manoeuvring patterns (i.e. merging sequencing, SID/STAR /APP) are outside the solution scope. This portion of flight remains as currently performed under OAT from/to dedicated airfields.

Mission flight zones & patterns also remain as currently performed in dedicated mission area, outside the solution scope (outside the IFR GAT transit segment).



#### 4.3 Safety

The different hazards inherent to aviation, and those system-generated hazards prior to Change introduction have been preliminary identified, and the related Safety Criteria have been stated. It is important to highlight that the main concern regarding the accommodation of RPAS in controlled airspace are mid-air collisions and, therefore, the hazards and SACs are mainly focused on these events, and their precursors and barriers.

One further step will be the identification of the different activities related to safety that will need to be conducted within the Solution, the so-called Safety Assurance Activities, with which the Team has forecasted to deal in the next weeks.

Safety outcomes mainly come from the safety assessment per the SESAR Safety Reference Material (SRM), resulting in the Safety Assessment Report (SAR, ref []), and which has also been fed by expert experience from ongoing RPAS accommodation trials flight experience and from Real Time Simulation validation performed in March 2022 in Clermont-Ferrand with operational ATCOs and a qualified RPAS remote pilot; in this RTS, no Near Mid-Air Collision was observed.

The SAR analysed RPAS accommodation from a safety perspective, considering both an RPAS flying in nominal and non-nominal situations within the target operational environment, identifying and evaluating the risks that it generates, and selecting mitigation measures to minimize or eliminate the impact of these risk on the current aviation system. The SAR established a series of Safety Requirements, both at ATS service level (SRS) and at refined design level (rSRD).

#### **4.3.1** Safety Design drivers and Performance Mechanism

The safety validation objectives presented in this Solution 115 were formulated as safety criteria (SACs) measurable at precursor level in the Accident Incident Model (AIM). The AIM used and relevant to the solution is Mid Air Collision, EN-Route (MAC-ER). No other AIM model is impacted by the solution.

The Safety Criteria (SAC) for this ATS operational Solution established are:

SESAR SOLUTION 115 SPR/INTEROP-OSED TEMPLATE FOR V3 - PART V - PERFORMANCE ASSESSMENT REPORT (PAR)



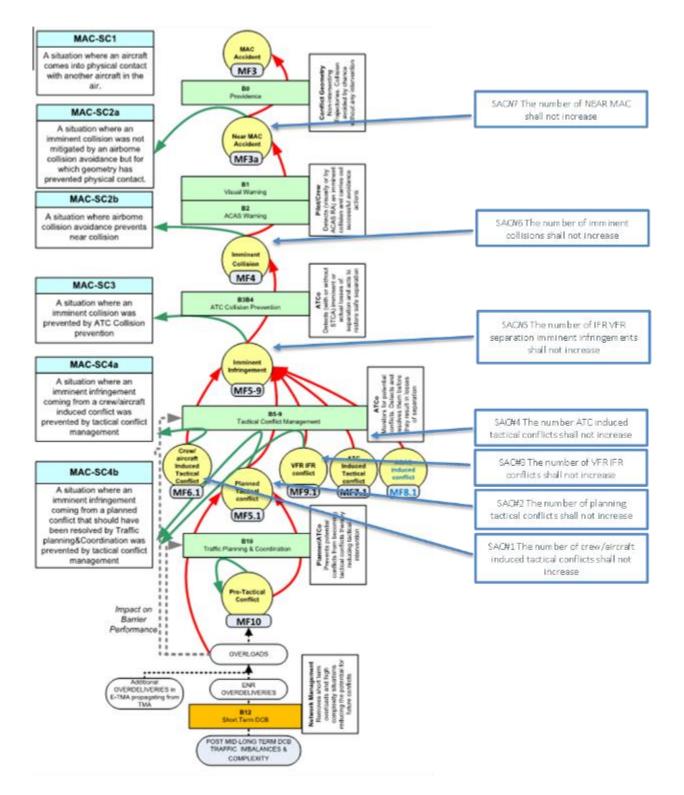



Figure 1: Severity Class Scheme for Mid-air Collision ENR with Solution 115 SAC



#### 4.3.2 Data collection and Assessment

Two sources of assessments can be considered for the collection of evidences to the overall safety assessment:

- workshops & resulting safety assessment material documented in the S115 SAR (Ref [] )

- RTS Validation, observations & feedback to questionnaires documented in the S115 validation report (VALR [9]).

The assessment first specified Safety Requirements at ATS Service level (SRS) which are the desired safety behaviour of the change at its interface with the ATS operational context considering normal and abnormal conditions of the context (success approach) and the failures of the functional system (failure approach). They are placed on the services of the Solution functional system that are changed or affected by the change (through change in behaviour or through new interactions introduced).

