

PJ.02-W2-14.5 CBA Final

Deliverable ID:	D4.5.010
Dissemination Level:	PU
Project Acronym:	AART
Grant:	874477
Call:	H2020-SESAR-2019-1
Topic:	SESAR-IR-VLD-WAVE2-03-2019 PJ.02 W2 AIRPORT
Topic.	AIRSIDE AND RUNWAY THROUGHPUT
Consortium coordinator:	EUROCONTROL
Edition date:	2 November 2022
Edition:	00.01.00
Template Edition:	02.00.06

Authoring & Approval

Authors of the document	
Beneficiary	Date
EUROCONTROL	31/10/2022

7

Reviewers internal to the project

Beneficiary	Date
EUROCONTROL	2/11/2022

8

Revie	wers e	external	to the	project	

Beneficiary	Date	
None		

Approved for submission to the S3JU By - Representatives of all beneficiaries involved in the project

Beneficiary	Date
EUROCONTROL	2/11/2022

9

Rejected By - Representatives of beneficiaries involved in the project

Beneficiary	Date	
None		

10

Document History

Edition	Date	Status	Beneficiary	Justification
00.00.01	18/10/2022	Draft	EUROCONTROL	Draft for V3 CBA
00.00.02	31/10/2022	Draft	EUROCONTROL	Updated V3 draft
00.01.00	2/11/2022	Final	EUROCONTROL	Final version for data pack

11

12 Copyright Statement © 2022 - EUROCONTROL. All rights reserved. Licensed to SESAR3 Joint

13 Undertaking under conditions.

15 AART

16 AIRPORT AIRSIDE AND RUNWAY THROUGHPUT

17

- 18 This CBA Report is part of a project that has received funding from the SESAR Joint Undertaking under
- 19 grant agreement No 874477 under European Union's Horizon 2020 research and innovation 20 programme.

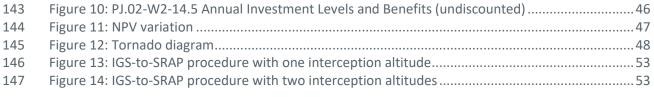
21 22

23 Abstract

- 24 This document provides the Cost Benefit Analysis (CBA) at V3 level for PJ.02-W2-14.5 Increased
- 25 Glide Slope to a Second Runway Aiming Point (IGS-to-SRAP), which is an Enhanced Arrival Procedure
- 26 (EAP). The associated OI Step is AO-0331: Enhanced approach operations using an increased glide
- 27 slope to a second runway aiming point (IGS-to-SRAP).
- 28 This deliverable includes the quantification and monetisation of costs and benefits associated with the
- 29 implementation of the IGS-to-SRAP procedure at relevant airports across ECAC.

30 Table of Contents

	Abstra	ct3
1	Exe	cutive Summary
2	Intr	oduction9
	2.1	Purpose of the document
	2.2	Scope
	2.3	Intended readership
	2.4	Structure of the document
	2.5	Background
	2.6	Glossary of terms
	2.7	List of Acronyms
3	Obj	ectives and scope of the CBA
3	3.1	Problem addressed by the solution17
	3.2	SESAR Solution description
3	3.3	Objectives of the CBA
3	3.4	Stakeholders identification
3		CBA Scenarios and Assumptions
-		efits 27
	4.1	Benefit Monetisation Mechanisms
	4.1.1	Extrapolation assumptions28
	4.1.2	Fuel Efficiency (FEFF1)
	4.1.3	Time Efficiency (TEFF1)
	4.1.4	Airport Capacity (CAP3.2)
	4.1.5	ATCO Productivity (CEF2)
	4.1.6	Noise Reduction (NOI2)
	4.1.7	
,	4.2	Benefit Monetisation of the Performance Framework KPI/PI
5	Cost	assessment
	5.1	ANSPs costs
	5.1.1	ANSPs cost approach
	5.1.2	
ļ	5.2	Airport operator costs
	5.2.3	
	1 2 3 4	 Exect Intro 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3 Obje 3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 4 Beno 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2



