

PJ.02-W2-14.5 SPR-INTEROP/OSED - Part IV -Human Performance Assessment Report for V3

DeliverableID	D4.5.002
Dissemination Level:	PU
ProjectAcronym	PJ.02-W2 AART
Grant:	874477
Call:	H2020-SESAR-2019-1
Topic:	Airport, Airside and Runway Throughput
Consortium coordinator:	EUROCONTROL
Edition date:	25 August 2022
Edition:	00.01.00
Template Edition	02.00.05

Authoring & Approval

Authors of the document	
Beneficiary	Date
EUROCONTROL	2021 to August 2022

Reviewers internal to the project		
Beneficiary	Date	
EUROCONTROL	19/08/2022	

Reviewers external to the project	
Beneficiary	Date
None	

Approved for submission to the S3JU By - Representatives of all beneficiaries involved in the project

Beneficiary	Date
EUROCONTROL	

Rejected By - Representatives of beneficiaries involved in the project

Beneficiary	Date
None	

Document History

Edition	Date	Status	Beneficiary	Justification
00.00.01	31/01/2022	Draft	EUROCONTROL	Initial draft
00.00.02	19/08/2022	Draft	EUROCONTROL	Final draft for formal review
00.01.00	25/08/2022	Final	EUROCONTROL	Final version

Copyright Statement

© 2022 – EUROCONTROL. All rights reserved. Licensed to SESAR3 Joint Undertaking under conditions.

PJ.02-W2 AART

AIRPORT, AIRSIDE AND RUNWAY THROUGHPUT

This Human Performance Assessment Report is part of a project that has received funding from the SESAR3 Joint Undertaking under grant agreement No 874477 under European Union's Horizon 2020 research and innovation programme.

Abstract

The scope of the HP Assessment Report (HPAR) is to ensure all relevant HP aspects have been identified and considered for the operational and technical development of solution PJ.02-W2-14.5 – "Increased glide slope to a second runway aiming point (IGS-to-SRAP)", in accordance with the HP Assessment Process [1].

PJ.02-W2-14.5 aims to improve airport performances on the Environmental Sustainability and Capacity Key Performance Areas by introducing the IGS-TO-SRAP concept, AO-0331. The concept was already investigated within SESAR1 Programme and SESAR 2020 PJ.02-02 in Wave 1, but as an outcome of this previous R&D Programme, it did not achieve full V3 maturity. PJ.02-W2-14.5 aims to complete the validation activities on IGS-TO-SRAP concept, so that they can be moved to the next phase of the validation cycle.

The addressed OI for the validation activities was:

• AO-0331 — Enhanced approach operations using an increased glide slope to a second runway aiming point (IGS-to-SRAP).

Table of Contents

Abst	tract	
1 Ex	xecutive Summary	6
2 In:	ntroduction	8
2.1	Purpose of the document	
2.2	Intended readership	
2.3	Structure of the document	
2.4	Acronyms and Terminology	
3 Th	he Human Performance Assessment Process: Objective and Approach	12
4 Ηι	luman Performance Assessment	13
4.1 4.1 4.1	Step 1 Understand the ATM concept 1.1 Description of reference scenario 1.2 Description of solution scenario 1.3 Consolidated list of assumptions 1.4 List of related SESAR Solutions to be considered in the HP assessment 1.5 Identification of the nature of the change	
4.2 4.2	Step 2 Understand the HP implications. .2.1 Identification of relevant arguments, HP issues & benefits and HP activities	
4.3 4.3	Step 3 Improve and validate the concept. .3.1 Description of HP activities conducted	
	Step 4 Collate findings & conclude on transition to next V-phase4.1Summary of HP activities results & recommendations / requirements4.2Maturity of the Solution	
5 Re	eferences	53
Appen	ndix A – Additional HP activities conducted	54
A.1	Wave 1 PJ.02-02 Audio-based Flare Assistant Validation	54
Appen	ndix B – HP Recommendations Register	55
Appen	ndix C – HP Requirements Register	71

List of Tables

Table 1: Acronyms table	10
Table 2: Terminology table	11
Fable 3: Assumptions overview	15
Fable 4: Description of the change	19
Table 5: HP Arguments, related HP issues and benefits, and proposed HP activity	26
Fable 6: Description of Activity 1 – Workshop	27
Table 7: Description of Activity 2 – RTS	28

Table 8: Description of Activity 2 – Flight simulation 3	0
Table 9: Summary of the HP results and recommendations/ requirements for each identified issue 8related argument5	
Table 10: V3 HP Maturity checklist5	2
Table 11: HP recommendations 7	0
Table 12: HP Requirements	2

List of Figures

0		
Figure 1: Steps of the HP	assessment process 12	2

1 Executive Summary

PJ.02-W2-14.5 aims to improve airport performance on the Environmental Sustainability and Capacity Key Performance Areas by introducing the IGS-TO-SRAP concept, AO-0331. The concept was already investigated within SESAR1 Programme and SESAR 2020 PJ.02-02 in Wave 1, but as an outcome of this previous R&D Programme, it did not achieve full V3 maturity. PJ.02-W2-14.5 aims to complete the validation activities on IGS-TO-SRAP concept, so that they can be moved to the next phase of the validation cycle.

The HP Assessment Report (HPAR) ensures that relevant Human Performance (HP) aspects have been identified and considered for the operational and technical development of PJ.02 Airport & Airside and Runway Throughput (AART) concepts, based on the HP Assessment Process [1] methodology. The HPAR is built on the structure of the HP Arguments which are "HP claims that need to be proven", according to the HP Reference Material. In a first step – the scoping and change assessment- the arguments that are relevant for the concept were identified. A full description of IGS-TO-SRAP can be found in the final PJ.02-W2-14.5 OSED/SPR-INTEROP Part I (D4.5.002) [2].

Up to date several validation activities were conducted to assess the IGS-TO-SRAP Enhanced Arrival Procedure, with the use of the Optimal Runway Delivery (ORD) tool using the Paris CDG airport, with an approach environment for:

• AO-0331 — Enhanced approach operations using an increased glide slope to a second runway aiming point (IGS-to-SRAP).

These Validation exercises were conducted to cover gaps identified following PJ.02-02 validation activities, which were about:

- 1. The management of non-nominal situations from ATC side (go-around/missed approaches, interception of wrong glide, loss of LORD tool in heavy traffic situations). One simulation covered these points
- 2. Ground aids (runway marking, runway lighting and the PAPI) for the pilots. Runway marking and PAPI were covered by one simulation and the lighting by two.

The objectives of the validation exercises were to assess the following under non-nominal conditions:

- The usability and acceptability of IGS-TO-SRAP
- The usability and acceptability of the sequencing and separation tool (ORD)
- The impact of the enhanced arrival procedure on communication exchanges/ phraseology
- The usability of the HMI
- The acceptability of the number of a/c flying the IGS-TO-SRAP.

The conclusions of the ATC real-time simulation are that the proposed ways to manage the nonnominal situations are acceptable and manageable by the controllers.

The following arguments were identified as being relevant for the concept:

Arg. 1: The role of the human is consistent with human capabilities and limitations.

Arg. 2: Technical systems support the human actors in performing their tasks.

Arg. 3: Team structures and team communication support the human actors in performing

Arg. 4: Human Performance related transition factors are considered.

The HPAR presents the outcome of the human performance activities conducted in order to adequately inform the development and validation of SESAR Solution PJ.02-W2-14.5 to full V3 maturity.

With regard to human performance activities, the new operational concept was assessed in terms of situational awareness, workload, trust in the HMI, acceptability of procedures and system, usability and utility of the system and teamwork and communication.

A total of 32 potential HP issues/ benefits have been identified, on the basis of which three HP activities were proposed:

- 1. User workshops (with relevant experts ATCOs, SUPs)
- 2. Real time simulations and debriefs
- 3. Flight deck simulations.

The above activities have been executed by applying the following data collection methods:

- Objective measurements (R/T frequency occupancy, number of clearances, sector load etc.);
- Subjective data (questionnaires, ISA recordings, debrief notes and expert observations).

These activities were defined in order to cover the HP objectives that have been included in the Validation Plan. The outputs of these activities have been integrated in the list of requirements and recommendations that are described in Chapter 4, and related to:

- Future validation exercises covering the IGS-TO-SRAP procedure
- The operational concept and related procedures
- The technical system and the design of the HMI
- The training of the end users.

2 Introduction

2.1 Purpose of the document

The purpose of the HPAR is to describe the final status of the HP issues and HP objectives identified on according to the Human Performance (HP) assessment process [1] and to define corresponding mitigations in the form of recommendations and requirements.

The SESAR Solution Development Life Cycle aims to structure and perform the work at project level and progressively increase SESAR Solution maturity, with the final objective of delivering a SESAR Solution data-pack for industrialisation and deployment. The Part IV of the OSED is a supporting document to the Part I, which is a key part of this SESAR Solution data-pack.

2.2 Intended readership

The intended audience for this document are primarily all the partners involved in SESAR 2020 PJ.02-W2-14.5.

Stakeholders are to be found among:

- ANS providers
- ATM infrastructure and equipment suppliers
- Airspace users
- Airport owners/providers
- Affected NSA
- Affected employee unions.

2.3 Structure of the document

The PJ.02-W2-14.5 OSED consists of five parts:

- Part I, providing the Safety and Performance Requirements (SPR) and Interoperability Requirements (INTEROP), that have been developed and validated during the validation activities to a V2 maturity level. They are presented in the context of the Operational Service and Environment Definition (OSED) which describes the environment, assumptions and other issues that are applicable to the SPR and INTEROP requirements.
- Part II: The Safety Assessment Report which describes the results of the safety assessment work that justify the associated SPR and INTEROP requirements in the Part I.
- Part III: The Environmental Assessment Report which describes the results of the environmental assessment work that justify the associated SPR and INTEROP requirements in the Part I.
- Part IV (this part): The Human Performance Assessment Report describes the results of the Human Performance Assessment Report which describes the results of the Human Performance assessment work that justify the associated SPR and INTEROP requirements in the Part I
- Part V: The Performance Assessment Report that consolidates the performance results obtained across the different validation activities at the solutions level.

Part IV of the SESAR Solution PJ.02-W2-14.5 OSED consists of four main sections:

- Section 1: Executive Summary of the brief description of the solution and the associated HP implications;
- Section 2: Introduction covering the purpose of the document, the intended readership, the glossary of terms and the list of acronyms;
- Section 3: The objectives and approach of the SESAR Human Performance Assessment process, providing an understanding of the methodology and each of the steps involved;
- Section 4: The description of the Human Performance Assessment, the scenarios, assumptions, understanding of the ATM concept and its implication on HP.

2.4 Acronyms and Terminology

Term	Definition
AFA	Audio Flare Assistant
AFS CP	Automatic Flight System Control Panel
ANS	Air Navigation Service(s)
AP/FD	Autopilot/flight director
APM	Approach Path Monitoring
APP	Approach
ASS	Assumption
ATC	Air Traffic Control
ATCO	Air Traffic Controller
ATIS	Automatic Terminal Information Service
ATM	Air Traffic Management
ATS	Air Traffic Services
CAT	Category
CDG	Charles De Gaulle airport
CSPR ST	Closely Spaced Parallel Runways Staggered Threshold
CWP	Controller Working Position
DCB	Demand Capacity Balancing
DOD	Detailed Operational Description
EAP	Enhanced Arrival Procedures
EUROCONTROL	European Organisation for the Safety of Air Navigation
EXE	Exercise
FCOM	Flight Crew Operating Manual
FTD	Final Target Distance
GBAS	Ground Based Augmentation System
GLS	GBAS Landing System
HMI	Human Machine Interface
HPA	Human Performance Assessment
HPAP	Human Performance Assessment Plan
HPAR	Human Performance Assessment Report
ICAO	International Civil Aviation Organisation
IFR	Instrument Flight Rules
IGS-TO-SRAP	Increased Glide Slope to Secondary Runway Aiming Point
ILS	Instrument Landing System
INI	Initial Approach Controller
INTEROP	Interoperability
ISA	Instantaneous Self-Assessment