The SRDs establish the design characteristics/items of the solution functional system to ensure that the system operates as specified and is able to achieve the SACs.

A final consolidated list of Safety Requirements at Design level (functionality and performance) associated to internal system failures was established.

| Safety Requirement ID | Safety Requirement at Design level (SRD) (functionality & performance)                                                                                                                                                                                                                                                                                  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SRD 001               | RP shall be trained, and shall be able to apply new operating methods including the communication to ATCO of the two additional elements related to C2LL contingency procedure, and specific RPAS preparation procedures for RPAS nominal situations                                                                                                    |
| SRD 002               | RP shall provide C2 link loss pre-programmed contingency information for ATCO pre-awareness                                                                                                                                                                                                                                                             |
| SRD 003A              | ATCO shall be able to easily recognise the RPAS traffic                                                                                                                                                                                                                                                                                                 |
| SRD 003B              | The RP shall add "REMOTE" to the callsign                                                                                                                                                                                                                                                                                                               |
| SRD 004               | ATC shall be able to support the accommodation of non-segregated transit GAT RPAS among all other GAT                                                                                                                                                                                                                                                   |
| SRD 005               | ATCO shall be trained and shall be able to apply standard IFR procedures/operating methods to RPAS for nominal IFR situations thus to reiterate requests to RP for expected information                                                                                                                                                                 |
| SRD 006               | ATCO shall be able to perform surveillance of RPA with the current secondary surveillance tools and technologies which are compatible with airborne Mode A/C transponders (i.e. primarily secondary surveillance radar (SSR)) <i>NOTE: This includes that the ATC system shall process and highlight specific C2 link loss transponder code on CWP.</i> |
| SRD 007               | ATCO shall be able to use usual controller tools based on RPAS performances                                                                                                                                                                                                                                                                             |
| SRD 008               | RP shall be able to modify the RPAS pre-programmed navigation according to the new instructions                                                                                                                                                                                                                                                         |

Full details are available in the SAR [14].



| Safety Requirement ID | Safety Requirement at Design level (SRD) (functionality & performance)                                                                                                                                                                                                                |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SRD 009               | RP shall always pre-program RPA with a C2LL trajectory that shall be automatically triggered and flown when the RPAS goes into a C2LL state                                                                                                                                           |
|                       | NOTE: The RP shall re-program this C2LL trajectory whenever it is required                                                                                                                                                                                                            |
| SRD 010               | Procedures regarding the transfer of control of RPAS between ATS units in nominal conditions shall be used per the LoA or operations manual in effect                                                                                                                                 |
| SRD 011               | ATC shall be able to use the usual tools as used for manned aircraft to detect possible conflicts:                                                                                                                                                                                    |
|                       | Medium-Term Conflict Detection (MTCD) probe;                                                                                                                                                                                                                                          |
|                       | Short-Term Conflict Alert (STCA) safety net)                                                                                                                                                                                                                                          |
| SRD 012               | RPA shall be able to automatically provide specific C2 link loss transponder code and to maintain it active during C2 link loss                                                                                                                                                       |
| SRD 013               | The first one of ATCO/RP who observes the C2 link loss shall be able to contact the other using the backup telephone line                                                                                                                                                             |
| SRD 014               | A direct telephone line shall be available between ATC and RP/RPS as backup solution in C2 link loss situation                                                                                                                                                                        |
| SRD 015               | ATCO shall be trained and shall be able to apply adapted procedures/ operating methods for RPAS non-nominal situations                                                                                                                                                                |
| SRD 016               | Only one RPAS shall be authorized to fly at the same time under responsibility of one sector                                                                                                                                                                                          |
|                       | (For specific cases where RPAS are operating in pairs, RPAS Operators shall guarantee that two RPAs under the responsibility of one sector and suffering a C2LL will not have crossing trajectories at any time during the contingency)                                               |
| SRD 017               | ATC shall be able to support the specific RPAS contingency procedures:                                                                                                                                                                                                                |
|                       | <ul> <li>Recognize C2LL information provided in the procedure to know possible C2LL trajectory of<br/>RPAS</li> </ul>                                                                                                                                                                 |
| SRD 018               | RPAS shall be able to identify its emergency status and to execute the emergency procedure associated with the severe failure situation                                                                                                                                               |
| SRD 019               | RPAS shall be able to set specific emergency transponder code and to maintain it active during emergency                                                                                                                                                                              |
| SRD 020               | ATC shall be able to manage RPAS emergency situation                                                                                                                                                                                                                                  |
| SRD 020               | RPAS shall be able to identify its emergency status and to execute the emergency procedure associated with the severe failure situation with RP in the loop                                                                                                                           |
| SRD 021               | RPAS shall be able to remain on the RP controlled/selected trajectory, which takes into account emergency performance                                                                                                                                                                 |
| SRD 022               | A team of pilots shall be always available to manage the RPA, and at all times during flight there will be one pilot designated Pilot in Command in the RP position                                                                                                                   |
| SRD 023               | RP shall be able to execute the standard IFR contingency procedures and operating methods identically to manned aviation:                                                                                                                                                             |
|                       | <ul> <li>Voice Comm loss with No C2 link loss;</li> <li>GNSS/positioning loss;</li> <li>Transponder failure/loss</li> </ul>                                                                                                                                                           |
| SRD 024               | RP shall be trained and shall be able to apply new procedures including specific RPAS preparation procedures and operating methods for RPAS non-nominal situations. RP will, if necessary, re-program diversion preparation in case of changes in nominal flight (i.e. prior to C2LL) |