71	5.2.4 Cost per unit	9			
72	5.3 Network Manager costs	9			
73	5.4 Airspace User costs	9			
74	5.4.1 Airspace User cost approach				
75	5.4.2 Airspace User cost assumptions				
76	5.5 Military costs)			
77	5.6 Other relevant stakeholders)			
78	5.7 Cost Summary)			
79	6 CBA Model	2			
80	6.1 Data sources	2			
81	7 CBA Results	3			
82	7.1.1 Discounted Values				
83	7.1.2 Undiscounted Values	õ			
84	8 Sensitivity analysis	7			
85	8.1 Discount Rate	7			
86	8.2 Sensitivity Comparison	7			
87	8.3 Sensitivity Scenario	3			
88	8.3.1 Costs double				
89	8.3.2 Benefits halved				
90	8.3.3 Pessimistic Scenario CBA Results				
91	9 Recommendations and next steps)			
92	10 References and Applicable Documents	1			
93	10.1 Applicable Documents	L			
94	10.2 Reference Documents	L			
95	Appendix A Description of the Enhanced Arrival Procedure: IGS-to-SRAP (AO-0331) 53	3			
96	Appendix B Discount rate	4			
97	Appendix C Mapping ATM Master Plan Performance Ambition KPAs and SESAR 2020				
98	Performance Framework KPAs	5			
99					
100	List of Tables				
101	Table 1: Glossary of terms				
102	Table 2: List of acronyms 16				
103	Table 3: SESAR Solution PJ.02-W2-14.5 OI step				
104	Table 4: AO-0331 related Enablers19				
105	Table 5: AO-0331 Institutional Enablers 19				
106	Table 6: SESAR PJ.02-W2-14.5 solution CBA Stakeholders and impacts 22 Table 7: CBA Investment and Repetit Dates 21				
107	Table 7: CBA Investment and Benefit Dates 25 Table 8: Solution DL02 W/2 14 ELSCS to SBAD local bonefits [25] 26				
108 109					
109					
110	transport Version 2019)				
112	Table 11: Reduction in population impacted by noise per airport				
		-			

113	Table 12: Avoided cost of noise per airport	32
114	Table 13: Solution PJ.02-W2-14.5 IGS-to-SRAP ECAC-wide benefits	32
115	Table 14: Results of the benefits monetisation per KPA	35
116	Table 15: Number of investment instances – ANSPs	37
117	Table 16: ANSP Costs per Enabler (Aerodrome) and per deployment location	38
118	Table 17: ANSP Costs per Enabler (Approach) and per deployment location	38
119	Table 18: Number of deployment locations - Airports	39
120	Table 19: Airport Costs per Enabler and per deployment location	39
121	Table 20: Airspace User (Scheduled Airlines and Business Aviation) Training Costs	40
122	Table 21: Investment Cost Summary	41
123	Table 22: Operating Cost Summary	41
124	Table 23: PJ.02-W2-14.5 Discounted CBA results (per stakeholder and overall)	44
125	Table 24: PJ.02-W2-14.5 Undiscounted CBA results (per stakeholder and overall)	45
126	Table 25: Investment Cost Summary	48
127	Table 26: Operating Cost Summary	
128	Table 27: PJ.02-W2-14.5 Pessimistic Scenario - Discounted CBA results (per stakeholder and overal	'
129		49
130	Table 28: Mapping between ATM Master Plan Performance Ambition KPAs and SESAR 2020	
131	Performance Framework KPAs, Focus Areas and KPIs	56
132		
133	List of Figures	
134	Figure 1: Scenario Overview	23
135	Figure 2: Overview of CBA Dates	26
136	Figure 3: Fuel Efficiency and CO2 Monetisation Mechanisms	29
137	Figure 4: Time Efficiency Monetisation Mechanism	29
138	Figure 5: Airport Capacity Monetisation Mechanisms	30
139	Figure 6: ATCO Productivity	30
140	Figure 7: Noise reduction Monetisation Mechanism	32
141	Figure 8: PJ.02-W2-14.5 Annual Investment Levels and Benefits (discounted)	44
142	Figure 9: PJ.02-W2-14.5 Annual Investment Levels and Benefits expanded (discounted)	45