ISGSIncreased Second Glide SlopeITDInitial Target DistanceITMCDG Approach sectorKPAKey Performance AreaLORDLanding with Optimised Runway DeliveryMRSMinimum Radar SeparationNOTAMNotice to AirmenNSANational Supervisory AuthorityOBJObjectiveOIOperational ImprovementOPSOperational Improvement DefinitionPAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRNVArea NavigationRTCSRecruitment, Training, Competence, and StaffingRTSStalelite-Based Augmentation SystemSBASSatellite-Based Augmentation SystemSBASSatellite-Based Augmentation SystemSTARStandard Arrival RouteSTARStadard Arrival RouteTVATask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingVALPValidation PlanVALRValidation PlanVALRValidation PlanVALR <th></th> <th></th>			
ITMCDG Approach sectorKPAKey Performance AreaLORDLanding with Optimised Runway DeliveryMRSMinimum Radar SeparationNOTAMNotice to AirmenNSANational Supervisory AuthorityOBJObjectiveOIOperational ImprovementOPSOperational Service and Environment DefinitionPAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRNAVArea NavigationRTSReal-Time SimulationSATISHAPE Automation SystemSATISHAPE Automation Tures IndexSBASSatellite-Based Augmentation SystemSSARSingle European Sky ATM ResearchSJUSESAR Dinit UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTARStandard Arrival RouteSTARStandard Arrival RouteSTARStandard Arrival RouteSTARStandard Arrival RouteSTARStandard Arrival RouteTIXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTNATrainingTWRTowerVALPValidation PlanVALSVisual Approach Slope Indicator	ISGS	Increased Second Glide Slope	
KPAKey Performance AreaLORDLanding with Optimised Runway DeliveryMRSMinimum Radar SeparationNOTAMNotice to AirmenNSANational Supervisory AuthorityOBJObjectiveOIOperational ImprovementOPSOperational Service and Environment DefinitionPAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway DeliveryOSEDOperationsRAPRunway Cocupancy TimeRTCSRequirementRNAVArea NavigationRTSReal-Time Simulation QuestionnaireRTSRecuirementRTSRel-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWROwerVALPValidation PlanVASIVisual Approach Slope Indicator	ITD	Initial Target Distance	
LORDLanding with Optimised Runway DeliveryMRSMinimum Radar SeparationNOTAMNotice to AirmenNSANational Supervisory AuthorityOBJObjectiveOIOperational ImprovementOPSOperational Service and Environment DefinitionORDOptimised Runway DeliveryOSEDOperational Service and Environment DefinitionPAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRNAVArea NavigationRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time Simulation Trust IndexSASHASituational Awareness for SHAPESARASatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSUUSESAR Joint UndertakingSPRSafety and Performance RequirementsSTARStandard Arrival RouteSTARStandard Arrival RouteSTARStandard Arrival RouteSTARStandard Arrival RouteSTARStandard Arrival RouteSTARStandard Arrival RouteTVXTask Load IndexTMATrainingTWRTowerVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	ITM	CDG Approach sector	
MRSMinimum Radar SeparationNOTAMNotice to AirmenNSANational Supervisory AuthorityOBJObjectiveOIOperational ImprovementOPSOperational ImprovementOPSOperational Service and Environment DefinitionPAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRTCSRecruitment, Training, Competence, and StaffingRTSRel-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Alord Arria RouteSTARStandard Arrival RouteSTARStandard Arrival RouteTIXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRValidation PlanVALPValidation PlanVALPValidation Plan	КРА	Key Performance Area	
NOTAMNotice to AirmenNSANational Supervisory AuthorityOBJObjectiveOIOperational ImprovementOPSOperationsORDOptimised Runway DeliveryOSEDOperational Service and Environment DefinitionPAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRNAVArea NavigationRTCSRecruitment, Training, Competence, and StaffingRTSRelational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSTARStandard Arrival RouteSTARStandard Arrival RouteTIXTask Load IndexTMATerminal Manceuvring AreaTODTop Of DescentTRNTrainingTWRValidation PlanVALPValidation PlanVASIVisual Approach Slope Indicator	LORD	Landing with Optimised Runway Delivery	
NSANational Supervisory AuthorityOBJObjectiveOIOperational ImprovementOPSOperationsORDOptimised Runway DeliveryOSEDOperational Service and Environment DefinitionPAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRNAVArea NavigationROTRunway Occupancy TimeRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSIUSESARSIJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVASIVisual Approach Slope Indicator	MRS	Minimum Radar Separation	
OBJObjectiveOIOperational ImprovementOPSOperational ImprovementORDOptimised Runway DeliveryOSEDOperational Service and Environment DefinitionPAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRNAVArea NavigationRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESASHASituational Awareness for SHAPESASHASingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRValidation PlanVALPValidation ReportVALRValidation ReportVASIVisual Approach Slope Indicator	NOTAM	Notice to Airmen	
OlOperational ImprovementOPSOperationsORDOptimised Runway DeliveryOSEDOperational Service and Environment DefinitionPAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRNAVArea NavigationROTRunway Occupancy TimeRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESASHASituational Awareness for SHAPESARPSecondary Runway Aiming PointSFARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTARStandard Arrival RouteTIXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVALRValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	NSA	National Supervisory Authority	
OPSOperationsORDOptimised Runway DeliveryOSEDOperational Service and Environment DefinitionPAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRNAVArea NavigationROTRunway Occupancy TimeRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	OBJ	Objective	
ORDOptimised Runway DeliveryOSEDOperational Service and Environment DefinitionPAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRNAVArea NavigationROTRunway Occupancy TimeRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRValidation PlanVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	01	Operational Improvement	
OSEDOperational Service and Environment DefinitionPAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRNAVArea NavigationROTRunway Occupancy TimeRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingVALPValidation PlanVALRVisual Approach Slope Indicator	OPS	Operations	
PAPIPrecision Approach Path IndicatorPSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRNAVArea NavigationROTRunway Occupancy TimeRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	ORD	Optimised Runway Delivery	
PSQPost-Simulation QuestionnaireRAPRunway Aiming PointREQRequirementRNAVArea NavigationROTRunway Occupancy TimeRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRValidation PlanVALPValidation ReportVASIVisual Approach Slope Indicator	OSED	Operational Service and Environment Definition	
RAPRunway Aiming PointREQRequirementRNAVArea NavigationROTRunway Occupancy TimeRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	PAPI	Precision Approach Path Indicator	
REQRequirementRNAVArea NavigationROTRunway Occupancy TimeRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	PSQ	Post-Simulation Questionnaire	
RNAVArea NavigationROTRunway Occupancy TimeRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTWRTowerVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	RAP	Runway Aiming Point	
ROTRunway Occupancy TimeRTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTWRTowerVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	REQ	Requirement	
RTCSRecruitment, Training, Competence, and StaffingRTSReal-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTWRTowerVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	RNAV		
RTSReal-Time SimulationSASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	ROT	Runway Occupancy Time	
SASHASituational Awareness for SHAPESATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVASIVisual Approach Slope Indicator	RTCS	· · · · · · · · · · · · · · · · · · ·	
SATISHAPE Automation Trust IndexSBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVASIVisual Approach Slope Indicator	RTS	Real-Time Simulation	
SBASSatellite-Based Augmentation SystemSESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVASIVisual Approach Slope Indicator	SASHA	Situational Awareness for SHAPE	
SESARSingle European Sky ATM ResearchSJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVASIVisual Approach Slope Indicator	SATI	SHAPE Automation Trust Index	
SJUSESAR Joint UndertakingSPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVASIVisual Approach Slope Indicator	SBAS	Satellite-Based Augmentation System	
SPRSafety and Performance RequirementsSRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVASIVisual Approach Slope Indicator	SESAR	Single European Sky ATM Research	
SRAPSecondary Runway Aiming PointSTARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVASIVisual Approach Slope Indicator	SJU	SESAR Joint Undertaking	
STARStandard Arrival RouteSTQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVASIVisual Approach Slope Indicator	SPR	Safety and Performance Requirements	
STQSHAPE Teamwork QuestionnaireTLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVASIVisual Approach Slope Indicator	SRAP	Secondary Runway Aiming Point	
TLXTask Load IndexTMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVASIVisual Approach Slope Indicator	STAR	Standard Arrival Route	
TMATerminal Manoeuvring AreaTODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	STQ	SHAPE Teamwork Questionnaire	
TODTop Of DescentTRNTrainingTWRTowerVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	TLX	Task Load Index	
TRNTrainingTWRTowerVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	TMA	Terminal Manoeuvring Area	
TWRTowerVALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	TOD	Top Of Descent	
VALPValidation PlanVALRValidation ReportVASIVisual Approach Slope Indicator	TRN	Training	
VALRValidation ReportVASIVisual Approach Slope Indicator	TWR	Tower	
VASI Visual Approach Slope Indicator	VALP	Validation Plan	
	VALR	Validation Report	
	VASI	Visual Approach Slope Indicator	
	VFR	Visual Flight Rules	

Table	1: Ac	ronyms	table
IGNIC	7. 10		CONIC

Term		Description
Human (HF)	Factors	HF is used to denote aspects that influence a human's capability to accomplish tasks and meet job requirements. These can be external to the human (e.g. light & noise conditions at the workplace) or internal (e.g. fatigue). In this way, "Human Factors" can be considered as focussing on the variables that determine Human Performance.

Human Performance (HP)	HP is used to denote the human capability to successfully accomplish tasks and meet job requirements. In this way, "Human Performance" can be considered as focussing on the observable result of human activity in a work context. Human Performance is a function of Human Factors (see above). It also depends on aspects related to Recruitment, Training, Competence, and Staffing (RTCS) as well as Social Factors and Change Management.
HP activity	An HP activity is an evidence-gathering activity carried out as part of Step 3 of the HP assessment process. An HP activity can relate to, among others, task analyses, cognitive walkthroughs, and experimental studies.
HP assessment	An HP assessment is the documented result of applying the HP assessment process to the SESAR Solution-level. HP assessments provide the input for the HP case.
HP assessment process	The HP assessment process is the process by which HP aspects related to the proposed changes in SESAR are identified and addressed. The development of this process constitutes the scope of Project 16.04.01. It covers the conduct of HP assessments on the Solution-level as well as the HP case building over larger clusters of Solutions.
HP Argument	An HP argument is an HP claim that needs to be proven through the HP Assessment Process.
HP benefit	An HP benefit relates to those aspects of the proposed ATM concept that are likely to have a positive impact on human performance.
HP case	An HP case is the documented result of combining HP assessments from SESAR Solutions into larger clusters (e.g. SESAR Projects, deployment packages) in SESAR.
HP issue	An HP issue relates to those aspects in the ATM concept that need to be resolved before the proposed change can deliver the intended positive effects on Human Performance.
HP impact	An HP impact relates to the effect of the proposed solution on the human operator. Impacts can be positive (i.e. leading to an increase in Human Performance) or negative (leading to a decrease in Human Performance).
HP recommendations	HP recommendations propose means for mitigating HP issues related to a specific operational or technical change. HF recommendations are proposals that require additional analysis (i.e. refinement and validation). Once this additional analysis is performed, HF recommendations may be transformed into HF requirements.
HP requirements	HP requirements are statements that specify required characteristics of a solution from an HF point of view. HP requirements should be integrated into the DOD, OSED, SPR, or specifications. HF requirements can be seen as the stable result of the HF contribution to the Solution, leading to a redefinition of the operational concept or the specification of the technical solution.

Table 2: Terminology table

3 The Human Performance Assessment Process: Objective and Approach

The purpose of the HP assessment process described in detail in Human Performance Guidance document [1] is to ensure that HP aspects related to SESAR Solution technical and operational developments are systematically identified and managed.

The SESAR HP assessment process uses an 'argument' and 'evidence' approach. An HP argument is an 'HP claim that needs to be proven'. The aim of the HP assessment is to provide the necessary 'evidence' to show that the HP arguments impacted have been considered and satisfied by the HP assessment process. This includes the identification of HP requirements and recommendations to support the design and development of the concept, which will be defined in the HP Assessment Report (HPAR).

The HP assessment process is a four-step process. [1] provides an overview of these four steps with the tasks to be carried out and the two main outputs (i.e. HPAP and HPAR). Please note that a HP log is not to be developed in support of this solution, given the low complexity of the assessment required. As such, please disregard references to 'HP Log' in the figure below:

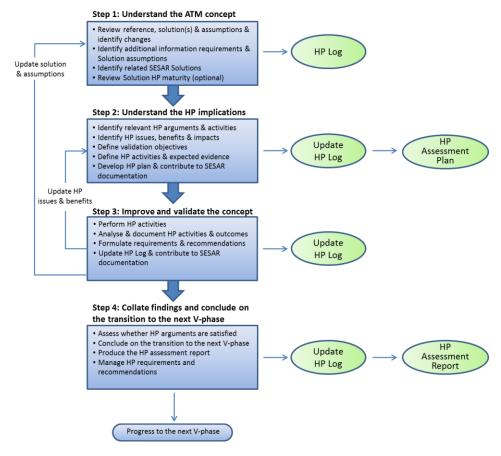


Figure 1: Steps of the HP assessment process

4 Human Performance Assessment

4.1 Step 1 Understand the ATM concept

4.1.1 Description of reference scenario

The **reference scenario** is represented by the current final approach operations conducted with a nominal (3°) and a continuous glide path angle, to the second threshold, based on the various available technologies: Instrument Landing System (ILS), GBAS CAT I, Area Navigation (RNAV) or Satellite-Based Augmentation System (SBAS).

4.1.2 Description of solution scenario

AO-0331	Enhanced approach operations using an increased glide slope to a second runway aiming point (IGS-to-SRAP)	Full

Enhanced approach operations applying an Increased Glide Slope (above the approach angle in use to the considered runway threshold and up to 4.49°) to an Aiming Point further down the runway threshold (as specified in the published chart), will enable inbound aircraft to reduce noise footprint (environmental benefit) and possibly reduce runway occupancy time and/or taxi-in time depending on local runway/taxiway layout. Unlike the Increased Glide Slope concept (which applies to the runway physical threshold), increasing the glide slope on an additional (second) runway aiming point should prevent a potential reduction of airport capacity and potentially increasing it through optimization in wake turbulence separations. The distance between the second threshold and the nominal one is at least of 1100m.

Compared to benefits gained from the Second Runway Aiming Point concept (using the same glide path angle for both glide slopes), increasing the glide slope on the additional (second) runway aiming point allows a potential increase of airport capacity through optimization in wake turbulence separations with a limited / shorter displacement of the additional runway aiming point.

4.1.3 Consolidated list of assumptions

Identifier	Title	Description	Justification	Impact on Assessment
R01-ASS- 01	Aircraft equipage capabilities	92% of the aircraft in the traffic sample are able to fly SRAP enabled by a specified system: RNAV or GBAS. 56% are planned for an RNAV or GBAS approach.	To be in line with the forecast for 2030	HIGH
R01-ASS- 02	Separation standards and responsibilities	separation and runway		HIGH

Identifier	Title	Description	Justification	Impact on Assessment
		respected if the LORD tool is not available.		
R01-ASS- 03	No wind conditions	There will be no wind conditions simulated	This will not influence the results as the LORD tool considers the wind in the separation that it provides and the controllers will follow the chevrons provided by the LORD tool.	N/A
R01-ASS- 04	Traffic Sample	Observed traffic figures have been augmented to represent traffic in 2030.	This is required to understand the feasibility of the concepts during the expected implementation time.	HIGH
R01-ASS- 05	Runway Occupancy Times (ROT)	occupancy times are	This will not influence the results as the LORD tool considers the ROT in the separation that it provides and the controllers will follow the chevrons provided by the LORD tool.	N/A
R01-ASS- 06	Go-Arounds and Missed Approaches	approach are not re- introduced into the	The purpose of the simulation is to assess how the missed approach or go- around is managed at the moment that they occur. Once managed, the controller returned to nominal situation.	LOW
R01-ASS- 07	No crossing Traffic	includes North arrivals.	environment is supposed to be generic for all	LOW
R01-ASS- 08	Aircraft General Characteristics	All aircraft have the same nominal characteristics.	For a realistic simulation environment	HIGH
R01-ASS- 09	Airspace Organisation	European airspace will be based on current ICAO ATS classifications, regulations and	For a realistic simulation environment	HIGH

Identifier	Title	Description	Justification	Impact on Assessment
		applicable rules, including VFR and IFR.		
R01-ASS- 10	Actor Compliance	General Compliance by all actors with existing standards and guidelines.	For a realistic simulation environment	HIGH
R01-ASS- 11	Standards		For a realistic simulation environment	HIGH
R01-ASS- 12	Training		For a realistic simulation environment	HIGH
EXE03- ASS1	SRAP landing minima	use the landing minima from the charts (no	As per SRAP concept definition, if there is an impact on landing minima for SRAP, it should be transparent for the pilots.	MEDIUM

Table 3: Assumptions overview

4.1.4 List of related SESAR Solutions to be considered in the HP assessment

All solutions of PJ02-W2-14 using the same ATCO tool have to be considered relevant and interrelated.

4.1.5 Identification of the nature of the change

The following table is used to help systematically identify and capture the nature of the change that may result due to the introduction of the concept(s) under investigation in terms of, the ATM actors impacted as well as the potential changes to their work.

The HP argument branches of the table cover the second level of HP arguments in Appendix A of [1] and so it is not only used to help identify and capture changes to ATM actors work but can also be used to help screen and scope the HP assessment. Therefore, the table helps narrow down and focus the list of HP arguments that need to be investigated in the next step of the HP assessment. Furthermore, if there are no changes identified that relate to any of the HP argument branches in the table then no HP assessment is required on the Solution.

Note: the numbering of the argument branches in the table is in line with the numbering of the HP arguments in Appendix A of [1].

HP argument Change & affected actors branch

1. ROLES & RESPONSIBILITIES

I. ROLES & RESPON	
1.1 ROLES &	For both air & ground there are no role changes foreseen in the project.
Responsibilities	What could occur is a different task sharing between existing roles, with the same responsibilities
1.2 OPERATING METHODS	Operators and pilots intending to conduct any approach operations should fill the appropriate flight plan suffixes and the on board navigation data must be current and include the appropriate procedures, including the new IGS-to-SRAP (that must be selectable from a valid navigation database (NavDB) and not prohibited by a company instruction or Notice to Airmen (NOTAM)).
	Aircraft capability to fly glide slope increase and multiple runway aiming points shall be indicated in flight plan so that the capability can be considered in the Demand Capacity Balancing (DCB) process.
	Note the IGS-to-SRAP procedure emphasizes the specificities regarding the landing distance. On a destination airport with multiple runways and/or multiple runway aiming points, the landing distance computation at dispatch may be performed on the longest landing runway with no wind. If the runway condition changes at landing (wind, dry/wet, contaminated etc.), the flight crew must perform a new landing distance computation.
	With IGS-to-SRAP, once informed by ATC of the intended approach procedure which defines the requested landing runway and runway aiming point, the flight crew may perform an in-flight landing performance assessment if the landing conditions changed compared with the landing computation at dispatch, or if they have not prepared the intended approach procedure at dispatch.
	The crew has to respect the Standard Operational Procedure defined for the corresponding IGS-to-SRAP flown if any (described in the Flight Crew Operating Manual FCOM). That concerns particularly the aircraft configurations deployment in order to be stabilized in speed and thrust level no later than 1000ft. The crew must also comply with the ATC speed constraints if any.
	ATCO manages the landing sequence of the a/c flying a mix of different standard approach procedures and IGS-to-SRAP. ATC tools are enhanced to support ATCOs.
	TMA/APP ATCO through ATIS informs a/c about the EAP in use; instructs a/c to fly STAR or they receive clearances by ATC to follow radar vectoring instructions .
	In IGS-to-SRAP the descent profile should contain at least one fix, where pilots compare the actual crossing altitude with the required crossing altitude .
	Lateral or vertical profile changes may impact aircraft deceleration capability and on-board energy management . That may require that pilots adapt the current operating procedure in order to ensure safe approach and landing operations. In addition, pilots will have to consider the impact of the conditions of the day (wind, temperature) to adapt the procedure.