| Safety Requirement ID | Safety Requirement at Design level (SRD) (functionality & performance)                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SRD 025               | <ul> <li>RPAS shall be able to navigate during flight in a structured airspace with performances and capabilities associated with the airspace, including the C2LL trajectory:</li> <li>Positioning aids (GNSS, inertial);</li> <li>AIRAC cyclic navigation data (ATS routes, waypoints);</li> <li>RNAV required in the class A-C airspace environment (RNAV5 En-Route / RNAV1 Terminal).</li> </ul>                                                                         |
|                       | The aim is to ensure the capability of the system in nominal conditions and while applying C2LL procedures.                                                                                                                                                                                                                                                                                                                                                                  |
| SRD 026               | RPS Operations shall be able to plan flight within flight levels where a minimum traffic risk is usually present NOTE: The span of flight levels considered will usually be above low levels to minimise recreational VFR traffic risk (> FL100), and below high levels to minimise flying within high speed cruising jet aircraft (~ FL200). Nevertheless, these vertical limits could be adapted depending on the specific characteristics of each operational environment |
| SRD 027               | RPAS shall fly low speeds (below 200 knots) in order to allow ATCO sufficient time to update the RPA clearance or re-organize the traffic around RPAS after C2LL occurrence                                                                                                                                                                                                                                                                                                  |

Table 9. SRD (functionality & performance) to mitigate the operational hazards

#### 4.3.3 Extrapolation to ECAC wide

Safety Assessment and resulting SAR material may be used by any European state that has a RPAS accommodation need in the short-mid term.

#### 4.3.4 Discussion of Assessment Result

The validation exercise (RTS) allows to verify the compliance with the defined safety criteria for all safety validation objectives. This confirms the ATS Operational Solution 115 enables the management of an RPAS flight efficiently and safely, both in normal and abnormal conditions, and maintains the level of safety within the airspace. It is observed that the measures designed for the flight of RPAS are efficient and solve the particularities of these aircraft, such as the C2LL behaviour.

One important consideration that has emerged is that at the time of the first radio contact with every ATCO the RPA is transferred to, the former has to be informed that the aircraft is a RPAS and has to be provided with details of the pre-programmed RPAS C2LL trajectory.

There is one validation criterion that could not be covered by any validation means. This is the CRT-PJ13.115-V3-VALP-007-0004 "Safe recovery of RPAS degraded operations in airspace classes A, B, C during accommodation", as the RTS does not reproduce the completion of a C2LL and reversion to nominal flight.

#### 4.3.5 Additional Comments and Notes

NA

Page I 36



# 4.4 Environment: Fuel Efficiency / CO2 emissions

Does the Solution impact this KPA? No

The solution is designed for RPAS access in low numbers. It has extremely low and marginal impact on overall Fuel Efficiency / CO2 emissions.

#### **4.4.1** Performance Mechanism

NA

#### 4.4.2 Assessment Data (Exercises and Expectations)

#### NAExtrapolation to ECAC wide

NA

#### 4.4.4 Discussion of Assessment Result

NA

#### 4.4.5 Additional Comments and Notes



## 4.5 Environment / Emissions, Noise and Local Air Quality

Does the Solution impact this KPA? No

The solution is designed for RPAS access in low numbers. It has no impact on overall Environment / Emissions, Noise and Local Air Quality.

#### 4.5.1 Performance Mechanism

NA

#### 4.5.2 Assessment Data (Exercises and Expectations)

NA

#### 4.5.3 Extrapolation to ECAC wide

NA

4.5.4 Discussion of Assessment Result

#### NAAdditional Comments and Notes

## **NA Airspace Capacity (Throughput / Airspace Volume & Time)**

Does the Solution impact this KPA? No

The solution is designed for RPAS access in low numbers in a low-mid traffic density environment It has no impact on Airspace Capacity.