149 **1 Executive Summary**

150 This report¹ provides the V3 Cost Benefit Analysis (CBA) for SESAR Solution PJ.02-W2-14.5 Increased 151 Glide Slope to a Second Runway Aiming Point (IGS-to-SRAP), which is an Enhanced Arrival Procedure 152 (EAP) that uses two active thresholds on a single runway with a steeper glide slope to the second 153 threshold.

Solution PJ.02-W2-14.5 has validated to V3 level the Operational Improvement Step (OI Step) AO 0331: Enhanced approach operations using an increased glide slope to a second runway aiming point

156 (IGS-to-SRAP). The CBA focuses on the **<u>deployment</u>** of the Solution at ECAC²-level and is not limited to

157 the scope of the validation activities.

158 Benefits

- 159 The expected IGS-to-SRAP **benefits** that are monetised in the CBA are:
- Reduced environmental impact from Noise Reduction below the final approach in peak and non-peak periods for aircraft using the IGS-to-SRAP. These benefits are based on the change in size of the noise contours around the airport areas, which reflects a reduction in aircraft noise for impacted residents.
- Increases in <u>Airport Capacity</u> during capacity-constrained peak periods when both runway aiming points are used to optimise wake turbulence separations for specific combinations of leader/follower aircraft pairs
- Improvements in <u>Fuel Efficiency</u> and <u>Time Efficiency</u> in peak and non-peak periods where the optimised wake separations can help optimise flight profiles and the airport layout allows a reduction in runway occupancy time and taxi-in time for aircraft using the SRAP

An airport will choose to deploy a second runway aiming point with an increased glide slope based on
 their operational needs, such as, optimising wake turbulence separations, optimising taxi-in times and
 reducing the impact of noise.

The CBA is presented at the ECAC-level following an extrapolation of local benefits from the validation activities. Deployment covers five³ capacity-constrained airports for the airport capacity benefits, these airports come from the Very Large and Large operating environment categories (SESAR 2020 Airport Classification Scheme) and are operating in segregated mode. In addition, all 32 Very Large and Large airports are assumed to deploy the solution for the noise related benefits. Other airports, such as those in the Medium category could also deploy the solution and benefit from the noise reduction aspects, however, the associated costs and benefits are not included in this CBA.

180 CBA Results

181 The Net Present Value (NPV) of 1320 M€ reflects that the benefits from deploying this Solution are 182 expected to exceed the costs of deploying and operating it. Confidence in the airport capacity, fuel 183 and time efficiency benefits is medium as they are based on Fast Time Simulation results. Confidence 184 in the noise results is low to medium as they generalise the benefits calculated from the noise 185 simulations produced in the Wave 1 Solution PJ.02-02 'Enhanced Arrival Procedures'.

³ The airport names are not provided as they were chosen based on criteria and have made no commitment to deploy.

¹ The opinions expressed herein reflect the authors' view only. Under no circumstances shall the SESAR 3 Joint Undertaking be responsible for any use that may be made of the information contained herein.

² European Civil Aviation Conference

- 186 The NPV has been calculated with an 8% discount rate over the period 2022 to 2043, with PJ.02-W2-
- 187 14.5 being deployed between 2025 and 2030 and with benefits starting to be realised from late 2026.
- 188 The payback year is 2027, which reflects when the cumulative net benefits will exceed the costs.

The sensitivity analysis shows that even if the costs doubled and the benefits halved, the deployment,
 as described in the CBA Solution Scenario, would still have a positive NPV of 460 M€.