1.3 ТАЅКЅ	Before capturing the final approach segment, the flight crew must verify the correctness of the arrival data from the Navigation Database, crosschecking them with the approach chart. Moreover, the crew must verify that there is not any failure (e.g. faulty slats/flaps) affecting the aircraft performance and especially impairing the aircraft deceleration capability. On most modern avionics, following ATC clearance to fly final approach, the crew arms the approach guidance modes on the Automatic Flight System Control Panel (AFS CP) and then the aircraft captures and flies the final approach path down to the runway.
	In addition to the standard info, the ATCO provides the a/c with the leading a/c precision approach segment; At TOD ATCO requests to fly IGS-to-SRAP. If refused by $a/c - the$ standard ILS precision segment is instructed;
	Monitoring of the weather conditions and the GBAS (or other EAP enablers) equipment status are necessary. In IGS-to-SRAP increased monitoring of the a/c deceleration is needed;
	ATCO can be supported by a discrepancy check tool; Before TOD ATCO request a/c to fly a final approach segment anchored to an optimised RAP. Ground controller need to know where an IGS-to-SRAP flight is most likely to leave the runway in order to plan an optimised ground flow and avoid unforeseen conflicts on the taxiways (AERODROME-ATC-25) (Check if there's a difference between the standard procedure and IGS-to-SRAP).
	The responsible ATCO can change the request before 15 NM to the airport.
	The concept of increasing the final slope is new and may lead to some changes regarding tasks to be managed by pilots.
	Increasing the slope may challenge pilots' habit regarding approach procedure: new perception of the runway, new tasks to accomplish, which may be more mentally demanding than for conventional approaches leading therefore to potential additional workload.
	Additional actions/checks linked to these operations: An inadequate integration of tasks could raise issues regarding task accomplishments, situational awareness, workload management, etc. leading to potential difficulties to manage the approach.
	Potential impact on existing role and responsibilities sharing within the crew.
2. HUMAN & SYSTE	EM

2.1 ALLOCATION OF TASKS (HUMAN & SYSTEM)	The approach can be flown with various levels of automation: with Autopilot/flight director (AP/FD), with FD only and without AP/FD (using only the raw data).
	The target distance indicators will be displayed in order to help the ATCOs determine and achieve the required a/c spacing /separation. The ORD support tool will provide the minimum distance to be maintained down to threshold (the final target distance indicator). In addition, the HMI will also present the compression effect to help ATCOs deliver the required minimum separation at threshold (the initial target distance indication). This means that the system, and not the ATCO, is now calculating the required spacing between different a/c pairs.

	Furthermore, an ATCO support tool monitoring the glide interception is foreseen. With the IGS-to-SRAP the aircraft flies a different glide slope and the ATCO needs support
2.2 Performance	A/c trajectory, performance and status are shared between a/c and ground via the conformance monitoring tool; glide path monitor.
OF TECHNICAL SYSTEM	On-board system may need to be improved in order to ensure safe approach and landing operations in automatic and manual mode.
	On the visual segment below the minima, additional flight deck aids may be provided to the pilot to achieve correctly the manual flare manoeuvre.
	However, tailwind conditions may have a negative impact on aircraft deceleration capabilities (impact is under study). Therefore, before performing an IGS-to-SRAP approach, flight crew would also need to check from ATIS reports or in coordination with ATC if the weather condition on the arrival airport allows performing a safe IGS-to-SRAP approach. Pilots need access to accurate information to be able to analyse it differently than today to ensure IGS-to-SRAP flyability. Generally, low visibility is a concern for GBAS IGS-to-SRAP.
2.3 HUMAN – Machine Interface	The ATCO has the indication that the aircraft flies an IGS-to-SRAP on the human machine interface. The tower controller has additionally also an indication of the location of the SRAP on his working position. There are additional options of flexibly highlighting the runway aiming point the landing aircraft is aiming at.

3. TEAMS & COMMUNICATION

3.1 TEAM	No change
COMPOSITION	
3.2 ALLOCATION	No change
OF TASKS	
3.3	Aircraft that are approaching an aerodrome are informed about the IGS-to-SRAP
COMMUNICATION	in use, in addition to the standard final approach instrument procedure, through the automatic terminal information service (ATIS and NOTAM).
	The introduction of the IGS-to-SRAP functions could imply (e.g. in case of rejection, more information etc.) additional communications between flight crew and controllers.

4. HP RELATED TRANSITION FACTORS

4.1 ACCEPTANCE & JOB SATISFACTION	No changes foreseen but assessed
4.2 COMPETENCE REQUIREMENTS	An understanding of aircraft behaviour when following IGS-to-SRAP is needed and take this into account when setting up sequence and spacing. The controllers also need to understand the technology, the enablers for SRAP (GBAS; RNAV/ SBAS) is built on and how that differs from for example ILS system.

4.3 STAFFING REQUIREMENTS & STAFFING LEVELS	No changes
4.4. RECRUITMENT AND SELECTION	No changes
4.5. TRAINING NEEDS	The ATCO training shall include training of the ORD tool and the related changes in operating methods, procedures and the technology that enables SRAP. Training is needed on the aircraft behaviour when following SRAP and take this into account when setting up sequence and spacing.

Table 4: Description of the change

4.2 Step 2 Understand the HP implications

4.2.1 Identification of relevant arguments, HP issues & benefits and HP activities

Given that the development of the current HPAP was done at an early stage when the OSED was not yet finalised, some of the HP issues might be updated or new ones might be integrated in the next iteration of the VALP.

Arg.	Issue ID	HP issue / Benefit	HP/Valid. Obj. ID	HP validation objective	Recommended activity/ies
Arg.1.2	HPI Arg 1.2.1_IGS- to-SRAP02	IGS-to-SRAP procedures are not accepted by pilots	IGS-to- SRAP -HP- OBJ 02	Assess acceptability of IGS to SRAP procedures by pilots	Workshop Flight sim
	HPI Arg 1.2.2_IGS- to-SRAP01	The procedures for abnormal situations are not acceptable.	IGS-to- SRAP -HP- OBJ 03	Define and assess procedures for consecutive go-arounds	Workshop RTS
			IGS-to- SRAP -HP- OBJ 04	Define and assess procedures for sequence break out.	RTS
	HPI Arg 1.2.2_IGS- to-SRAP02	The transition procedures from normal to abnormal conditions are not acceptable.	IGS-to- SRAP -HP- OBJ 05	Clear procedures for the transition from for non-nominal modes of operations shall be defined (e.g. until which phase of flight can the transition mode take place?) and assessed	Workshop RTS
	HPI Arg 1.2.2_IGS- to-SRAP03	The pilot intends to fly to the second threshold but due to abnormal situation (heavy rain) he does not see the second threshold once passes	IGS-to- SRAP -HP- OBJ 06	Assess the air crew procedures for abnormal situations	Flight sim

				AART	JOINT UNDERTAK
	HPI Arg 1.2.3_IGS- to-SRAP01	Transition procedures for degraded modes are not acceptable	IGS-to- SRAP -HP- OBJ 07	Assess procedures in case of tool loss (revert to conventional procedures)	Workshop RTS
	HPI Arg 1.2.3_IGS- to-SRAP02	Following a failure of the sequencing and separation tool, the ATCO fails to accurately and efficiently perform the tasks	IGS-to- SRAP -HP- OBJ 08	Asses ATCOs ability to revert to conventional procedures as a result of a tool failure	Workshop RTS
	HPI Arg 1.2.3_IGS- to-SRAP03	Following a failure of the enabler for EAP (GBAS, RNAV/SBAS) the ATCO or pilot fails to accurately and efficiently perform the tasks	IGS-to- SRAP -HP- OBJ 09	Assess the ability of the ATCOs and pilots to accurately and efficiently perform the task in case of a degraded mode of the EAP enabler.	RTS Flight sim
Arg.1.3	HPI Arg 1.3.1_IGS- to-SRAP01	The ATCO does not detect that the aircraft intercepts the wrong glide slope	IGS-to- SRAP -HP- OBJ 10	ATCO tool in place to mitigate this issue; Assess the usability of the tool.	Workshop RTS
	HPI Arg 1.3.1_IGS toSRAP02	The ATCO does not detect in due time that one of the a/c in the sequence is performing a go-around.	IGS-to- SRAP -HP- OBJ 11	ATCO tool (alert) to mitigate this issues. Assess the timeliness of the detection from the ATCOs (for both cases in which the go-around is identified by the ATCOs first and the cases in which the go- around is only acknowledged upon FC information).	Workshop RTS
	HPI Arg 1.3.1_IGS- to-SRAP03	The pilot confuses the thresholds in the switching scenario	IGS-to- SRAP -HP- OBJ 12	Assess landing visual aid references in flight simulator in the switching scenario, (at the time of the landing clearance the "correct" runway has to be illuminated and switching should be finished latest at around 1000ft. This is the "gate" at which also in the flight deck everything must be stable (aircraft fully configured, at the correct approach	Flight sim

			speed and approach path and with stable thrust settings)) Need for an adapted external visual aid: It is recommended to provide to the crew an adapted external visual aid (VASI/PAPI) for IGS approach operations in order to avoid pilot's confusion	
HPI Arg 1.3.1_IGS- to-SRAP04	Flight crew is not supported by appropriate landing visual aid references for their flown approach procedure (e.g. specific PAPIs) , down to CAT I minima resulting in a unstable approach	IGS-to- SRAP -HP- OBJ 14	Assess the acceptability of the landing visual aid references in flight simulator	Flight sim
HPI Arg 1.3.1_IGS- to-SRAP05	Flight Crew is disoriented by (virtual or physical?) the several available runway markers and lighting indicators and lands on a RAP different from the one cleared for.	IGS-to- SRAP -HP- OBJ 15	Assess usability and efficiency of runway markers and lighting indicators.	Flight sim
HPI Arg 1.3.1_IGS- to-SRAP06	APP PC does not realize that provided weather information (important for the conduct of IGS) in the ATIS is erroneous (SV input). Consequently, the ATCO clears for a procedure that is not feasible.	IGS-to- SRAP -HP- OBJ 16	Identify and assess mitigations	Workshop
HPI Arg 1.3.2_IGS- to-SRAP01	When the a/c on the lower glide is going on missed approach / instructed to Go-around, the ATCO (APP or TWR) does not success to compare the actual separation to the RECAT standard separation.	IGS-to- SRAP -HP- OBJ 17	Assess the feasibility of procedure (ATCO to crosscheck information in high workload conditions).	RTS
HPI Arg 1.3.3_IGS- to-SRAP01	Transition instructions given on the base leg, increase flight crew workload.	IGS-to- SRAP -HP- OBJ 18	Assess transition procedures from the flight crew perspective	Flight sim

				· AART	JOINT UNDERTAKI
	HPI Arg 1.3.3_IGS- to-SRAP02	In case of multiple go-arounds the ATCOs workload increases to unacceptable levels (once detected the 1st go-around, check if follower is on the higher slope or not, check against standard minima & coordinate TWR/APP).	IGS-to- SRAP -HP- OBJ 19	Assess ATCO workload in non-nominal situations	RTS
	HPI Arg 1.3.5_IGS- to-SRAP01	The ATCO perception of the aircraft position in relation to the SRAP is ambiguous	IGS-to- SRAP -HP- OBJ 20	Assess acceptability of SRAP by the ATCO (out of the window view- display of SRAP in the system)	RTS
	HPI Arg 1.3.5_IGS- to-SRAP02	The ATCO cannot easily identify the SRAP through the out of the window view.	IGS-to- SRAP -HP- OBJ 21	Assess the SRAP procedure from a realistic tower position	RTS
	HPI Arg 1.3.5_IGS- to-SRAP03	Due to the more complex procedures and a higher traffic sample, the ATCOs might have a reduced level of SA and in case of degraded mode of operation they would not be aware of all the details of the traffic	IGS-to- SRAP -HP- OBJ 22	Assess the situational awareness of ATCOs in degraded conditions and abnormal situations.	RTS
Arg.2.2	HPI Arg 2.2.1_IGS- to-SRAP01	The ATCO becomes over-reliant on the ORD tool and fails to revert easily to working without the tool (degraded mode).	IGS-to- SRAP -HP- OBJ 23	Assess how the changed in the allocation of task between the human and the machine impact human performance.	Workshop RTS
Arg.2.3	HPI Arg 2.3.3_IGS- to-SRAP01	The auditory is the first canal that is inhibited with high workload. Any surprise effect, unexpected information, additional data to compute, distrust toward indicators or stress may increase workload.	IGS-to- SRAP -HP- OBJ 24	(Optional issue not mandatory to achieve V3): Test the flare assistance sounds in real conditions to make sure that they are easily noticed.	Test flights
		One issue is the perseveration (attentional tunnelling). During the flare, many parameters that may lead to perseveration			

				JUINT UNDERTAKI
	are present (stress, workload, temporal pressure, attentional focus on current task).			
	Pilots may be able to hear, understand and apply the assistance proposition during the flare manoeuvre.			
	When focusing on flare assistant sound, pilots may be able to hear, understand other sounds than Audio Flare Assistant (AFA) such as ATC clearance or flight deck warning during the flare manoeuvre.			
HPI Arg 2.3.3_IGS- to-SRAP02	Inadequate external visual aids may lead to difficulties to handle the function and to understand what actions pilots have to do to perform an IGS-to-SRAP approach.	IGS-to- SRAP -HP- OBJ 25	Assess visual references	Flight sim
HPI Arg 2.3.3_IGS- to-SRAP03	Energy Management Assistant function use is expected to help the pilots when the aircraft is on the Glide Slope providing them relevant information to support the management of the energy and to facilitate the choice of strategy to adopt. This in turn will bring a benefice in term of human performance	IGS-to- SRAP -HP- OBJ 26	(Optional issue not mandatory to achieve V3): Assess the energy management assistant function (Does it provide the pilot with sufficient information to make a decision in any circumstances)	Flight sim
HPI Arg 2.3.3_IGS- to-SRAP04	Energy Management Assistant function use is expected to provide pilots an energy awareness in case of high workload during the approach phase giving relevant information that can help them to choose the appropriate strategy to adopt. This in turn will bring a benefice in term of human	IGS-to- SRAP -HP- OBJ 27	(Optional issue not mandatory to achieve V3): Assess the energy management assistant function (Does it provide the pilot with sufficient information to make a decision in any circumstances)	Flight sim

		performance (other allocation of cognitive resources).			
	HPI Arg 2.3.3_IGS- to-SRAP05	The visual displays do not support ATCOs to know which EAP they have	IGS-to- SRAP -HP- OBJ 28	Assess usability of the HMI (alert and ORD tool)	Workshop RTS
	HPI Arg 2.3.3_IGS- to-SRAP06	The glide alert improves the monitoring and the implementation of SRAP	IGS-to- SRAP -HP- OBJ 29	Assess usability of the glide alert	Workshop RTS
	HPI Arg 2.3.3_IGS- to-SRAP07	The usability of the glide alert is poor, not intuitive nor easy to use/ interpret and reduces situation awareness	IGS-to- SRAP -HP- OBJ 30	Assess usability and acceptability of the glide alert	Workshop RTS
Arg. 3.3	HPI Arg 3.3.1_IGS- to-SRAP01	Multiple go-arounds management requires additional coordination between APP and TWR (especially in the case in which the lead a/c is in contact with the TWR and the follower in contact with APP (ITM).	IGS-to- SRAP -HP- OBJ 31	Assess communication load and its impact on the workload of the ATCOs.	RTS
	HPI Arg 3.3.1_IGS- to-SRAP02	The potential case of multiple go-arounds require additional coordination between the ATCOs and FC, which might have a negative impact on workload.	IGS-to- SRAP -HP- OBJ 32	Assess communication load and its impact on the workload of the ATCOs and FC.	RTS
	HPI Arg 3.3.2_IGS- to-SRAP02	Phraseology needs to be revised for abnormal conditions.	IGS-to- SRAP -HP- OBJ 33	Assess phraseology needs for abnormal conditions	Workshop RTS