#### 4.6.1 Performance Mechanism

NA

#### 4.6.2 Assessment Data (Exercises and Expectations)

NA

#### 4.6.3 Extrapolation to ECAC wide

NA

#### 4.6.4 Discussion of Assessment Result

#### NAAdditional Comments and Notes

NA

Page I 38



# 4.7 Airport Capacity (Runway Throughput Flights/Hour)

Does the Solution impact this KPA? No

Airport (departure / arrival) is out of scope of the solution. The solution is designed for RPAS En-Route transit flights low-mid traffic density environment. It has no impact on Airspace Capacity.

#### **4.7.1** Performance Mechanism

#### NAAssessment Data (Exercises and Expectations)

NA

4.7.3 Extrapolation to ECAC wide

NA

4.7.4 Discussion of Assessment Result

#### NAAdditional Comments and Notes



# 4.8 Resilience (% Loss of Airport & Airspace Capacity Avoided)

Does the Solution impact this KPA? No

#### **4.8.1** Performance Mechanism

**NAAssessment Data (Exercises and Expectations)** 

NA

4.8.3 Extrapolation to ECAC wide

NA

4.8.4 Discussion of Assessment Result

NA

4.8.5 Additional Comments and Notes



# 4.9 Flight Times

Does the Solution impact this KPA? No

#### 4.9.1 Performance Mechanism

NAAssessment Data (Exercises and Expectations)

#### NAExtrapolation to ECAC wide

NA

4.9.4 Discussion of Assessment Result

NA

4.9.5 Additional Comments and Notes



# 4.10Predictability

Does the Solution impact this KPA? No

#### 4.10.1Performance Mechanism

NAAssessment Data (Exercises and Expectations)

NA

## 4.10.3Extrapolation to ECAC wide

NA

#### 4.10.4Discussion of Assessment Result

NA

## 4.10.5Additional Comments and Notes



# 4.11Punctuality

Does the Solution impact this KPA? No

#### 4.11.1Performance Mechanism

NAAssessment Data (Exercises and Expectations)

NA

## 4.11.3Extrapolation to ECAC wide

NA

#### 4.11.4Discussion of Assessment Result

NA

#### 4.11.5Additional Comments and Notes



# 4.12Civil-Military Cooperation and Coordination (Distance and Fuel)

Does the Solution impact this KPA? No

#### **4.12.1Performance Mechanism**

NAAssessment Data (Exercises and Expectations)

#### NAExtrapolation to ECAC wide

NA

#### 4.12.4Discussion of Assessment Result

NA

#### 4.12.5Additional Comments and Notes



# 4.13Flexibility

Does the Solution impact this KPA? No

#### 4.13.1Performance Mechanism

NAAssessment Data (Exercises and Expectations)

NA

## 4.13.3Extrapolation to ECAC wide

NA

#### 4.13.4Discussion of Assessment Result

#### NAAdditional Comments and Notes



# **4.14Cost Efficiency**

Does the Solution impact this KPA? No

#### 4.14.1Performance Mechanism

NAAssessment Data (Exercises and Expectations)

NA

#### 4.14.3Extrapolation to ECAC wide

NA

#### 4.14.4Discussion of Assessment Result

NA

## 4.14.5Additional Comments and Notes



## **4.15Airspace User Cost Efficiency**

Does the Solution impact this KPA? No

#### **4.15.1Performance Mechanism**

NA

## 4.15.2Assessment Data (Exercises and Expectations)

NA

#### 4.15.3Extrapolation to ECAC wide

NA

## 4.15.4Discussion of Assessment Result

NA

#### 4.15.5Additional Comments and Notes



# 4.16Security

## 4.16.1The SecRAM 2.0 methodology and the Security Performance Mechanism

This Wave 2, PJ.13-W2-115 RPAS Accommodation has the specificity of relying on existing ATM mechanisms/systems already in place and used in everyday operational traffic management as well as existing initial demand MIL RPAS.

Security assessment and controls in this existing system are assumed acceptable and no changes are intended in the deployment of s115 accommodation procedures (no new security to be addressed).

#### 4.16.2Security Assessment Data Collection

NA

4.16.3Extrapolation to ECAC wide

NADiscussion of Assessment Result

NA

#### 4.16.5Additional Comments and Notes



# **4.17Human Performance**

#### **4.17.1HP** arguments, activities and metrics

The main HP focus considered operating methods are identical to managing manned IFR traffic in controlled class A-C airspace including RPAS as just another GAT under IFR ; In addition, due to the RPAS specificity, HP assessments included the addition of an adapted operating method for ATCO awareness: provision of what the pre-programmed C2 Link Loss RPA behaviour would be in case it occurs.