- 191 <u>Costs</u>
- On the cost side the deployment of IGS-to-SRAP will require ANSPs⁴, Airport Operators and Airspace
 Users to invest.
- ANSP costs are based on a controller tool to support final approach operations and a controller separation support tool (enhanced Optimised Runway Delivery tool, eORD⁵) to support the use of IGS-to-SRAP as well as training for both.
- <u>Airport Operator</u> costs relate to runway markings, lighting and PAPI (precision approach path indicator) for each second runway aiming point with an increased glide slope.
- <u>Airspace User</u> costs relate to pilot training requirements. There are no airborne or flight
 operation centre investments required.
- 201 Some of the enablers required for this Solution will also enable other Solutions, however, the full 202 enabler cost has been included in this CBA as a conservative approach.
- While not included in the CBA, approach guidance is required for the operation of IGS-to-SRAP. This can be RNP (Required Navigation Performance), SBAS (Satellite Based Augmentation System) or GBAS (Ground Based Augmentation System). RNAV (Required Vertical Navigation Performance) guidance is also considered because it is anticipated that in 2025 most aircraft will be able to follow RNAV procedures, whereas only 25% of the fleet is expected to be GBAS-equipped.

208 <u>Recommendations and next steps</u>

PJ.02-W2-14.5 is a Solution that an airport could choose to deploy if they face capacity-constraints
 and noise issues around the airport. However, each airport needs to assess if this Solution is the best
 way to meet their operational needs and they should develop their own CBA based on their specific
 infrastructure, operations, layout, etc. to assess the scale of their potential benefits. They should also
 review related solutions, such as PJ.02-W2-14.2 Second Runway Aiming Point and PJ.02-W2-14.3
 Increased Second Glide Slope, to ensure they deploy the most appropriate solution for their needs.

- 215
- 216

⁵ The eORD is included in this CBA although only for the 5 airports targeting airport capacity benefits, the tool is optional for airports with lower traffic levels that would focus solely on the noise benefits

⁴ It is assumed that air traffic control (ATC) systems located at airports are owned by the ANSPs that provide the service; ANSPs are therefore assigned the relevant upgrade costs of these systems in the CBA. In reality the situation will differ across airports as some airports may own the systems.

217 **2 Introduction**

218 **2.1** Purpose of the document

219 This document provides the Cost Benefit Analysis (CBA) for SESAR Solution PJ.02-W2-14.5 Increased 220 Glide Slope to Second Runway Aiming Point (IGS-to-SRAP), which is an Enhanced Arrival Procedure 221 (EAP) that has been validated to V3 level. The CBA looks at the affordability of deploying IGS-to-SRAP 222 solution with respect to its expected benefits.

This V3 CBA considers the impacts, benefits and costs of deploying the Solution at ECAC-level. It includes the Net Present Value (NPV) for the Solution and per impacted stakeholder group, as well as a sensitivity analysis to identify the most critical variables to the value of the project.

226 **2.2 Scope**

Deploying IGS-to-SRAP will result in two active thresholds on a single runway with a steeper glide slope
 to the second threshold. This is expected to provide benefits in terms of:

- Reduced environmental impact from Noise Reduction below the final approach in peak and non-peak periods for aircraft using the IGS-to-SRAP. These benefits are based on the change in size of the noise contours around the airport areas, which reflects a reduction in aircraft noise for impacted residents.
- Increases in <u>Airport Capacity</u> during capacity-constrained peak periods when both runway
 aiming points are used to optimise wake turbulence separations for specific combinations of
 leader/follower aircraft pairs
- Improvements in Fuel Efficiency (reduced fuel burn and CO₂ emissions) and Time Efficiency
 in peak and non-peak periods where the optimised wake separations can help optimise flight
 profiles and the airport layout allows a reduction in runway occupancy time and taxi-in time
 for aircraft using IGS-to-SRAP

This PJ.02-W2-14.5 V3 CBA provides the costs and benefits of the IGS-to-SRAP Solution Operational Improvement Step (OI Step AO-0331) and associated enablers; see section 3.2. It considers the standalone deployment of the Solution, i.e. independently from any other SESAR Solution(s). This means that the costs of any enablers that also enable other solutions are fully included here.