					-		JOINT ONDERTAIL
Arg.	HPI Arg	The new abnormal procedures could have an	IGS-to-	Assess acceptability	of	abnormal	Workshop
4.1	4.1.1_IGS- to-SRAP01	impact on acceptability for both ATCOs and pilots.	SRAP -HP- OBJ 34	procedures			RTS
Arg. 4.5	HPI Arg 4.5.1_IGS- to-SRAP01	ATCOs and pilots are not sufficiently familiar with the novel IGS operations and associated changes (e.g. runway marking and lighting, glide alerts, abnormal conditions).		Assess training needs			Workshop RTS

Table 5: HP Arguments, related HP issues and benefits, and proposed HP activity

4.3 Step 3 Improve and validate the concept

4.3.1 Description of HP activities conducted

Activity 1.	Workshop
Description	The workshop will mostly cover the non-nominal situations that were not covered sufficiently in Wave 1 (e.g. coping with sudden loss of the ATC ORD separation tool, consecutive go-arounds and wrong glide alert interception) as well as the marking proposals for IGS to SRAP.
Arguments & related issues addressed	HPI Arg 1.2.1_IGS-to-SRAP02 HPI Arg 1.2.2_IGS-to-SRAP01 HPI Arg 1.2.2_IGS-to-SRAP01 HPI Arg 1.2.3_IGS-to-SRAP01 HPI Arg 1.2.3_IGS-to-SRAP02 HPI Arg 1.3.1_IGS-to-SRAP02 HPI Arg 1.3.1_IGS-to-SRAP01 HPI Arg 1.3.1_IGS-to-SRAP06 HPI Arg 2.3.3_IGS-to-SRAP05 HPI Arg 2.3.3_IGS-to-SRAP05 HPI Arg 3.3.2_IGS-to-SRAP07 HPI Arg 3.3.2_IGS-to-SRAP01 HPI Arg 4.1.1_IGS-to-SRAP01 HPI Arg 4.1.1_IGS-to-SRAP01
HP objectives	 Define and assess procedures for consecutive go-arounds Clear procedures for the transition from for non-nominal modes of operations to be discussed Discuss procedures in case of tool loss (revert to conventional procedures) Discuss the usability of the ATCO tool. (ATCO tool to indicate wrong glide slope interception in place to mitigate this issue)
Tools / Methods selected out of the HP repository	User workshop
Summary of the HP activity	This activity was not conducted as planned in Wave 2 due to time and effort resource limitations.
Та	ble 6: Description of Activity 1 – Workshop

ACTIVITY 2.	Real Time Simulation
Description	A Real Time Simulation (RTS) is used to validate complex airspace organisations, new tools or concepts in a realistic simulated Air Traffic Management environment. The simulator is replaying real traffic data and the ATCO works as he would work in real life. The proposed RTS will cover only non-nominal situations and the evaluation of ATCO acceptability of the new glide alert.
Arguments & related issues addressed	HPI Arg 1.2.2_IGS-to-SRAP01 HPI Arg 1.2.2_IGS-to-SRAP02 HPI Arg 1.2.3_IGS-to-SRAP01

EUROPEAN PARTNERSHIP

AART

	HPI Arg 1.2.3_IGS-to-SRAP02 HPI Arg 1.2.3_IGS-to-SRAP03 HPI Arg 1.3.1_IGS-to-SRAP01 HPI Arg 1.3.1_IGS-to-SRAP02 HPI Arg 1.3.2_IGS-to-SRAP01 HPI Arg 1.3.5_IGS-to-SRAP02 HPI Arg 1.3.5_IGS-to-SRAP02 HPI Arg 1.3.5_IGS-to-SRAP02 HPI Arg 2.2.1_IGS-to-SRAP03 HPI Arg 2.3.3_IGS-to-SRAP05 HPI Arg 2.3.3_IGS-to-SRAP05 HPI Arg 2.3.3_IGS-to-SRAP06 HPI Arg 3.3.1_IGS-to-SRAP01 HPI Arg 3.3.1_IGS-to-SRAP01 HPI Arg 3.3.1_IGS-to-SRAP02 HPI Arg 3.3.1_IGS-to-SRAP02 HPI Arg 3.3.2_IGS-to-SRAP02 HPI Arg 3.3.2_IGS-to-SRAP02 HPI Arg 4.1.1_IGS-to-SRAP01
HP objectives	 HPI Arg 4.5.1_IGS-to-SRAP01 Assess acceptability of SRAP in parallel runway conditions by ATCODE
	ATCOs;
	 Define and assess procedures for consecutive go-arounds; Define and assess procedures for sequence break out;
	 Clear procedures for the transition from for non-nominal modes of operations shall be defined (e.g. until which phase of flight can the transition mode take place?) and assessed;
	 Assess procedures in case of tool loss (revert to conventional procedures);
	 Assess the usability of the ATCO tool. (ATCO tool to indicate wrong glide slope interception in place to mitigate this issue);
	 Assess acceptability of IGS to SRAP by the ATCO (out of the window view- display of SRAP in the system);
	 Assess the IGS to SRAP procedure from a realistic tower position;
	 Assess the situational awareness of ATCOs in degraded conditions and abnormal situations.
Tools/Methods selected out of the HP repository	SATI Bedford scale China Lakes SASHA NASA TLX Etc.
Summary of the HP activity	EXE-14.5-V3-VALP-R01 – Non nominal situations
	 The aim of this exercise is to assess: the impact on controllers of go around/missed approach; the impact on controllers of the loss of the separation assistance tool.
	Table 7: Description of Activity 2 – RTS

Table 7: Description of Activity 2 – RTS

ACTIVITY 3.	Flight simulations						
Description	The flight simulation is used to validate concept elements that relate to the airside, specifically transition procedure from normal to abnormal and degraded modes of operation and the runway lighting system and the visual aid system.						
Arguments & related issues addressed	HPI Arg 1.2.1_IGS-to-SRAP02 HPI Arg 1.2.2_IGS-to-SRAP03 HPI Arg 1.2.3_IGS-to-SRAP03 HPI Arg 1.3.1_IGS-to-SRAP03 HPI Arg 1.3.1_IGS-to-SRAP04 HPI Arg 1.3.1_IGS-to-SRAP05 HPI Arg 1.3.3_IGS-to-SRAP01 HPI Arg 2.3.3_IGS-to-SRAP02 HPI Arg 2.3.3_IGS-to-SRAP03 HPI Arg 2.3.3_IGS-to-SRAP04						
HP objectives	 Assess acceptability of IGS to SRAP procedures by pilots; Assess the air crew procedures for abnormal situations; Assess landing visual aid references in flight simulator in the switching scenario, (at the time of the landing clearance the "correct" runway has to be illuminated and switching should be finished latest at around 1000ft. This is the "gate" at which also in the flight deck everything must be stable (aircraft fully configured, at the correct approach speed and approach path and with stable thrust settings)) Need for an adapted external visual aid: It is recommended to provide to the crew an adapted external visual aid (VASI/PAPI) for IGS approach operations in order to avoid pilot's confusion; Assess the acceptability of the landing visual aid references in flight simulator; Assess the energy management assistant function. 						
Tools/Methods selected out of the HP repository	No specific tool, open question questionnaires were used						
Summary of the HP activity	EXE-14.5-V3-VALP-R10 - Runway lighting Further assessment of the proposed solutions for runway marking and lighting. The aim of the RTS is to assess operational acceptability of IGS-to-SRAP from pilots' point of view. A series of cockpit simulations using a high-level professional Level D/Type 7 flight crew training simulator will be conducted. The purpose is to collect pilots' feedback on the additional threshold operation (acceptability, workload, operational procedures), on how this threshold is shown on the runway and about the corresponding lighting.						

Different visibility conditions will be simulated and the aircraft following the enhanced procedure will be mixed with aircraft following ILS to normal threshold.EXE-14.5-V3-VALP-R15 - Runway marking Assessment of different solutions of runway marking for IGS-to-SRAP threshold.The aim of the RTS is to assess operational acceptability of IGS-to-SRAP from pilots' point of view.A series of cockpit simulations using a high-level professional Level D/Type 7 flight crew training simulator will be conducted.The purpose is to collect pilots' feedback on the additional threshold operation (acceptability, workload, operational procedures), on how this threshold is shown on the runway and about the corresponding markings.Different visibility conditions will be simulated and the aircraft following the enhanced procedure will be mixed with aircraft following ILS to normal threshold.It has to be noted that this exercise will be common with SRAP marking evaluation. All results obtained with one or the other procedure will be valid for both.Table 8: Description of Activity 2 – Flight simulation		
 Assessment of different solutions of runway marking for IGS-to-SRAP threshold. The aim of the RTS is to assess operational acceptability of IGS-to-SRAP from pilots' point of view. A series of cockpit simulations using a high-level professional Level D/Type 7 flight crew training simulator will be conducted. The purpose is to collect pilots' feedback on the additional threshold operation (acceptability, workload, operational procedures), on how this threshold is shown on the runway and about the corresponding markings. Different visibility conditions will be simulated and the aircraft following the enhanced procedure will be mixed with aircraft following ILS to normal threshold. It has to be noted that this exercise will be common with SRAP marking evaluation. All results obtained with one or the other procedure will be valid for both. 		following the enhanced procedure will be mixed with aircraft following
 threshold. The aim of the RTS is to assess operational acceptability of IGS-to-SRAP from pilots' point of view. A series of cockpit simulations using a high-level professional Level D/Type 7 flight crew training simulator will be conducted. The purpose is to collect pilots' feedback on the additional threshold operation (acceptability, workload, operational procedures), on how this threshold is shown on the runway and about the corresponding markings. Different visibility conditions will be simulated and the aircraft following the enhanced procedure will be mixed with aircraft following ILS to normal threshold. It has to be noted that this exercise will be common with SRAP marking evaluation. All results obtained with one or the other procedure will be valid for both. 		EXE-14.5-V3-VALP-R15 - Runway marking
 from pilots' point of view. A series of cockpit simulations using a high-level professional Level D/Type 7 flight crew training simulator will be conducted. The purpose is to collect pilots' feedback on the additional threshold operation (acceptability, workload, operational procedures), on how this threshold is shown on the runway and about the corresponding markings. Different visibility conditions will be simulated and the aircraft following the enhanced procedure will be mixed with aircraft following ILS to normal threshold. It has to be noted that this exercise will be common with SRAP marking evaluation. All results obtained with one or the other procedure will be valid for both. 		
 D/Type 7 flight crew training simulator will be conducted. The purpose is to collect pilots' feedback on the additional threshold operation (acceptability, workload, operational procedures), on how this threshold is shown on the runway and about the corresponding markings. Different visibility conditions will be simulated and the aircraft following the enhanced procedure will be mixed with aircraft following ILS to normal threshold. It has to be noted that this exercise will be common with SRAP marking evaluation. All results obtained with one or the other procedure will be valid for both. 		,
 operation (acceptability, workload, operational procedures), on how this threshold is shown on the runway and about the corresponding markings. Different visibility conditions will be simulated and the aircraft following the enhanced procedure will be mixed with aircraft following ILS to normal threshold. It has to be noted that this exercise will be common with SRAP marking evaluation. All results obtained with one or the other procedure will be valid for both. 		
following the enhanced procedure will be mixed with aircraft following ILS to normal threshold. It has to be noted that this exercise will be common with SRAP marking evaluation. All results obtained with one or the other procedure will be valid for both.		operation (acceptability, workload, operational procedures), on how this threshold is shown on the runway and about the corresponding
evaluation. All results obtained with one or the other procedure will be valid for both.		following the enhanced procedure will be mixed with aircraft following
Table 8: Description of Activity 2 – Flight simulation		evaluation. All results obtained with one or the other procedure will be
	Table	8: Description of Activity 2 – Flight simulation

4.4 Step 4 Collate findings & conclude on transition to next V-phase

4.4.1 Summary of HP activities results & recommendations / requirements

This part provides a summary of the HP argument and related issues / benefits along with the HP activities conducted. It reports on the outcomes of HP issues that were included into the HP assessment plan. For each argument and issue / benefit the results/evidence obtained from the activities conducted are briefly described along with the recommendations and / or requirements generated.

The status of each HP issue is also given. The status of an issue / benefit can either be 'closed', 'open', 'cancelled'.

- An issue is considered 'closed' when the issue had been sufficiently answered or no additional activities relating to that issue are foreseen as necessary;
- An issue is considered as being 'open' when the issue has been either: partially addressed and more studies are needed or; the issue had been addressed by certain activities but as a result other related issues had arisen or; when no activity has been performed to date to address a specific issue;
- An issue is considered as being 'cancelled' when the activities conducted have shown the issue to be not relevant to the given concept under investigation.

The HP recommendations and requirements fall into one of several categories:

• /System design;

7OPS (operating methods / procedures);

- New objective;
- Training;
- Other.

Issue ID HP issue / Benefit Benefi ound conducte Results / evidence s t ID d Status	HP Issue/ HP/ Activity Valid conducte Results / evidence s
---	---

Arg. 1.2.1: Operating methods (procedures) cover operations in normal operating conditions.

HPI Arg	IGS-to-SRAP	Closed	IGS-	Flight sim	More than 95% of the	EAP_HPREC_OPS	EAP_HPREQ_OPS01
1.2.1_IGS-to- SRAP02	procedures are not accepted by pilots	Ciosed	to- SRAP -HP- OBJ 02	riigiit sim	pilots indicated that they executed all tasks in line with the SOPs and that they can imagine using the concept of Secondary Runway Aiming Point in an every-day operation.	EAP_HPREC_OPS 02 EAP_HPREC_OPS 09 IGS-to- SRAP_HPREC_008	IGS-to- SRAP_HPREQ_006 IGS-to- SRAP_HPREQ_009
					an every day operation		

Arg. 1.2.2: Operating methods (procedures) cover operations in abnormal operating conditions.

HPI Arg The procedures for abnormal situations are not acceptable. IGS- K SRAP01 IGS- SRAP IGS- IGS-<	RTSResults from the simulation show that the IGS-to-SRAP arrival procedures are feasible during non-nominal situations according to subjective feedback.EAP_HPREC_OPS 02The defined feasible, acceptable with a tolerable workloadIGS-to- SRAP_HPREC_006	EAP_HPREQ_OPS01
---	--	-----------------

					and sufficient situational awareness.		
HPI Arg 1.2.2_IGS-to- SRAP02	The transition procedures from normal to abnormal conditions are not acceptable.	Closed	IGS- to- SRAP -HP- OBJ 05	RTS	Results from the simulation show that the IGS-to-SRAP arrival procedures are feasible during non-nominal situations according to subjective feedback. The participants expressed that the defined procedure was feasible, acceptable and can be resolved safely with a tolerable workload and sufficient situational awareness.	EAP_HPREC_OPS 02 EAP_HPREC_OPS 03 IGS-to- SRAP_HPREC_006 IGS-to- SRAP_HPREC_007	EAP_HPREQ_OPS01
HPI Arg 1.2.2_IGS-to- SRAP03	The pilot intends to fly to the second threshold but due to abnormal situation (heavy rain) he does not see the second threshold once passes	Closed	IGS- to- SRAP -HP- OBJ 06	Flight sim	Overall, at least 80% of the pilots during all scenarios stated that the threshold identification was acceptable using "agree" or "strongly agree". A slightly tendency can be identified for "strongly disagree" statements with respect of the scenarios using the static solution.	EAP_HPREC_OPS 09	EAP_HPREQ_DSG05 IGS-to- SRAP_HPREQ_009

Arg. 1.2.3: Operating methods(procedures) cover degraded modes of the ATM system.