Hence, relevant Human Performance (HP) arguments selected to be assessed were the following, with associated (B)enefits / (I)ssues :

| HP1<br>Consistency of                                                | HP1.2 Adequacy of operating methods (procedures) in supporting human performance                                                                        |  |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| human role<br>with respect to<br>human<br>capabilities and           | 121 Operating methods cover operations in normal operating conditions                                                                                   |  |  |
|                                                                      | 122 Operating methods cover operations in abnormal operating conditions                                                                                 |  |  |
|                                                                      | 123 Operating methods cover degraded modes of the ATM system                                                                                            |  |  |
| limitations                                                          | 124 The content of operating methods is clear and consistent                                                                                            |  |  |
|                                                                      | 125 Operating methods (procedures) can be followed in an accurate, efficient, and timely manner                                                         |  |  |
|                                                                      | HP1.3 Capability of human actors to achieve their tasks in a timely manner, with limited error rate and acceptable workload level                       |  |  |
|                                                                      | 131 The potential for human error is reduced to a tolerable level                                                                                       |  |  |
|                                                                      | 132 Tasks can be achieved in a timely manner                                                                                                            |  |  |
|                                                                      | 133 The level of workload (induced by cognitive and/or physical task demands) is acceptable                                                             |  |  |
|                                                                      | 134 The level of trust in the new concept/the new procedures is appropriate                                                                             |  |  |
|                                                                      | 135 Human actors can maintain a sufficient level of situation awareness                                                                                 |  |  |
|                                                                      | 136 Human actors can maintain a sufficient level of situation awareness                                                                                 |  |  |
| HP2<br>Suitability of                                                | HP2.2 Adequacy of technical systems in supporting Human Performance with respect to timeliness of system responses and accuracy of information provided |  |  |
| technical<br>system in<br>supporting the<br>tasks of human<br>actors | 222 The timeliness of information provided by the system is adequate for carrying out the task                                                          |  |  |
|                                                                      | HP2.3 Adequacy of the human machine interface in supporting the human in carrying out their tasks.                                                      |  |  |
|                                                                      | 231 The type of information provided satisfies the information requirements of the human                                                                |  |  |



| HP3                                                                                 | HP3.3 Adequacy of team communication with regard to information type, technical                                            |  |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|
| Adequacy of                                                                         | enablers and impact on situation awareness/workload                                                                        |  |  |
| team structure<br>and team<br>communication<br>in supporting<br>the human<br>actors | 332 The phraseology supports communication in all operating conditions                                                     |  |  |
|                                                                                     | 334 The communication load of team members is acceptable in normal and abnormal conditions and degraded mode of operations |  |  |
| HP4                                                                                 | 335 Team members can maintain a sufficient level of shared situation awareness.                                            |  |  |
| Feasibility with                                                                    | HP4.1 User acceptability of the proposed solution                                                                          |  |  |
| regard to HP-<br>related<br>transition                                              | 412 The impact of changes on the job satisfaction of affected human actors has been considered                             |  |  |
| factors                                                                             | HP4.2 Feasibility in relation to changes in competence requirements                                                        |  |  |
|                                                                                     | 421 Knowledge, skill and experience requirements for human actors have been identified                                     |  |  |

Table 9: HP arguments, activities and metrics

HP assessments and outcomes have been obtained through:

- Real Time Simulation (RTS) validation performed in March 2022 in Clermont-Ferrand with operational ATCOs and a qualified RPAS remote pilot. . Each RTS run also embedded a debriefing and a questionnaire to collect ATCO 's feedback.

- Experts' judgement collected during dedicated workshop.

The overall summary is that ATCOs and analysis from the expert feedback conclude:

- The accommodation concept in controlled airspace class A to C, with a RPAS as just another IFR traffic is feasible.

- Neither ATCO workload nor safety are affected by the RPAS transit.

- No significant additional exchanges between the remote pilot and the ATCOs and duration of all messages were noted.

- Although the provision of the C2LL behaviour may be seen as an exception to this, feedback is that such information is not different to similar additional information exchanges with manned aircraft pilots. The concept's procedure for provision of the C2LL behaviour was deemed acceptable and not too long.

Complete details are provided in the OSED Part IV (HP Assessment Report - HPAR) [17]