244 The CBA covers the period from 2022 to 2043. The Solution is assumed to be available to deploy from 245 2025, with initial benefits starting in late 2026 and full benefits from 2030. The CBA includes the 32 airports, from the Very Large and Large categories [10], which have been identified as candidates for 246 247 deployment. Five are assumed to deploy for the airport capacity benefits, while all of them receive 248 the noise reduction benefits. Airports in other categories, especially Medium, could also benefit from 249 noise reduction although the scale of an airport's benefits will depend on the population density of 250 the area surrounding it. The associated costs and benefits for these other airports are not included in 251 this CBA.

252 **2.3 Intended readership**

- 253 The intended readership for this document includes:
- PJ.02-W2-14.5 solution members
- PJ.02 Increased Runway and Airport Throughput Other project partners

256	٠	PJ.19 – in its Content Integration role
257	•	PJ.20 - in its role of Master Plan Maintenance project
258	•	SESAR Programme Management
259	•	Stakeholders (ANSPs and airports) interested in deploying this Solution
260 261	٠	Airspace Users (Scheduled Airlines, Business Aviation) interested in the deployment of this Solution
262	2.4	Structure of the document
263	This re	port is structured as follows:
264	•	Section 1 provides the Executive Summary
265 266	٠	Section 2 provides the scope, intended readership, structure, background, glossary of terms and acronyms
267 268 269	٠	Section 3 presents the objectives and scope of this CBA, provides a description of the PJ.02-W2-14.5 IGS-to-SRAP Solution, information on the main stakeholders and descriptions of the CBA scenarios
270 271	٠	Section 4 described the benefits and how they are monetised as well as a view on the overall contribution to the Key Performance Indicators (KPIs)
272 273	٠	Section 5 details the costs along with the cost approach per stakeholder group and the associated assumptions
274	•	Section 6 includes the CBA model and information on the sources of data used to feed it
275	٠	Section 7 provides the CBA results
276	•	Section 8 includes the sensitivity analysis
277	•	Section 9 includes recommendations and next steps
278	•	Section 10 includes the references and applicable documents
279 280 281 282	٠	The appendices provide a visual representation of the solution concept, the rationale for using an 8% discount rate and the mapping between ATM Master Plan Performance Ambition KPAs (Key Performance Areas) and SESAR 2020 Performance Framework KPAs, Focus Areas and KPIs.

283 **2.5 Background**

The PJ.02-W2-14.5 IGS-to-SRAP Solution builds on the PJ.02-02 Solution "Enhanced Arrival Procedures" from SESAR 2020 Wave 1. PJ.02-02 considered a group of five Enhanced Arrival Procedures (EAP). In Wave 2 each EAP has been defined as a separate Solution:

- PJ.02-W2-14.1 (AO-0308) Closely Spaced Parallel Runways optimised operations using
 Staggered Thresholds (CSPR-ST) *frozen in Wave 2*
- PJ.02-W2-14.2 (AO-0319) Enhanced Arrival procedures using Second Runway Aiming Points (SRAP)
- **PJ.02-W2-14.3** (AO-0320) Enhanced Arrival procedures using Increased Glide Slope (ISGS)
- PJ.02-W2-14.4 (AO-0321) Enhanced Arrival procedures using Adaptive Increased Glide Slope
 (A-IGS) *frozen in Wave 2*

PJ.02-W2-14.5 (AO-0331) Enhanced Arrival Procedure using an Increased Second Glide Slope to a Second Runway Aiming Point (IGS-to-SRAP) – <u>focus of this CBA</u>

As each Solution is separate, they each have a stand-alone CBA (PJ.02-W2-14.2 SRAP, PJ.02-W2-14.3 ISGS and PJ.02-W2-14.5 ISGS-to-SRAP) developed from the PJ.02-02 CBA deliverable [20] from Wave 1 that included a consolidated analysis for the five EAP concepts. The CBA is based on nominal conditions and so the non-nominal validation exercises performed in SESAR 2020 Wave 2 have not provided additional inputs for this CBA.