HPI Arg	Transition procedures	Closed	IGS-	RTS	The participants	EAP_HPREC_OPS	EAP_HPREQ_OPS01
1.2.3_IGS-to-	for degraded modes		to-		expressed that the	02	
SRAP01	are not acceptable		SRAP		defined procedure was		IGS-to-
			-HP-		feasible, acceptable and	EAP_HPREC_OPS	SRAP_HPREQ_001
			OBJ		can be resolved safely	03	IGS-to-
			07		with a tolerable workload	IGS-to-	SRAP_HPREQ_002
					and sufficient situational	SRAP_HPREC_003	
					awareness.	510/11 _111 1/2 @ _005	IGS-to-
						IGS-to-	SRAP_HPREQ_007
					The rules of the	SRAP_HPREC_004	
					separation delivery tool failure procedure were		IGS-to-
					found to be easy enough	IGS-to-	SRAP_HPREQ_011
					to remember and apply	SRAP_HPREC_005	
					during IGS-to-SRAP arrival		
					procedures.		
					procedures.		
HPI Arg	Following a failure of	Closed	IGS-	RTS	The separation delivery	IGS-to-	IGS-to-
1.2.3_IGS-to-	the sequencing and		to-		tool failure appears to	SRAP_HPREC_003	SRAP_HPREQ_001
SRAP02	separation tool, the		SRAP		slightly increase the		
	ATCO fails to		-HP-		workload of the	IGS-to-	IGS-to-
	accurately and		OBJ		controllers as expected	SRAP_HPREC_004	SRAP_HPREQ_002
	efficiently perform		08		during a non-nominal		IGS-to-
	the tasks				situation; however, the		SRAP HPREQ 007
					workload remains		
					tolerable.		IGS-to-
							SRAP_HPREQ_008
					Overall, the participants		
					were comfortable with		
					the procedure and feel		
					that no further		
					modifications at this stage		

					are required. However, some requirements and recommendations were suggested.		
HPI Arg 1.2.3_IGS-to- SRAP03	Following a failure of the enabler for IGS- to-SRAP (GBAS, RNAV/SBAS) the ATCO or pilot fails to accurately and efficiently perform the tasks	<mark>Open</mark>	IGS- to- SRAP -HP- OBJ 09	RTS Flight sim	No failure of these enablers were simulated during the Wave 2 activities.	IGS-to- SRAP_HPREC_026	

Arg. 1.3.1: The potential for human error is reduced to a tolerable level

SKAF_IFREC_013	HPI Arg 1.3.1_IGS-to- SRAP01	The ATCO does not detect that the aircraft intercepts the wrong glide slope	Closed	IGS- to- SRAP -HP- OBJ 10	RTS	Results from the simulation show that the alert when an aircraft intercepts the wrong glideslope is acceptable according to the ATCO subjective feedback. This is if the requirement for the alert that the alert must be reliable and there must not be any false alerts is met.	IGS-to- SRAP_HPREC_010 IGS-to- SRAP_HPREC_011 IGS-to- SRAP_HPREC_012 IGS-to- SRAP_HPREC_013 IGS-to- SRAP_HPREC_014 IGS-to- SRAP_HPREC_015	IGS-to- SRAP_HPREQ_005 IGS-to- SRAP_HPREQ_009 IGS-to- SRAP_HPREQ_010
----------------	------------------------------------	--	--------	--	-----	--	--	---

							AAKI	JOINT UNDERTAKIN
						IGS-to- SRAP_HPREC_016		
						IGS-to- SRAP_HPREC_017	7	
						IGS-to- SRAP_HPREC_018	3	
						IGS-to- SRAP_HPREC_020)	
						IGS-to- SRAP_HPREC_022	2	
						IGS-to- SRAP_HPREC_023	3	
						IGS-to- SRAP_HPREC_024	1	
HPI Arg 1.3.1_IGS toSRAP02	The ATCO does not detect in due time that one of the a/c in the sequence is performing a go- around.	Closed	IGS- to- SRAP -HP- OBJ 11	RTS	As a result of the simulation, a requirement must be developed that the coordinator/assistant must aid the Approach for checking the separations between aircraft and suggesting which aircraft should be sent around.	IGS-to- SRAP_HPREC_025	5	
					There should also be communication between the sectors about which			

					aircraft have been sent around and a communication to the TWR Runway Control informing them of the final aircraft in the sequence that will be flying on the upper glideslope and performing an IGS-to- SRAP arrival procedure.		
HPI Arg 1.3.1_IGS-to- SRAP03	The pilot confuses the thresholds in the switching scenario	Closed	IGS- to- SRAP -HP- OBJ 12	Flight sim	Overall, at least 80% of the pilots during all scenarios stated that the threshold identification was acceptable using "agree" or "strongly agree".	EAP_HPREC_OPS 09	EAP_HPREQ_DSG05 IGS-to- SRAP_HPREQ_009
HPI Arg 1.3.1_IGS-to- SRAP04	Flight crew is not supported by appropriate landing visual aid references for their flown approach procedure (e.g. specific PAPIs), down to CAT I minima resulting in a unstable approach	Closed	IGS- to- SRAP -HP- OBJ 14	Flight sim	Based on the overall result the PAPI was acceptable – at least 80% of the pilots stated for all scenarios 80% "strongly agree" and "agree". Only a few pilots stated the PAPI indications were not acceptable.	EAP_HPREC_OPS 09 RTS14_2019_(IGS)_Design_Recom mendation_04	EAP_HPREQ_OPS01 EAP_HPREQ_DSG05

						· · · · · ·	
HPI Arg 1.3.1_IGS-to- SRAP05	Flight Crew is disoriented by (virtual or physical?) the several available runway markers and lighting indicators and lands on a RAP different from the one cleared for.	Closed	IGS- to- SRAP -HP- OBJ 15	Flight sim	Most of the pilots stated that the yellow marking was not very visible. There was potential to confuse the yellow marking with taxiway marking or even construction work marking.	EAP_HPREC_OPS 09 EAP_HPREC_OPS 11	EAP_HPREQ_DSG05 IGS-to- SRAP_HPREQ_009
HPI Arg 1.3.1_IGS-to- SRAP06	APP PC does not realize that provided weather information (important for the conduct of ISGS) in the ATIS is erroneous (SV input). Consequently, the ATCO clears for a procedure that is not feasible.	<mark>Open</mark>	IGS- to- SRAP -HP- OBJ 16	N/A	The workshop activity was not conducted in Wave 2 and no erroneous ATIS weather information was simulated during the Wave 2 activities.	IGS-to- SRAP_HPREC_027	

Arg. 1.3.2: Tasks can be achieved in a timely manner.

HPI Arg	When the a/c on the	Closed	IGS-	RTS	In terms of appreciating	IGS-to-	IGS-to-
1.3.2_IGS-to-	lower glide is going		to-		the distance separation	SRAP_HPREC_019	SRAP_HPREQ_002
SRAP01	on missed approach /		SRAP		behind the leader, which		
	instructed to Go-		-HP-		performs the go-		IGS-to-
	around, the ATCO		OBJ		around/missed approach		SRAP_HPREQ_003
	(APP or TWR) does		17		in the simulation, the		
	not success to				TWR Runway Control		IGS-to-
	compare the actual				could make use of the		SRAP_HPREQ_008
	separation to the				distance markers		
					presented on the Tower		

RECAT standard	Runway Control HMI,
separation.	which made it easy for
	them to measure the
	distance behind the
	leader.

Arg. 1.3.3: The level of workload (induced by cognitive and/or physical task demands) is acceptable.

HPI Arg 1.3.3_IGS-to- SRAP01	Transition instructions given on the base leg, increase flight crew workload.	<mark>Open</mark>	IGS- to- SRAP -HP- OBJ 18	Flight sim	No evidence on this issue was reported on from the Flight sim.	IGS-to- SRAP_HPREC_028	
HPI Arg 1.3.3_IGS-to- SRAP02	In case of multiple go- arounds the ATCOs workload increases to unacceptable levels (once detected the 1st go-around, check if follower is on the higher slope or not, check against standard minima & coordinate TWR/APP).	Closed	IGS- to- SRAP -HP- OBJ 19	RTS	Results from the simulation show that controller workload is tolerable for SRAP arrival procedures during non- nominal situations according to subjective feedback and sector performance metrics.	IGS-to- SRAP_HPREC_019	IGS-to- SRAP_HPREQ_002 IGS-to- SRAP_HPREQ_003 IGS-to- SRAP_HPREQ_007 IGS-to- SRAP_HPREQ_008

Arg. 1.3.5: Human actors can maintain a sufficient level of situation awareness.

HPI Arg	The ATCO perception	Closed	IGS-	RTS	No need has been	IGS-to-	IGS-to-
1.3.5_IGS-to-	of the aircraft		to-		identified for the ATCO to	SRAP_HPREC_008	SRAP_HPREQ_011
SRAP01	position in relation to		SRAP		determine the aircraft		
			-HP-		position in relation to the		

	the SRAP is		OBJ		SRAP, as this will be	IGS-to-	
	ambiguous		20		provided by the tool support as mitigation.	SRAP_HPREC_009 IGS-to- SRAP_HPREC_014	
HPI Arg 1.3.5_IGS-to- SRAP02	The ATCO cannot easily identify the SRAP through the out of the window view.	Closed	IGS- to- SRAP -HP- OBJ 21	RTS	No need has been identified for the ATCO to identify the SRAP via the window, as this will be provided by the tool support as mitigation.		
HPI Arg 1.3.5_IGS-to- SRAP03	Due to the more complex procedures and a higher traffic sample, the ATCOs might have a reduced level of SA and in case of degraded mode of operation they would not be aware of all the details of the traffic	Closed	IGS- to- SRAP -HP- OBJ 22	RTS	Overall, the situational awareness was sufficient for non-nominal situations during IGS-to- SRAP arrival procedures according to the participant feedback.	IGS-to- SRAP_HPREC_014 IGS-to- SRAP_HPREC_021	IGS-to- SRAP_ISGS_HPREQ_ 003

Arg. 2.2.1: The accuracy of information provided by the system is adequate for carrying out the task.

HPI Arg	The ATCO becomes	Closed	IGS-	RTS	The participants agreed	IGS-to-	IGS-to-
2.2.1_IGS-to-	over-reliant on the		to-		during debriefs that the	SRAP_HPREC_003	SRAP_HPREQ_001
SRAP01	ORD tool and fails to		SRAP		separation delivery tool		
	revert easily to		-HP-		failure causes a sudden	IGS-to-	IGS-to-
	working without the		OBJ		increase in workload.	SRAP_HPREC_004	SRAP_HPREQ_002
	tool (degraded		23				
	mode).				It is necessary that the		
	•				Approach control is aided		

by an assistant in the	IGS-to-	IGS-to-
event of the separation	SRAP_HPREC_005	SRAP_HPREQ_007
delivery tool failure,		
otherwise the workload is		IGS-to-
too high and situational		SRAP_HPREQ_008
awareness is very low		IGS-to-
when the ATCO works		
alone. The Approach		SRAP_HPREQ_011
participant relied on the		
assistant completely and		
the procedure would not		
have been manageable		
alone.		

Arg. 2.3.3: Visual displays and other types of output devices adhere to HF principles.

HPI Arg 2.3.3_IGS-to- SRAP01	The auditory is the first canal that is inhibited with high workload. Any surprise effect, unexpected information, additional data to compute, distrust toward indicators or stress may increase workload. One issue is the perseveration (attentional tunnelling). During the flare, many	- - -	GS- EXE- o- 02.0 GRAP V3- HP- VAL DBJ R11 24 EXE- 02.0 V3- VAL R14	 The sounds lasted too long and may have a high impact on radio Altitude callouts. Even if the flare assistant sounds were easily perceived in the flight deck 	RTS14_2019_(IGS)_Design_Recom mendation_03 RTS14_2019_(IGS)_Design_Recom mendation_05 IGS-to- SRAP_HPREC_029	
------------------------------------	--	-------------	---	--	---	--

	parameters that may lead to perseveration are present (stress, workload, temporal pressure, attentional focus on current task).						
	Pilots may be able to hear, understand and apply the assistance proposition during the flare manoeuvre.						
	When focusing on flare assistant sound, pilots may be able to hear, understand other sounds than AFA such as ATC clearance or flight deck warning during the flare manoeuvre.						
HPI Arg 2.3.3_IGS-to- SRAP02	Inadequate external visual aids may lead to difficulties to handle the function and to understand what actions pilots have to do to perform an IGS-to-SRAP approach.	Closed	IGS- to- SRAP -HP- OBJ 25	Flight sim	The pilots were asked several questions about the visual indications like PAPI, runway marking and the approach light configuration. The answers – especially from Pilot-Non-Flying represents a very good to	RTS14_2019_(IGS)_Design_Recom mendation_04 IGS-to- SRAP_HPREC_009 IGS-to- SRAP_HPREC_021	

					good acceptance of the proposed PAPI solution.		
HPI Arg 2.3.3_IGS-to- SRAP03	Energy Management Assistant function use is expected to help the pilots when the aircraft is on the Glide Slope providing them relevant information to support the management of the energy and to facilitate the choice of strategy to adopt. This in turn will bring a benefice in term of human performance	Open	IGS- to- SRAP -HP- OBJ 26	Flight sim	The energy management assistant function was not assessed in the Wave 2 flight sim.	RTS14_2019_(IGS)_Operational_Re commendation_0 3 RTS14_2019_(IGS)_Design_Recom mendation_06 RTS14_2019_(IGS)_Design_recom mendation_EM_0 1 RTS14_2019_(IGS)_Design_recom mendation_EM_0 1.a RTS14_2019_(IGS)_Design_recom mendation_EM_0 2 RTS14_2019_(IGS)_Design_recom mendation_EM_0 2 RTS14_2019_(IGS)_Design_recom	

						mendation_EM_0 3 IGS-to- SRAP_HPREC_030	
HPI Arg 2.3.3_IGS-to- SRAP04	Energy Management Assistant function use is expected to provide pilots an energy awareness in case of high workload during the approach phase giving relevant information that can help them to choose the appropriate strategy to adopt. This in turn will bring a benefice in term of human performance (other allocation of cognitive resources).	Open	IGS- to- SRAP -HP- OBJ 27	Flight sim	The energy management assistant function was not assessed in the Wave 2 flight sim.	RTS14_2019_(IGS)_Operational_Re commendation_0 3 RTS14_2019_(IGS)_Design_Recom mendation_06 RTS14_2019_(IGS)_Design_recom mendation_EM_0 1 RTS14_2019_(IGS)_Design_recom mendation_EM_0 1.a RTS14_2019_(IGS)_Design_recom mendation_EM_0 2 RTS14_2019_(IGS)_Design_recom mendation_EM_0 2	

						RTS14_2019_(IGS)_Design_recom mendation_EM_0 3 IGS-to- SRAP_HPREC_030	
HPI Arg 2.3.3_IGS-to- SRAP05	The visual displays do not support ATCOs to know which EAP they have	Closed	IGS- to- SRAP -HP- OBJ 28	RTS	Overall, the HMI was found to be useful and acceptable in supporting the tasks related to IGS- to-SRAP approach procedures during non- nominal situations. An issue related to the HMI for IGS-to-SRAP procedures that was raised during debriefs was that when the final approach sector is busy (i.e. has a lot of traffic); the interception points can become confusing.	IGS-to- SRAP_HPREC_010	IGS-to- SRAP_HPREQ_005
HPI Arg 2.3.3_IGS-to- SRAP06	The glide alert improves the monitoring and the implementation of SRAP	Closed	IGS- to- SRAP -HP- OBJ 29	RTS	Results from the simulation show that the alert when an aircraft intercepts the wrong glideslope supports IGS- to-SRAP arrival procedures during non- nominal situations	IGS-to- SRAP_HPREC_006 IGS-to- SRAP_HPREC_012 IGS-to- SRAP_HPREC_013	IGS-to- SRAP_HPREQ_004 IGS-to- SRAP_HPREQ_006 IGS-to- SRAP_HPREQ_009

							JUINT UNDERTAI
					according to the participants' subjective feedback.	IGS-to- SRAP_HPREC_015 IGS-to- SRAP_HPREC_016 IGS-to- SRAP_HPREC_017	IGS-to- SRAP_HPREQ_010
HPI Arg 2.3.3_IGS-to- SRAP07	The usability of the glide alert is poor, not intuitive nor easy to use/ interpret and reduces situation awareness	Closed	IGS- to- SRAP -HP- OBJ 30	RTS	Overall, the participants agreed that the wrong glideslope alert is useful, necessary and suitable for IGS-to-SRAP approach procedures. The participants also agreed that the design of the glide alert was clear, immediately noticeable and contained all the required information. During the simulation many "false" alerts appeared on the HMI, which increased the task load, workload and communication load of the participants. Hence, a participant disagreed with the statements that the alert was reliable and worked accurately.	IGS-to- SRAP_HPREC_006 IGS-to- SRAP_HPREC_012 IGS-to- SRAP_HPREC_013 IGS-to- SRAP_HPREC_016 IGS-to- SRAP_HPREC_016 SRAP_HPREC_017	IGS-to- SRAP_HPREQ_004 IGS-to- SRAP_HPREQ_009 IGS-to- SRAP_HPREQ_010

	This will not be acceptable during real operations as it increases the workload and communication load of the ATCO. A requirement is needed stating that the wrong glideslope alert must be reliable and there must not be any false alerts.
--	--

Arg. 3.3.1: Intra-team and inter-team communication supports the information requirements of team members.