| Pls                          | 2 <sup>nd</sup> level<br>/ HP Arg.                                                                                                | Activities                                          | Metrics                                                                                         | Covered                                     |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------|
| HP1                          | HP1.1 Clarity and completeness of role and responsibilities of human actors                                                       |                                                     |                                                                                                 |                                             |
| Consistency of<br>human role | HP1.2 Adequacy of operating methods (procedures) in supporting human performance                                                  |                                                     |                                                                                                 |                                             |
| with respect to human        | 121-001 (B)                                                                                                                       | RTS and Feedback                                    | Observation, debriefing, questionnaire, Qualitative and quantitative(workload and safety)       | Closed                                      |
| capabilities and limitations | 122-001 (I)                                                                                                                       | RTS and Feedback                                    | Observation, debriefing, questionnaire, Qualitative, quantitative(workload and safety)          | Closed                                      |
|                              | 122-002 (B)                                                                                                                       | RTS and Feedback                                    | Observation, debriefing, questionnaire, Qualitative                                             | Closed                                      |
|                              | 123-001 (B)                                                                                                                       | RTS, Feedback, Expert judgment                      | Observation, debriefing, questionnaire, Qualitative, quantitative(workload)                     | Closed                                      |
|                              | 124-001 (B)                                                                                                                       | RTS and Feedback                                    | Observation, debriefing, questionnaire, Qualitative, quantitative(workload)                     | Closed                                      |
|                              | 124-002 (I)                                                                                                                       | RTS (with procedure) and Feedback                   | Observation, debriefing, questionnaire, Qualitative, quantitative(workload)                     | YES for<br>C2LL<br>Partial for<br>Emergency |
|                              | 125-001 (I)                                                                                                                       | RTS and Feedback (incl. Existing situation)         | Observation, debriefing, questionnaire, Qualitative(workload)                                   | Closed                                      |
|                              | HP1.3 Capability of human actors to achieve their tasks in a timely manner, with limited error rate and acceptable workload level |                                                     |                                                                                                 |                                             |
|                              | 131-001 (B)                                                                                                                       | RTS                                                 | Questionnaire, debriefing, quantitative(safety)                                                 | Closed                                      |
|                              | 131-002 (I)                                                                                                                       | RTS and Feedback                                    | Observation, debriefing and questionnaire, Qualitative                                          | Closed                                      |
|                              | 132-001 (I)                                                                                                                       | Feedback (incl. previous project & OPS expert)      | Questionnaire, previous project feedbacks and operational expert feedback, quantitative(safety) | Closed                                      |
|                              | 132-002 (I)                                                                                                                       | RTS, Feedback (incl. previous project & OPS expert) | RTS, questionnaire, previous project feedback and operational expert feedback, qualitative      | Closed                                      |
|                              | 133-001 (I)                                                                                                                       | RTS and Feedback                                    | Questionnaire, debriefing and observation, Qualitative, quantitative(workload)                  | Closed                                      |
|                              | 134-001 (B)                                                                                                                       | Feedback                                            | Questionnaire, Qualitative                                                                      | Closed                                      |
|                              | 134-002 (I)                                                                                                                       | RTS and Feedback                                    | Observation, debriefing and questionnaire, Qualitative                                          | Closed                                      |
|                              | 135-001 (B)                                                                                                                       | RTS and Feedback                                    | Observation, debriefing and questionnaire, Qualitative                                          | Closed                                      |

FUROPEAN PARTNERSHIP





|                                  | 136-100 (B)                                                                                                                                             | RTS, Feedback                                           | Debriefing and questionnaire, Qualitative                                           | Closed |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------|--------|
|                                  | 136-101 (B)                                                                                                                                             | RTS, Feedback, Expert judgment (from safety assessment) | RTS, debriefing and expert judgment (also linked to safety assessment), qualitative | Closed |
| HP2<br>Suitability of            | HP2.1 Adequacy of allocation of tasks between the human and the machine (i.e. level of automation).                                                     |                                                         |                                                                                     |        |
| technical<br>system in           | HP2.2 Adequacy of technical systems in supporting Human Performance with respect to timeliness of system responses and accuracy of information provided |                                                         |                                                                                     |        |
| supporting the                   | 222-001 (B)                                                                                                                                             | RTS, Feedback, Measure+Analysis (cf. 1.3.2)             | Observation, Qualitative, Transaction time measure                                  | Closed |
| tasks of human                   | HP2.3 Adequacy of the human machine interface in supporting the human in carrying out their tasks.                                                      |                                                         |                                                                                     |        |
| actors                           | 231-001 (I)                                                                                                                                             | RTS and Feedback                                        | Questionnaire and Observation, Qualitative                                          | Closed |
| HP3                              | HP3.1 Adequacy of team composition in terms of identified roles                                                                                         |                                                         |                                                                                     | N/A    |
| Adequacy of                      | HP3.2 Adequacy of task allocation among human actors                                                                                                    |                                                         |                                                                                     | N/A    |
| team structure<br>and team       | HP3.3 Adequacy of team communication with regard to information type, technical enablers and impact on situation awareness/workload                     |                                                         |                                                                                     |        |
| communication                    | 332-001 (I)                                                                                                                                             | RTS and Feedback                                        | Questionnaire and Observation, Qualitative                                          | Closed |
| in supporting<br>the human       | 334-001 (I)                                                                                                                                             | RTS, Feedback, Measure+Analysis (cf. 1.3.2)             | RTS, questionnaire and expert judgment, qualitative and quantitative(workload)      | Closed |
| actors                           | 335-001 (I)                                                                                                                                             | RTS and Feedback                                        | Questionnaire and Observation, Qualitative                                          | Closed |
| HP4                              | HP4.1 User acceptability of the proposed solution                                                                                                       |                                                         |                                                                                     |        |
| Feasibility with                 | 412-001 (I)                                                                                                                                             | Feedback                                                | Questionnaire, Qualitative                                                          | Closed |
| regard to HP-                    | HP4.2 Feasibility in relation to changes in competence requirements                                                                                     |                                                         |                                                                                     |        |
| related<br>transition<br>factors | 421-001 (I)                                                                                                                                             | RTS and Feedback                                        | Questionnaire and Observation, Qualitative                                          | Closed |
|                                  | HP4.3 Feasibility in relation to changes in staffing levels, shift organization and workforce relocation.                                               |                                                         |                                                                                     | N/A    |
|                                  | HP4.4 Feasibility in relation to changes in recruitment and selection requirements .                                                                    |                                                         |                                                                                     | N/A    |
|                                  | HP4.5 Feasibility in terms of changes in training needs with regard to its contents, duration and modality.                                             |                                                         |                                                                                     | N/A    |