- 301 The PJ.02-02 Solution built on validation work produced during SESAR 1 for projects:
- P06.08.08 D07 Enhanced Arrival Procedures Enabled by GBAS OSED Consolidation [15] and,
- P06.08.05 D04 Operational Service and Environment Definition (OSED) Displaced Thresholds
 [16].

Term Definition		Source of the definition	
Benefit	A Benefit is the positive value of the return on investment to (some or all) stakeholders.	SESAR 16.06.06 - Methods to Assess Costs and Monetise Benefits for CBAs (D26, Edition 00.02.02, July 2016)	
Benefit and Impact Mechanism	A Benefit and Impact Mechanisms a cause-effect description of the positive and negative impacts of the Solution.	SESAR 16.06.06 – Guidelines for Producing benefit and Impact Mechanisms (D26_04, Edition 03.00.00)	
Business Case	A Business Case is a tool for decision-makers, it aims to provide them with the information they need to make a fully informed decision on whether funding should be provided and/or whether an investment should proceed.	SESAR 16.06.06, SESAR 1 Business Case 2016, D51, Edition 00.01.01, 13/07/16	
	A Business Case is much more than just a financial analysis as it also includes quantitative and qualitative arguments on performance and transversal activities that are key to determining the value of the project.		
Cash Flow	sh Flow Cash flow is the difference between the cash inflows and outflows related to the project during the time horizon in which they occur.		
Cost A Cost is the monetary value of an investment use up to produce or acquire the benefit.		SESAR 16.06.06 - Methods to Assess Costs and Monetise Benefits for CBAs (D26, Edition 00.02.02, July 2016)	
Cost Benefit Analysis	A Cost Benefit Analysis is a process of quantifying in economic terms the costs and benefits of a project or a program over a certain period, and those of its alternatives (within the same period), in order to have a single scale of comparison for unbiased evaluation.	SESAR 16.06.06, SESAR 1 Business Case 2016, D51, Edition 00.01.01, 13/07/16	
	A CBA is a neutral financial tool that helps decision makers to compare an investment with other		

305 2.6 Glossary of terms

Term	Definition	Source of the definition	
	possible investments and/or to make a choice between different options / scenarios and to select the one that offers the best value for money while considering all the key criteria for the decision.		
Cost mechanisms	Cost mechanisms are a description of the potential costs of the project broken down into relevant cost categories (e.g. investment, operating).	SESAR 16.06.06, ATM CBA for Beginners, D26-01, October 2014	
Discount Rate	Discount Rate is a way to capture the time value of money. This is a percentage that represents the increase in the amount of money needed or estimated to keep the same value as one year ago.	SESAR 16.06.06, ATM CBA for Beginners, D26-01, October 2014	
Initial Operational Capability	Initial Operational Capability is achieved when a capability is available in its minimum usefully deployable form. In other words, it identifies the start of benefits and the benefit ramp-up period.	16.06.06-D68-New CBA Model and Method 2015- Part1 of 2 SESAR 16.06.06, ATM CBA for Beginners, D26-01, October 2014	
Net Present Value (NPV)	Net Present Value (NPV) is the sum of all discounted cash inflows and outflows during the time horizon period.		
Sensitivity Analysis	Sensitivity refers to the impact one given input to the model has on the overall NPV.	SESAR 16.06.06, ATM CBA for Beginners, D26-01, October 2014	
Stakeholders	Stakeholders are organizations and entities who will have to pay for or will be impacted by the project directly or indirectly.	SESAR 16.06.06, ATM CBA for Beginners, D26-01, October 2014	
Time Horizon	Time horizon refers to a definite period during which all cost and benefits related to a given project occur.	SESAR 16.06.06, ATM CBA for Beginners, D26-01, October 2014	
Time Value of Money	Time Value of Money means that the same (nominal) amount of money received at different points in time has different value	SESAR 16.06.06, ATM CBA for Beginners, D26-01, October 2014	
Wake Turbulence Wake turbulence is a function of an aircraft producing lift, resulting in the formation of two counter-rotating vortices trailing behind the aircr Wake turbulence from generating aircraft can aff encountering aircraft due to the strength, duration and direction of the vortices.		PJ.02-01 partners	
Wake Vortex	Wake vortex is a circular pattern of rotating air left behind a wing as it generates lift.	PJ.02-01 partners	