HPI Arg 3.3.1_IGS-to- SRAP01	Multiple go-arounds management requires additional coordination between APP and TWR (especially in the case in which the lead a/c is in contact with the TWR and the follower in contact with APP (ITM).	Closed	IGS- to- SRAP -HP- OBJ 31	RTS	During the separation delivery tool failure, the workload for the Approach sector is too high. The Approach ATCO will require an assistant to help them with the procedures such as checking the separation between pairs and identifying which aircraft must be sent to go- around.	IGS-to-SRAP _HPREC_001	IGS-to- SRAP_HPREQ_002 IGS-to- SRAP_HPREQ_003 IGS-to- SRAP_HPREQ_007 IGS-to- SRAP_HPREQ_008
HPI Arg 3.3.1_IGS-to- SRAP02	The potential case of multiple go-arounds require additional coordination between the ATCOs and FC, which might have a	Closed	IGS- to- SRAP -HP-	RTS	In terms of the controller being able to spot the missed approach of the leading aircraft, the participants expressed that it is easy as per the	EAP_HPREC_OPS 09 IGS-to- SRAP_HPREC_002	IGS-to- SRAP_HPREQ_009

negative impact on	OB	J	current procedures, the	
workload.	32		pilots always tell the	
			controller when a missed	
			approach is taking place.	
			Nevertheless, a requirement is needed to emphasise and reinforce that the pilot shall communicate to the controller about a missed approach as soon as practicable when	
			applying SRAP.	

Arg. 3.3.2: The phraseology supports communication in all operating conditions.

HPI Arg 3.3.2_IGS-to- SRAP02	Phraseology needs to be revised for abnormal conditions.	Closed	IGS- to- SRAP -HP- OBJ	RTS	In the PSQ, a participant expressed that there is a risk for confusion between ILS and GLS and the letters following the	IGS-to- SRAP_HPREC_024	IGS-to- SRAP_HPREQ_009 IGS-to- SRAP_HPREQ_010
			33		procedure, especially when there is a lot of traffic and the instructions are spoken quickly.		
					The participants found the phraseology for the TWR ATCO to be too long and time consuming, especially if the ATCO also manages departures		

on the same frequency.
The participants
suggested that if two
aircraft are expected to
land using the same
runway aiming point then
the ATCO should not have
to provide the runway in
the message.
It has also been concluded
that the ATCO should
always ask the pilot to
confirm the type of
approach and the landing
runway as it is important
that the ATCOs are aware
of the situation and the
pilots are aware of the
reason for possible go-
arounds.

Arg. 4.1.1: Changes in roles and responsibilities are acceptable to the affected human actors.

HPI Arg	The new abnormal	Closed	IGS-	RTS	The procedures for the	EAP_HPREC_OPS	EAP_HPREQ_OPS01
4.1.1_IGS-to-	procedures could		to-		tool failures during IGS-	09	
SRAP01	have an impact on		SRAP		to-SRAP arrival		EAP_HPREQ_OPS04
	acceptability for both		-HP-		procedures were deemed		EAP HPREQ OPS05
	ATCOs and pilots.		OBJ		feasible, acceptable and		EAP_HPREQ_UP305
			34		can be resolved safely		
					with a tolerable workload		
					and sufficient situational		

		awareness by the		
		participants.		

Arg. 4.5.1: The content of training for each actor group is specified.

HPI Arg 4.5.1_IGS-to- SRAP01	ATCOs and pilots are not sufficiently familiar with the novel IGS operations and associated changes (e.g. runway marking and lighting, glide alerts, abnormal conditions).	Closed	IGS- to- SRAP -HP- OBJ 35	RTS	All participants expressed concerns that there will be a need for recurrent and extensive training for the procedures to manage non-nominal situations in particular for the separation delivery tool failure	EAP_HPREC_OPS 09 EAP_HPREC_OPS 11 RTS14_2019_(IGS)_Operational_Re commendation_0 1 IGS-to- SRAP_HPREC_005 IGS-to- SRAP_HPREC_006 IGS-to- SRAP_HPREC_007	EAP_HPREQ_OPS01 EAP_HPREQ_OPS04 EAP_HPREQ_OPS05
------------------------------------	--	--------	--	-----	---	---	---

Table 9: Summary of the HP results and recommendations/ requirements for each identified issue & related argument

4.4.2 Maturity of the Solution

	Maturity checklist for finalising	the V3 ass	sessment
ID	Question	Answer	Comments
1	Has a Human Performance Assessment Report been completed? Have all relevant arguments been addressed and appropriately supported?	Yes	The consolidated list of identified arguments, issues, requirements and recommendations can be found in Table 9.
2	Are the benefits and issues in terms of human performance and operability related to the proposed solution sufficiently assessed (i.e. on the level required for V3)?	Yes	The consolidated list of identified arguments, issues, requirements and recommendations can be found in Table 9.
3	Have all the parts of the solution/concept been considered?	Yes	All OI steps described in the final OSED have been addressed in several validation exercises and considered in the HP assessment.
4	Have potential interactions with related projects/concepts been considered and addressed?	Yes	The interaction other PJ.02-W2-14 solutions has been considered.
5	Is the level of human performance needed to achieve the desired system performance for the proposed solution consistent with human capabilities?	Yes	The results can be found in Table 9 of the HP assessment report.
6	Are the assessments results in line with what is targeted for that concept? If not, has the impact on the overall strategic performance objectives/targets been analysed?	Yes	Yes the HP issues are addressed and recommendations and requirements are formulated to reach anticipated targets. (Appendix B and Appendix C).
7	Has the proposed solution been tested with end-users and under sufficiently realistic conditions, including abnormal and degraded conditions?	Yes	Different simulation exercises were conducted under both abnormal and degraded conditions for ATC. Normal conditions were validated in Wave 1. Flight Deck simulations have been conducted for the airborne side.
8	Do validation results confirm that the interactions between human and technology are operationally feasible, and consistent with agreed human performance requirements?	Yes	The results can be found in Table 9 of the HP assessment report.
9	Have all relevant SESAR documentation been updated according to the HP activities outcomes (OSED, SPR)?	Yes	The HP requirements are crosschecked with safety and OSED.
10	Do the outcomes satisfy the HP issues/benefits in order to reach the expected KPA?	Yes	The outcome of the HP activities can be found in Appendix B and Appendix C (Recommendations and Requirements).

11	Have HP recommendations and HP requirements correctly been considered in HMI design, procedures/documentation, and training?	Yes	The requirements and recommendations are listed in Appendix B and Appendix C of the HP assessment report.
12	Have the major factors that can influence the transition feasibility (e.g. changes in competence requirements, recruitment, and selection, training needs, staffing requirements, and relocation of the workforce) been addressed? Are there any ideas on how to overcome any issues?	Yes	Training Requirements have been formulated and are listed in Appendix C (Requirements).
13	Have any impacts been identified that may require changes to regulation in the area of HP/ATM? This includes changes in roles & responsibilities, competence requirements, or the task allocation between human & machine.	N/A	No regulatory impact is expected to be introduced through the IGS-TO-SRAP solution.
14	Has the next V-phase sufficiently been prepared (additional testing conditions, open HP issues to be addressed)?	N/A	The HP assessment has proven that the solution has, from the HP point of view, reached the end of V3 ready to go into the next V phase. Most relevant issues are closed.

Table 10: V3 HP Maturity checklist

5 References

Human Performance

[1] SESAR Human Performance Assessment Process V1 to V3 - including VLD, 00.03.01

Reference Documents

- [2] PJ.02-W2-14.5 OSED V3 Part I D4.5.002, 00.01.00
- [3] PJ.02-W2-14.5 VALR V3 D4.5.006, 00.01.00

Appendix A – Additional HP activities conducted

No additional HP activities were required to support the V3 HP assessment. All identified HP issues/benefits were assessed via the ATCO and Pilot RTS exercises, as described in the VALR [3].

A.1 Wave 1 PJ.02-02 Audio-based Flare Assistant Validation

Wave 1 RTS validation exercises were conducted by Airbus that addressed the AFA function. The findings of the following exercises have been used as evidence against Wave 2 'HPI Arg 2.3.3 IGS-to-SRAP01:

- EXE-PJ2.02-V3-VALP-RTS11;
- EXE-PJ2.02-V3-VALP-RTS14.

The full findings of these exercises can be found in the PJ.02-02 VALR Error! Reference source not found..

Appendix B – HP Recommendations Register

As per the HPA guidance [1], the statuses for HP recommendations are defined as follows:

- Accepted The recommendation has been agreed and accepted by the project team;
- Rejected The recommendation has been rejected by the project team and a rationale has been provided;
- To be analysed The recommendation is awaiting agreement from the project team.

Note: All 'EAP_' and 'RTS14_' recommendations marked as 'rejected' were done so in Wave 1 and have been left as such in Wave 2.

	HP Recommendations Register							
Reference	Type of recomme ndation	Recommendation	Rationale	Assessment source + Reference report	Recomme ndation status	Rationa le in case of rejectio n		
EAP_HPREC _OPS01	OPS (operatin g methods / procedur es)	In case of high traffic a "sequencer role" is recommended (It is already implemented in certain environments)	No potential impact on the existing roles and responsibilities and task sharing within the team involving ATCOs and pilots has been identified. A sequencer role might be required for traffic optimisation purposes.	Validation Report of EXE- 02.02-V3-VALP- R02 Workshop	Rejected	Not accepte d in Wave 1		
EAP_HPREC _OPS02	OPS (operatin g methods / procedur es)	A set of working methods / guidelines to cover the IGS-to-SRAP procedure/ concept and associated tools should be locally defined.	The validation activities did not include scenarios in which the IGS- to-SRAP procedure was instructed without a support tool under high traffic densities. However, the results of the validation activities conducted showed that under high traffic densities, the ATCOs considered it as impossible to work	Validation report of EXE- 02.02-V3-VALP- R02 Workshop	Accepted			

			without a support tool (i.e. ORD tool).			
EAP_HPREC _VAL01	Validation activities	Future validation exercises should include more non-nominal and degraded modes of operations, in addition to nominal cases.	Due to the more complex procedures and a higher traffic sample, the ATCOs agreed they did not have the same level of SA as in normal operations and that in case of a degraded mode of operations they would not be aware of all the details of the traffic	Validation report ofEXE- 02.02-V3-VALP- R02	Accepted	
EAP_HPREC _OPS03	OPS (operatin g methods / procedur es)	Transitions should not be instructed on the base leg.	The results of the flight deck simulation reveal that transition instructions given on the base leg, could negatively increase workload on the flight crew side.	Validation report of Mock up Flight deck simulation (IGS)	Accepted	
EAP_HPREC _OPS04	OPS (operatin g methods / procedur es)	A test case with a new perimeter taxiway should be tested, without departures in the simulation	Normal ILS and IGS-to-SRAP operating conditions have been considered acceptable under certain conditions.	Validation report of EXE- 02.02-V3-VALP- R02	Accepted	
EAP_HPREC _OPS05	OPS (operatin g methods / procedur es)	The Approach should be supported by a Separation Delivery and Monitoring function providing indications about applicable separation minima between arrival aircraft pairs onto final approach segment, taking into account the	The results of the validation activities conducted showed that under high traffic densities, the ATCOs considered it as impossible to work without a support tool (i.e. ORD tool).	Validation report of EXE- 02.02-V3-VALP- R02	Rejected	Not accepte d in Wave 1

		expected and cleared approach procedures (48 OSED)				
EAP_HPREC _DSG01	DSG (System design)	A support tool or a sequencer role should support the ATCO in finding the optimal sequence.	The ATCOs requested an additional support tool or a refinement of the ORD tool, that would help them optimise the sequence. In high traffic densities, the workload of the INI position would not allow the evaluation of the most "optimal" pairs, at all times.	Validation report of EXE- 02.02-V3-VALP- R02	Rejected	Not accepte d in Wave 1
EAP_HPREC _OPS06	OPS (operatin g methods / procedur es)	For IGS-to-SRAP operations, the Approach Controllers should be supported by a Separation Delivery function providing indications about optimum spacing to be applied for achieving the minima separation at the separation delivery point (49 OSED)	The results of the validation activities conducted showed that under high traffic densities, the ATCOs considered it as impossible to work without a support tool (i.e. ORD tool).	Validation report of EXE- 02.02-V3-VALP- R02	Rejected	Not accepte d in Wave 1
EAP_HPREC _OPS07	OPS (operatin g methods / procedur es)	For IGS-to-SRAP operations, the Tower Controllers should be supported by a Separation Delivery and Monitoring function providing indications about applicable separation minima between arrival aircraft pairs onto final approach segment, taking into account the expected and cleared approach procedures (50 OSED)	The results of the validation activities conducted showed that under high traffic densities, the ATCOs considered it as impossible to work without a support tool (i.e. ORD tool).	Validation report of EXE- 02.02-V3-VALP- R02	Rejected	Not accepte d in Wave 1

				<u> </u>		UNI UNDERTAR
EAP_HPREC _OPS09	OPS (operatin g methods / procedur es)	Pilots should be involved in information campaigns before local deployments, in order to gain the trust and the acceptability of the SRAP associated procedure.	Self-explanatory	Validation report of EXE- 02.02-V3-VALP- R02	Accepted	
EAP_HPREC _DSG01	Design	A tool should be implemented that acts as a reminder about the un- steady flow of arrivals, reducing the complexity of the environment (CSPR_ST)	For the CSPR-ST procedure the situational awareness of the tower controller was lower than in the reference scenario. This result is attributed to the arrivals on the second runway were prone to be forgotten as they were not many and that some HMI support would be needed.	Validation report of EXE- 02.02-V3-VALP- R02	Rejected	Not accepte d in Wave 1
EAP_HPREC _DSG02	Design	If colour coding is used for the flight list to differentiate the different approaches the same colour should be reflected in the aircraft label	In order to ensure that ATCOs were able to quickly connect the information displayed.	Validation report of EXE- 02.02-V3-VALP- R02 EXE-02.02-V3- VALP-R03	Rejected	Not accepte d in Wave 1
EAP_HPREC _DSG03	DSG (System design)	The ATCOs should be able to tailor HMI features according to personal preference.	The HMI display can enhance usability and even SA, depending on the ATCOs' preferences.	Validation report of EXE- 02.02-V3-VALP- R02	Rejected	Not accepte d in Wave 1
EAP_HPREC _DSG04	Design	With regard to alerts on the tower position it was suggested that in case there is an infringement of the	To ensure an appropriate reaction / situation awareness for the APP ATCO.	Validation report of EXE- 02.02-V3-VALP- R02	Rejected	Not accepte d in Wave 1