Table 10: HP arguments, activities and metrics





## 4.17.2Extrapolation to ECAC wide

It is expected that the same extrapolation will be applicable ECAC wide for the states which have demand for RPAS operations per the Accommodation concept.

## 4.17.3Open HP issues/ recommendations and requirements

| Pls                                                                                                    | Number of open<br>issues/ benefits          | Nr. of recommendations                                                                                                                                                                                                                                      | Number of requirements                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HP1<br>Consistency of<br>human role with<br>respect to human<br>capabilities and<br>limitations        | Further assess RPAS in emergency situations | <ul> <li>No impact of communications<br/>latency (1 sec. / single RPAS)</li> </ul>                                                                                                                                                                          | <ul> <li>General training on RPAS functioning shall be provided to ATCO</li> <li>RPAS number in one sector shall be limited to one at the same time. For a two RPAS scenario, RPAS flights must be coordinated and operator shall guarantee that C2LL trajectories are not in conflict,</li> </ul> |
| HP2<br>Suitability of<br>technical system<br>in supporting the<br>tasks of human<br>actors             |                                             | <ul> <li>Common C2LL transponder<br/>code alert mechanism to<br/>ATCOs on existing systems in<br/>case C2 link loss occurs<br/>(depending on flight route<br/>national or multi-states &amp;<br/>existing ATM system) until<br/>7400 is in place</li> </ul> | <ul> <li>"REMOTE" added to callsign at<br/>the first radio contact</li> </ul>                                                                                                                                                                                                                      |
| HP3<br>Adequacy of team<br>structure and<br>team<br>communication in<br>supporting the<br>human actors |                                             | <ul> <li>Potential to optimise C2LL initial contact information</li> </ul>                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |
| HP4<br>Feasibility with<br>regard to HP-<br>related transition<br>factors                              |                                             |                                                                                                                                                                                                                                                             | <ul> <li>As for HP1 General training on<br/>RPAS functioning shall be<br/>provided to ATCO</li> </ul>                                                                                                                                                                                              |

Table 11: Open HP issues/ recommendations and requirements

**EUROPEAN PARTNERSHIP** 



Co-funded by the European Union



#### **4.17.4Concept interaction**

As a reminder (cf. 3.2) PJ.13-W2-115 may be seen as a precursor in time to PJ.13-W2-117. PJ.13-W2-115 addresses procedural accommodation based on existing ATM systems and initial existing RPAS, whereas PJ.13-W2-117 independently addresses integration based on evolved ATM and RPAS systems/technologies and procedures.

#### **4.17.5**Most important HP issues

| PIs                                                                                              | Most important issue of the solution | Most important issues due to solution interdependencies                                                                  |
|--------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| HP1<br>Consistency of human role<br>with respect to human<br>capabilities and limitations        | RPAS in emergency situations         | Emergency management of single/low numbers of<br>RPAS to be carried forward to long-term full RPAS<br>integration (S117) |
| HP2<br>Suitability of technical<br>system in supporting the<br>tasks of human actors             | NA                                   | NA                                                                                                                       |
| HP3<br>Adequacy of team structure<br>and team communication<br>in supporting the human<br>actors | NA                                   | NA                                                                                                                       |
| HP4<br>Feasibility with regard to<br>HP-related transition<br>factors                            | NA                                   | NA                                                                                                                       |