		FTD in the last miles there should be a warning on the tower HMI				
EAP_HPREC _TRN01	TRN (training)	Local training plans should be feasible in order for all ATCOs to be trained to the required standard before IGS-to-SRAP is used in operations	Training requirements have to be extensively covered in local implementation programs.	Validation report of EXE- 02.02-V3-VALP- R02 Workshop Flight deck simulation	Rejected	Not accepte d in Wave 1
EAP_HPREC _OPS11	Operation al	In the switching scenario, at the time of the landing clearance the "correct" runway has to be illuminated and switching should be finished latest at around 1000ft. This is the "gate" at which also in the flight deck everything must be stable (aircraft fully configured, at the correct approach speed and approach path and with stable thrust settings)	The pilots did not unanimously conclude on one preferred lighting configuration. However it was concluded in order to avoid confusion and a negative impact on safety that the "correct runway " has to be indicated latest at around 1000ft.	Validation report of EXE- 02.02-V3-VALP- R05	Accepted	
EAP_HPREC _OPS12	Operation al	On the flight deck, special focus has to be put on the briefing : Briefing has to include the expected lighting configuration Special briefing is needed in case of 3.5 °approach.	The pilot has to be aware and fully assured which runway he is aiming at. The switching configuring might otherwise mislead him/ her.	Validation report of EXE- 02.02-V3-VALP- R05	Rejected	Not accepte d in Wave 1

					JUINT UNDERTAK
RTS14_201 9_(IGS)_De sign_Reco mmendatio n_03	Design	Flare assistant triggering logics: It is recommended to identify all non- nominal cases in order to study the audio-based flare assistant associated triggering logic.	The existing crew task is not negatively impacted by the integration of audio-based flare assistant function, but the function should be robust to degraded cases (ditching, landing gear-up, slats/flaps failure).	Validation report of EXE- 02.02-V3-VALP- R14	Accepted
RTS14_201 9_(IGS)_De sign_Reco mmendatio n_04	Design	Need for an adapted external visual aid: It is recommended to provide to the crew an adapted external visual aid (VASI/PAPI) for IGS approach operations in order to avoid pilot's confusion.	Pilots expressed that providing two different VASI/PAPI for the same runway could be confusing for the flight crew because the pilot will see a VASI/PAPI on each side of the runway and how the crew can be sure which one they must follow.	Validation report of EXE- 02.02-V3-VALP- R14	Accepted
RTS14_201 9_(IGS)_De sign_Reco mmendatio n_05	Design	Need for a flare assistant: In order to help pilots to perform the manual flare manoeuvre when flying IGS approach operations. It is recommended to provide them with a flare assistance which gives an indication about when to initiate the flare manoeuvre, which covers the variability of pilots' practices and which let the possibility to adapt the manoeuvre to the current situation (conditions of the day).	Pilots' feedbacks on this topic were closely linked to the slope value. They think that the increase of the glideslope could potentially lead to more hard landing and to dispersion on touchdown location, which on short runways could lead, in the worst case, to runway excursion.	Validation report of EXE- 02.02-V3-VALP- R14	Accepted
RTS14_201 9_(IGS)_De sign_Reco	Design	Need for an energy management assistant in order to help pilots to manage the aircraft energy when flying IGS approach operations. It is recommended to provide them	According to pilots, for slopes inferior or equal to 3,5°, IGS did not negatively impact the energy management and flare, but an appropriate training is necessary.	Validation report of EXE- 02.02-V3-VALP- R14	Accepted

EUROPEAN PARTNERSHIP

					JUINT UNDERT
mmendatio n_06		with an energy management assistant, which gives indication about the aircraft energy in the current situation (conditions of the day).	Above this slope value, several pilots think that, in addition to the training, adapted tools are necessary to avoid excessive energy during approach, unnecessary go- around and hard or long landings.		
RTS14_201 9_(IGS)_Op erational_R ecommend ation_01	Operation al	IGS training: It is recommended to provide to airlines' pilots a clear operational training in order to inform airlines' pilots about specificity of IGS approach operations.	During all scenarios, it was observed that the stabilization criteria was reached thanks to the fact that pilots applied current SOPs and thanks to adequate enablers to help the crew manage the aircraft energy. Pilots underlined that higher slopes values (4° and more) could potentially induce a higher risk of over-energy, over-flare, hard landing.	Validation report of EXE- 02.02-V3-VALP- R14	Accepted
RTS14_201 9_(IGS)_Op erational_R ecommend ation_03	Operation al	Energy Management assistant training: It is recommended to provide airlines with a clear operational description in order to inform airlines' pilots about the use of the Energy Management assistant and hypotheses associated to the function.	The pilots need to be aware of the strategy hypothesis used by the energy management assistant function in order to use it adequately.	Validation report of EXE- 02.02-V3-VALP- R14	Accepted
RTS14_201 9_(IGS)_De sign_recom mendation _EM_01	Design	Energy Management clutter: It is recommended to re-evaluate the Energy Management function display combined with other visually similar data in order to assess the risk of confusion	The usability of Energy Management HMI is considered as acceptable by flight crews, but should be reassessed with the	Validation report of EXE- 02.02-V3-VALP- R14	Accepted

EUROPEAN PARTNERSHIP

		between visually similar information.	updated final design and logic function		
RTS14_201 9_(IGS)_De sign_recom mendation _EM_01.a	Design	Energy Management integration in the cockpit environment: It is recommended to evaluate the Energy Management assistant with other energy related functions in order to confirm it still will be legible.	All pilots agreed that it was difficult to assess the legibility of the function without it being presented with all (exhaustively) other data possibly displayed on the same area.	Validation report of EXE- 02.02-V3-VALP- R14	Accepted
RTS14_201 9_(IGS)_De sign_recom mendation _EM_02	Design	Energy Management usability: The calibration should be reviewed and re-assessed in the future in order to be compliant with operational tasks and to avoid mistakes and misunderstanding.	The current tuning of the function seems not to totally correspond to the operational tasks (in terms of hypothesis and in terms of dynamic adaptation). Once reviewed, its tuning will be adapted to allow pilots to do actions according to the aircraft energy situation, preventing spurious go-arounds due to the information provided by the function to the pilots. Evaluations showed that at this stage, the function did not bring precise information to facilitate the decision-making in case of IGS approach operations. As is, the calibration of the function did not take into account some parameters and did not provide sufficient predictability to the pilots.	Validation report of EXE- 02.02-V3-VALP- R14	Accepted

						UNDERTAK
RTS14_201 9_(IGS)_De sign_recom mendation _EM_02b	Design	Energy Management usability: It is recommended to have a sufficiently dynamic system in order to allow anticipation of actions to take and make pilots able to see the consequence of their action.	Flight crew did not encounter difficulties to find relevant information and understood the feedback of the function in some cases, but it should be reviewed in order to allow pilots to trust it. In particular, a more dynamic adaptation to current aircraft energy dissipation capability would be needed to improve the Energy Management function.	Validation report of EXE- 02.02-V3-VALP- R14	Accepted	
RTS14_201 9_(IGS)_De sign_recom mendation _EM_03	Design	Energy Management usability: It is recommended to have a system that dynamically adapt to aircraft situation (including deceleration capability), particularly in high- energy situations, in order to allow pilots to rely on it.	Pilots needs to anticipate the energy management well before the final approach segment to reach the appropriate energy level at stabilization. So, the function has to provide a good level of predictability to support pilots with necessary information to allow sufficient anticipation prior to the final approach segment. However, the current Energy Management prototype did not succeed to provide sufficient information to anticipate the actions to take.	Validation report of EXE- 02.02-V3-VALP- R14	Accepted	
IGS-to- SRAP_HPRE C_001	OPS (operatin g methods/	In the case of separation tool failure, there should be communication between the sectors about which aircraft have been sent around and a	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	

	procedur es)	communication to the Tower Runway Control informing them of the final aircraft in the sequence that will be flying on the upper glideslope and performing a IGS-to- SRAP arrival procedure.			
IGS-to- SRAP_HPRE C_002	Validation activities	There should also be further investigation into the amount of time that it takes a pilot to communicate a missed approach to the ATCO.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted
IGS-to- SRAP_HPRE C_003	OPS (operatin g methods / procedur es)	The separation delivery tool failure procedure should remain simple, as it is an emergency procedure with no time for optimisation.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted
IGS-to- SRAP_HPRE C_004	OPS (operatin g methods / procedur es)	The separation delivery tool failure procedure should be treated as a rare, emergency procedure.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted
IGS-to- SRAP_HPRE C_005	TRN (training)	The procedure to manage the failure of the separation delivery tool should be included in the regular non-nominal/emergency training.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted

					ARI JO	DINT UNDERTAKI
IGS-to- SRAP_HPRE C_006	TRN (training)	The procedure to manage an alert caused by an aircraft intercepting the wrong glideslope should be regularly briefed and included in the refresher training.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_007	TRN (training)	The procedure to manage a go- around or missed approach should be regularly briefed and included in the refresher training.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_008	Validation activities	The procedure should be further investigated locally to see whether it could be acceptable to have Heavy aircraft flying the IGS-to- SRAP procedure.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_009	Validation activities	The need for additional information for ATCOs to visualise the vertical position of the aircraft on the glide, such as Vertical Speed information or Approach Path Monitoring, should be further investigated locally.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_010	Validation activities	The interception points for the two glideslopes on the HMI should be locally considered to ensure that they are clear and distinguishable.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_011	OPS (operatin g methods/	The ATCO should know if an aircraft has changed its landing runway (27L or 28L).	The approach controller shall evaluate the need for such a	Validation report of EXE-	Accepted	

IGS-to- SRAP_HPRE C_012	procedur es) OPS (operatin g methods / procedur es)	The approach sectors should notify the tower of any flight that triggered a glide alert.	coordination on a case by case basis. In order to have full awareness of the situation, to plan and monitor the situation more carefully.	14.5-V3-VALP- R01 Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_013	OPS (operatin g methods / procedur es)	The approach sectors should inform the tower if an aircraft is flying a different procedure from the expected glide slope, especially during IGS-to-SRAP arrival procedures.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_014	Validation activities	It should be further investigated locally if a vertical profile-plotting tool is necessary for the Tower and Approach controllers.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_015	Validation activities	For the wrong glideslope alert, the rule where heavy aircraft should be assessed and improved in terms of whether they should be able to intercept the upper glideslope for IGS-to-SRAP operations such that the rule is less penalising.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_016	OPS (operatin g methods /	During the wrong glideslope alert, the Approach Executive Control should communicate to the Tower Runway Control whether an aircraft	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	

	procedur es)	triggered a glide alert before it is transferred to Tower Runway Control.			
IGS-to- SRAP_HPRE C_017	Validation activities	ANSPs should locally consider the necessary tools and information required in order to best detect deviations from the glideslopes during deployment phases.	These should help during the non- nominal situations: go- around/missed approach and wrong glideslope alert.	Validation report of EXE- 14.5-V3-VALP- R01	Accepted
IGS-to- SRAP_HPRE C_018	DSG (System design)	An alert should be provided when aircraft perform a pilot initiated missed approach for all circumstances.	This is an existing problem.	Validation report of EXE- 14.5-V3-VALP- R01	Accepted
IGS-to- SRAP_HPRE C_019	DSG (System design)	Heavy aircraft should be assigned to the lower glide.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted
IGS-to- SRAP_HPRE C_020	Design	For the separation delivery tool, additional information has been recommended. The participants the wake/MRS indicator to always be shown is desired.	When the ROT indicator is the most constraining time separation, the wake/MRS indicator should also be shown because wake is a safety issue whereas ROT is useful but it is not safety related.	Validation report of EXE- 14.5-V3-VALP- R01	Accepted
IGS-to- SRAP_HPRE C_021	Design	An additional PAPI for the IGS-to- SRAP should be available.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted

				<u> </u>		JINT UNDERTAK
IGS-to- SRAP_HPRE C_022	TRN (training)	 In the cockpit, special focus has to be put on the briefing: Which approach is flown – increased slope or standard; Special briefing is needed in case of 3.5° approach; PAPI position and colour (if different colour is available). 	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_023	OPS (operatin g methods / procedur es)	ATC should communicate the approach type of the previous aircraft.	Self-explanatory	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_024	Validation activities	 Further investigation into the phraseology is required for two items: 1. the confusion between the terms GLS and ILS, in particular during busy times where the actors speak quickly; 2. the length of the phraseology at the TWR sector. 	A workshop with ATCOs is recommended to investigate terms that are not so similar and how and, if, it is possible to reduce the phraseology at the TWR. The workshop should involve ATCOs that have different TWR operations. This is because CDG controllers transfer traffic to the TWR early and it would be interesting to include ATCOs that transfer traffic to the TWR much later as well.	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	

				<u> </u>		JINT UNDERTAK
IGS-to- SRAP_HPRE C_025	Validation activities	A prototyping session should be conducted involving all required actors, all traffic and reintroducing aircraft into the sequence that were sent around. It is recommended that the prototyping be conducted with all defined non-nominal procedures; in particular the separation delivery tool failure. For the case of CDG, the ACC and DEP actors were missing.	This will allow a human performance assessment on all relevant stakeholders, particularly for measuring the workload and situational awareness during the non-nominal situations with IGS-to- SRAP approach operations.	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_026	Validation activities	Degraded modes due to the failure of IGS-to-SRAP enablers such as GBAS and SBAS should be assessed to understand the impact on ATCO and Pilot task performance.	These failures were not assessed in the Wave 2 RTS or flight sim activities.	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_027	Validation activities	Errors in the weather information provided by ATIS should be assessed to understand the impact on the potential for ATCO human error.	These errors were not assessed in the Wave 2 RTS or flight sim activities.	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_028	Validation activities	The timing of transition instructions should be assessed to understand the impact on flight crew workload.	This workload impact was not assessed in the Wave 2 flight sim activity.	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	
IGS-to- SRAP_HPRE C_029	Validation activities	Test flight activities should be conducted to understand the impact on flight crew workload due to the flare assistant sound.	This workload impact was not assessed in the Wave 2 activities.	Validation report of EXE- 14.5-V3-VALP- R01	Accepted	

IGS-to-	Validation	The energy management assistant	This function was not assessed in	Validation	Accepted	
SRAP_HPRE	activities	function should be assessed to	the Wave 2 flight sim activity.	report of EXE-		
C_030		understand the potential benefits		14.5-V3-VALP-		
		for pilots.		R01		

Table 11: HP recommendations

Appendix C – HP Requirements Register

As per the HPA guidance [1], the statuses for HP requirements are defined as follows:

- Accepted The requirement has been agreed and accepted by the project team;
- Rejected The requirement has been rejected by the project team and a rationale has been provided;
- To be analysed The requirement is awaiting agreement from the project team.

Note: All 'EAP_' requirements marked as 'rejected' were done so in Wave 1 and have been left as such in Wave 2.

	HP Requirements Register								
Reference	Type of requirement	Requirement	Rationale	Assessment source + Reference report if available	Require ment status	Rationale in case of rejection			
EAP_HPRE Q_OPS01	Operational	A set of clearly defined parameters shall be defined in local implementation, with regard to when (e.g. peak hours, duration of peak hours) the ATCOs shall be supported by a Separation Delivery and Monitoring function.	In order to ensure harmonisation upon implementation.	Validation report of EXE-02.02-V3- VALP-R02 Workshop	Accepted				
EAP_HPRE Q_OPS04	Operational	Clear procedures for non-nominal modes of operations shall be defined (e.g. until which phase of flight can the transition mode take place?)	In order to ensure clarity and acceptability amongst all actors involved, prior to implementation. Abnormal and degraded modes of operations require further investigation.	Validation report of EXE-02.02-V3- VALP-R02	Accepted				
EAP_HPRE Q_OPS05	Operational	Clear procedures for degraded modes of operations shall be defined (e.g. until which phase of	In order to ensure clarity and acceptability amongst all actors	Validation report of	Accepted				

						JOINT ONDERTAK
		flight can the transition mode take place?)	involved, prior to implementation.	EXE-02.02-V3- VALP-R02		
			Abnormal and degraded modes of operations require further investigation.			
EAP_HPRE Q_VAL01	Validation	The SRAP procedure shall be tested in parallel runway conditions	Normal ILS and IGS-to-SRAP operating conditions have been considered acceptable under certain conditions. Concerns were mentioned that SRAP might only be acceptable under single runway operations.	Validation report of EXE-02.02-V3- VALP-R03	Accepted	
EAP_HPRE Q_VAL02	Validation	The IGS-to-SRAP procedure shall be tested in parallel runway conditions.	Normal ILS and IGS-to-SRAP operating conditions have been considered acceptable under certain conditions. Concerns were mentioned that SRAP might only be acceptable under single runway operations.	Validation report of EXE-02.02-V3- VALP-R03	Accepted	
EAP_HPRE Q_VAL03	Validation	The IGS-to-SRAP procedure shall be further validated with pilots	Further validations required on the flight crew side	Validation report of EXE-02.02-V3- VALP-R03	Accepted	
EAP_HPRE Q_VAL04	Validation	The IGS-to-SRAP has to be validated in a more realistic tower environment to be able to assess the perception of the ATCOs and the impact of an aircraft landing mid runway on their performance.	Further validations required	Validation report of EXE-02.02-V3- VALP-R03	Accepted	

				/ · · · ·		JUINT UNDERTAI
EAP_HPRE Q_DSG04	Design	The applicable approach separation minima shall be available on display to the Controllers at the Control Working Position (CWP) (51 OSED)	The results of the validation activities conducted show that under high traffic densities, the ATCOs consider it is impossible to work without a support tool (i.e. ORD tool).	Validation report of EXE-02.02-V3- VALP-R02	Rejected	Not accepted in Wave 1
EAP_HPRE Q_DSG05	Design	Flight Crew shall be supported by appropriate landing visual aid references for their flown approach procedure (e.g. specific PAPIs), down to CAT I minima.		Validation report of EXE-02.02-V3- VALP-R05	Accepted	
EAP_HPRE Q_DSG06	Design	Alarms and alerts shall indicate erroneous information (e.g. weather information) displayed on the HMI.	To ensure an appropriate support for the ATCOs in terms of situation awareness.	Validation report of EXE-02.02-V3- VALP-R05	Rejected	Not accepted in Wave 1
EAP_HPRE Q_TRG01	Training	The training shall extensively cover the new working methods associated with the ORD tool (if applicable) in order to ensure high trust in the tool and acceptability of the related IGS-to-SRAP procedure.	The results of the questionnaires and debrief discussions showed that the ATCOs had a good level of trust in the ORD/separation tool, when working all positions.	Validation report of EXE-02.02-V3- VALP-R02	Rejected	Not accepted in Wave 1
EAP_HPRE Q_DSG07	Design	The display of information (a/c labels, TDIs etc) shall not clutter the ATCOs' screens.	In order to ensure the ATCOs can easily find relevant information, without having to search for items or without having the potential of mixing up the information displayed.	Validation report of EXE-02.02-V3- VALP-R02	Rejected	Not accepted in Wave 1

						JOINT UNDERTAK
EAP_HPRE Q_OPS06	Operational	The Approach controller shall be the master of the arrival sequence and be able to update the sequencing tool in a simple and timely way in accordance with her/his strategy for the interception with no adverse impact on workload.	The target distance indicators were also reported not to only to reduce workload but also make it easier to identify potential separation infringements and this helps to reduce the effort required contributes to lower stress levels when working these positions.	Validation report of EXE-02.02-V3- VALP-R02	Rejected	Not accepted in Wave 1
EAP_HPRE Q_OPS07	Operational	The ATIS report shall be checked by the flight crew, in order to help decide whether IGS-to-SRAP will be accepted or not.	In order to ensure an appropriate decision making process.	Validation report of EXE-02.02-V3- VALP-R02	Rejected	Not accepted in Wave 1
EAP_HPRE Q_DSG08	Design	The HMI shall comply with automation and adhere to human factors principles.	Local implementation shall ensure human factors principles are taken into account upon implementation.	Validation report of EXE-02.02-V3- VALP-R02 EXE-02.02-V3- VALP-R03	Rejected	Not accepted in Wave 1
EAP_HPRE Q_DSG09	Design	The flight list for the different approaches shall be easily distinguishable	To ensure an appropriate level of SA.	Validation report of EXE-02.02-V3- VALP-R02 EXE-02.02-V3- VALP-R03	Rejected	Not accepted in Wave 1

						JUINT UNDERTAKI
EAP_HPRE Q_DSG10	Design	The dynamic threshold highlight has to be improved; the timing has to be more accurate of when to switch from one threshold to the other.	The HMI did not support the CSPR-ST procedure enough for it to be usable for Tower CWP. There were no alerts or any notifications to the Tower CWP for the aircraft that is on the CSPR-ST procedure. Thus the usability of the HMI for Tower CWP is found to be unacceptable. The proposed HMI for Tower CWP did not support the CSPR-ST procedure enough	Validation report of EXE-02.02-V3- VALP-R02 EXE-02.02-V3- VALP-R03	Rejected	Not accepted in Wave 1
EAP_HPRE Q_VAL07	Validation	The perception of the ATCO in terms of the position of the aircraft in relation to the SRAP has to be further investigated	Further evaluations are required.	Validation report of EXE-02.02-V3- VALP-R02 EXE-02.02-V3- VALP-R03	Accepted	
EAP_HPRE Q_DSG11	Design	In case of an A-IGS the aircraft label shall be highlight-able	Due to the fact that the request for an A-IGS approach comes from the pilot exclusively, there shall be an option on the HMI of the ATCO to indicate the A-IGS approach once acknowledged.	Validation report of EXE-02.02-V3- VALP-R02 EXE-02.02-V3- VALP-R03	Rejected	Not accepted in Wave 1

						JOINT UNDERTAK
EAP_HPRE Q_DSG12	Design	The aircraft labels shall allow for a clear distinction between the instructed approach procedures.	For an appropriate level of SA.	Validation report of EXE-02.02-V3- VALP-R02	Rejected	Not accepted in Wave 1
EAP_HPRE Q_DSG14	Design	Alarms and alerts shall be refined according to the local available approach procedures, in order to avoid nuisance alerts as much as possible.	Overall there was a positive feedback with regard to the usability of different ORD tool. Room for improvement for alerts functions	Validation report of EXE-02.02-V3- VALP-R02	Rejected	Not accepted in Wave 1
EAP_HPRE Q_DSG15	Design	An alert shall be made available highlighting an aircraft that is not complying / deviating from the intended final approach profile (using the Approach Path Monitoring – APM function) (55 OSED)	Overall there was a positive feedback with regard to the usability of different ORD tool. Room for improvement for alerts functions.	Validation report of EXE-02.02-V3- VALP-R02	Rejected	Not accepted in Wave 1
EAP_HPRE Q_DSG16	Design	Approach and Tower require access to the same information (on their CWP HMI) to be able to communicate effectively with each other.	A set of relevant questions from the STQ questionnaire were used to assess various aspects of team work. The four aspects assessed using the STQ were team prioritization of tasks, synchronicity, sharing of information between the two positions and identification of possible mistakes made by the other position. All aspects were rated positively, supporting the idea that the ORD tool enhances the performance of	Validation report of EXE-02.02-V3- VALP-R02	Rejected	Not accepted in Wave 1

			the ATCOs when instructing IGS-to-SRAP procedure.			
EAP_HPRE Q_OPS08	Operational	The phraseology shall clearly indicate the expected arrival procedure and the cleared arrival procedure, without any potential for confusion between "expect" and "cleared".	The proposed phraseology was clear and without a potential to lead to errors by both ATCOs.	Validation report of EXE-02.02-V3- VALP-R02 Workshop Flight deck simulation EXE-02.02-V3- VALP-R03	Rejected	Not accepted in Wave 1
EAP_HPRE Q_OPS09 REQ-02-02- SPRINTERO P- CPST.1005	Operational	The Approach Controller shall provide an information to the arrival aircraft about the expected approach procedure	The proposed phraseology was clear and without a potential lead to errors by both ATCOs	EXE-02.02-V3- VALP-R02 Workshop Flight deck simulation	Rejected	Not accepted in Wave 1
EAP_HPRE Q_OPS10	Operational	Upon information from ATC about the expected IGS-to-SRAP, the Flight Crew shall acknowledge and read-back to ATC in case they accept such approach type, or shall refuse and inform ATC in case they reject such approach type (42 OSED)	The proposed phraseology was clear and without a potential to lead to errors by both ATCOs	Validation report of EXE-02.02-V3- VALP-R02 Workshop, mock up flight deck simulation	Rejected	Not accepted in Wave 1

						JUINT UNDERTAKI
EAP_HPRE Q_OPS11 REQ-02-02- SPRINTERO P- ITSR.1012	Operational	When the lead aircraft flying on final conventional approach is executing a missed approach and a following traffic is flying on final IGS-to-SRAP spaced at or close to the separation minimum, the Approach or Tower Controller shall also instruct the following aircraft flying IGS-to-SRAP to execute a missed approach, either with a "Turn left/right immediately" instruction or ensure that the follower is maintained above the lead traffic (taking into account sufficient climb performance) (60 OSED)	The proposed phraseology was clear and without a potential to lead to errors by both ATCOs	Validation report of EXE-02.02-V3- VALP-R01 EXE-02.02-V3- VALP-R02 Workshop Mock up flight deck simulation	Rejected	Not accepted in Wave 1
EAP_HPRE Q_VAL08	Validation	For CSPR-ST Further investigation in defining the second threshold is required as the current designator is confusing and misleading	Further investigation is required	Validation report of EXE-02.02-V3- VALP-R03	Accepted	
EAP_HPRE Q_TRG04	Training	The training shall extensively cover the new IGS-to-SRAP working methods associated with the ORD tool (if applicable) in order to ensure high trust in the tool and acceptability of the related procedures.	Training requirements have to be extensively covered in local implementation programs.	Validation report of EXE-02.02-V3- VALP-R02 Workshop Mock up flight deck simulation	Rejected	Not accepted in Wave 1

	:					JUINT UNDERTAKI
IGS-to- SRAP_HPRE Q_001 (REQ-14.5- SPRINTERO P- ORDF.0008)	Operational	When the separation delivery tool returns to operations, the Approach Executive Control shall communicate to the Tower Runway Control the first aircraft in the sequence that is performing IGS-to-SRAP arrival procedure.	This is important for the Tower Runway Control to know that the IGS-to-SRAP is back in operation.	Validation report of EXE-14.5-V3- VALP-R01	Accepted	
IGS-to- SRAP_HPRE Q_002 (REQ-14.5- SPRINTERO P- ORDF.0004)	Operational	In peak traffic, in case of loss of separation tool, the coordinator/assistant shall aid the Approach Executive Control for checking the separations between aircraft and suggesting which aircraft should be sent around.	Self-explanatory	Validation report of EXE-14.5-V3- VALP-R01	Accepted	
IGS-to- SRAP_HPRE Q_003 (REQ-14.5- SPRINTERO P- ORDF.0005)	Operational	In case of loss of separation tool, Approach Executive Control should inform Tower Runway Control about the last aircraft flying the IGS-to-SRAP procedure until the tool is running again and the situation back to nominal.	That would improve Tower Runway Control situational awareness and avoid Tower Runway Control to be surprised if an aircraft flying on IGS-to- SRAP arrives after a number of aircraft on standard approach.	Validation report of EXE-14.5-V3- VALP-R01	Accepted	
IGS-to- SRAP_HPRE Q_004 (REQ-14.5- SPRINTERO	Design	Approach Executive Control shall be alerted when an aircraft is not complying / deviating from the assigned published final approach profile.	This increases the workload and communication load of the Controller.	Validation report of EXE-14.5-V3- VALP-R01	Accepted	

P- CTL.1108)		The alert shall be sufficiently reliable, the level of reliability being defined locally at each airport.				
IGS-to- SRAP_HPRE Q_005 (REQ-14.5- SPRINTERO P- CTL.1109)	Design	The need for displaying to the Controllers the interception points respective for each procedure shall be evaluated as part of the local deployment, such that the visual references are operationally relevant and unambiguously presented without e.g. cluttering on the controller air surveillance display.	This should be further investigated locally.	Validation report of EXE-14.5-V3- VALP-R01	Accepted	
IGS-to- SRAP_HPRE Q_006 (REQ-14.5- SPRINTERO P- ACFT.2109)	Operational	Flight Deck shall pay particular attention to the transition of frequencies from APP to TWR and shall not delay it.	To avoid an aircraft being in between two frequencies where they are unable to communicate a missed approach or, conversely, the ATCO to not be able to communicate a go-around.	Validation report of EXE-14.5-V3- VALP-R01	Accepted	
IGS-to- SRAP_HPRE Q_007 (REQ-14.5- SPRINTERO P- ORDF.0009)	Operational	Additional staffing shall be available so that in peak (non- nominal) conditions, an Assistant can support the Approach Executive Control position.	The Supervisor will decide when an Assistant is needed, in coordination with Approach Runway Control.	Validation report of EXE-14.5-V3- VALP-R01	Accepted	

					AART	JOINT UNDERTAK
IGS-to- SRAP_HPRE Q_008 (REQ-14.5- SPRINTERO P- CTL.1010)	Design	Applicable Contingency approach separation minima shall be available to Approach Executive Control and Tower Runway Control, when controllers are supported by a separation tool.	In case of loss of the separation tool, the applicable standard baseline separation table (for same slope pairs) and a simplified mixed slope pairs table (e.g. leader on the higher and follower on the lower slope) shall be available to the ATCOs. These tables are to be used only when the tool is off. As an example, if RECAT-EU is the standard baseline separation to be applied for same slope pairs, the RECAT-EU table shall be available to the controllers. An additional table to cover mixed slope pairs when the separation tool is off, this could be RECAT-EU + 3NM.	Validation report of EXE-14.5-V3- VALP-R01		
IGS-to- SRAP_HPRE Q_009 (REQ-14.5- SPRINTERO P- GALT.0001)	Operational	When a wrong glide alert is activated, Approach Executive Control shall ask Flight Crew to confirm the flown approach procedure.	It is important that the ATCOs are aware of the situation and the pilots are aware of the reason for possible go-arounds.	Validation report of EXE-14.5-V3- VALP-R01		
IGS-to- SRAP_HPRE Q_010 (REQ-14.5- SPRINTERO	Operational	After a glide alert procedure, Approach Executive Control shall coordinate with Tower Runway Control about the aircraft that	To maintain the situational awareness of Tower Runway Control. This is particularly important when an aircraft is finally not	Validation report of EXE-14.5-V3- VALP-R01		

EUROPEAN PARTNERSHIP

P- GALT.0003)		triggered the glide alert when IGS- to-SRAP is active.	flying the procedure it would normally fly (for example if a Heavy aircraft is flying the IGS- to-SRAP Approach).		
IGS-to- SRAP_HPRE Q_011 (REQ-14.5- SPRINTERO P- ORDF.0006)	Operational	In case of loss of separation tool, Approach Executive Control or Tower Runway Control should let all aircraft from pairs which are stabilised at 160kts and on (or behind) the ITD, continue on final.	Control or Tower Runway Control needs to be confident that aircraft are stabilised before allowing them to	Accepted	

Table 12: HP Requirements