Table 12: Most important HP issues



## 4.17.6 Additional Comments and Notes



## 4.18 Other Pls

NA

## 4.18.1 Performance Mechanism

NA

## 4.18.2 Assessment Data (Exercises and Expectations)

NA

## 4.18.3 Additional Comments and Notes



# 4.19Gap Analysis

| КРІ                                                                                                     | Validation Targets –<br>Network Level (ECAC<br>Wide) | Performance Benefits<br>at Network Level<br>(ECAC Wide or Local<br>depending on the<br>KPI) <sup>6</sup> | Rationale <sup>7</sup>                               |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| SAF1: Safety - Total<br>number of estimated<br>accidents with ATM<br>Contribution per year              | Safety Neutral                                       | Safety Neutral                                                                                           | No increase in ER-MAC<br>rate – No Gap<br>identified |
| FEFF1: Fuel Efficiency -<br>Actual average fuel burn<br>per flight                                      |                                                      |                                                                                                          |                                                      |
| CAP1: TMA Airspace<br>Capacity - TMA throughput,<br>in challenging airspace, per<br>unit time.          |                                                      |                                                                                                          |                                                      |
| CAP2: En-Route Airspace<br>Capacity - En-route<br>throughput, in challenging<br>airspace, per unit time |                                                      |                                                                                                          |                                                      |
| CAP3: Airport Capacity –<br>Peak Runway Throughput<br>(Mixed mode).                                     |                                                      |                                                                                                          |                                                      |
| TEFF1: Gate-to-gate flight time                                                                         |                                                      |                                                                                                          |                                                      |
| PRD1: Predictability –<br>Average of Difference in<br>actual & Flight Plan or RBT<br>durations          |                                                      |                                                                                                          |                                                      |
| PUN1: Punctuality –<br>Average departure delay<br>per flight                                            |                                                      |                                                                                                          |                                                      |
| CEF2: ATCO Productivity –<br>Flights per ATCO -Hour on<br>duty                                          |                                                      |                                                                                                          |                                                      |
| CEF3: Technology Cost –<br>Cost per flight                                                              |                                                      |                                                                                                          |                                                      |

Table 13: Gap analysis Summary

6 Negative impacts are indicated in red.

7 Discuss the outcome if the gap indicates a different understanding of the contribution of the Solution (for example, the Solution is enabling other Solutions and therefore is not contributing a direct benefit). Please contact your PJ19.04 Solution Champion to clarify when the Gap Rational is needed.

Page I 57



# **5** References

- [1] 08.01.03 D47: AIRM v4.1.0
- [2] B05 Performance Assessment Methodology for Step 1 PJ19.04.01 Methodology for Performance Assessment Results Consolidation (2020)
- [3] SESAR Performance Framework (2019), Edition 01.00.01, Dec 2019

Performance Assessment and Gap Analysis Report (2019), Edition 00.01.02, Dec 2019

 [4] Methodology for the Performance Planning and Master Plan Maintenance, Edition 0.13, Dec 2017

Content Integration

- [5] SESAR ATM Lexicon
- [6] Performance Management
- [7] PJ19.04 D4.1 Validation Targets Wave 2 (2020)<sup>8</sup>

#### Validation

- [8] European Operational Concept Validation Methodology (E-OCVM) 3.0 [February 2010]
- [9] SESAR 2020 PJ13 Solution 115 VALR (Validation Report), Ed. 2.00.00, 10/10/2022

Safety

- [10]SESAR, Safety Reference Material, Edition 4.0, April 2016
- [11]SESAR, Guidance to Apply the Safety Reference Material, Edition 3.0, April 2016
- [12]SESAR, Final Guidance Material to Execute Proof of Concept, Ed00.04.00, August 2015
- [13] Accident Incident Models AIM, release 2017
- [14] SESAR Solution 115 SPR-INTEROP/OSED for V3 Part II Safety Assessment Report, Ed. 00.02.00, 7/10/2022

#### Human Performance

- [15]16.06.05 D 27 HP Reference Material D27
- [16]16.04.02 D04 e-HP Repository Release note
- [17] SESAR Solution 115 SPR-INTEROP/OSED for V3 Part IV Human Performance Assessment Report, Ed. 00.02.00, 16/09/2022

<sup>8</sup> At the time of the creation of the PAR template the Validation Target is foreseen to be delivered in June 2020



#### **Environment Assessment**

[18]SESAR, Environment Assessment Process (2019), PJ19.4.2, Deliverable D4.0.080, Sep 2019.

[19]ICAO CAEP – "Guidance on Environmental Assessment of Proposed Air Traffic Management Operational Changes" document, Doc 10031.

#### Security

[20]16.06.02 D103 SESAR Security Ref Material Level

[21]16.06.02 D137 Minimum Set of Security Controls (MSSCs).

[22]16.06.02 D131 Security Database Application (CTRL\_S)



# Appendix A Detailed Description and Issues of the OI Steps

| OI Step ID Title                             |                                | Consistency with<br>latest Dataset |  |
|----------------------------------------------|--------------------------------|------------------------------------|--|
| AUO-0619 RPAS accom                          | modation in class A-C airspace | Yes                                |  |
| Table 14: OI Steps allocated to the Solution |                                |                                    |  |

No issues