Table 1: Glossary of terms

307 **2.7 List of Acronyms**

Acronym	n Definition	
AART	Airport Airside and Runway Throughput	
ACC	Area Control Centre	
AERO Aerodrome		

Acronym	Definition		
A-IGS	Adaptive Increased Glide Slope		
ANS	Air navigation services		
ANSP	Air Navigation Service Provider		
AO	Airport Operator		
APP	Approach Centre		
АРТ	Airport		
APV-Baro	Approach Procedures with Vertical Guidance (using barometric altitude info)		
APV-SBAS	Approach Procedures with Vertical Guidance (using SBAS altitude info)		
ATC	Air Traffic Control		
АТСО	Air Traffic Controller		
АТМ	Air Traffic Management		
ATS	Air Traffic Services		
AU	Airspace User		
AUC	Airspace User Costs		
ВА	Business Aviation		
BIM	Benefit and Impact Mechanisms		
САР	Capacity		
CAPEX ⁶	Capital Expenditure		
СВА	Cost Benefit Analysis		
CEF	Cost Effectiveness		
СМС	Civil Military Coordination		
CO ₂	Carbon dioxide		
CP1	Common Project 1		
CSPR-ST	Closely Spaced Parallel Runways - Staggered Thresholds		
db	decibel		
DS	Data Set		
EAO	Enhanced Arrival Operations		
EAP	Enhanced Arrival Procedures		
EATM	European ATM (Portal, database, dataset)		
EATMA	European ATM Architecture		
EC	European Commission		
ECAC	European Civil Aviation Conference		
EN	Enabler		

⁶ Note that the term CAPEX has been used in the CBA Report to indicate all the investments (preimplementation and implementation costs).

Acronym	Definition	
ENV	Environment (KPA)	
eORD	Enhanced Optimised Runway Delivery (Tool)	
ER	En-route	
EU	European Union	
EUR	Euro	
EUROCONTROL	European Organisation for the Safety of Air Navigation	
FAP	Final Approach Point	
FEFF	Fuel Efficiency	
FLX	Flexibility	
FOC	Final Operating Capability / Flight Operations Centre	
FTS	Fast Time Simulation	
G2G	Gate to Gate	
GAT	General Air Traffic	
GBAS	Ground-Based Augmentation System	
GLS	GNSS (Global Navigation Satellite System) Landing System	
н	High complexity (En-route/Terminal Airspace classification)	
H2020	Horizon 2020	
НС	High complexity (airport)	
НР	Human Performance	
HUM	Human (enabler)	
ICAO	International Civil Aviation Organization	
IGS	Increased Glide Slope	
IGS-to-SRAP	Increased Glide Slope to a Second Runway Aiming Point	
ILS	Instrument Landing System	
INTEROP	Interoperability	
IOC	Initial Operating Capability	
IR	Industrial Research	
ІТ	Information Technology	
KG (kg)	Kilogram	
KM	Kilometre	
КРА	Key Performance Area	
КРІ	Key Performance Indicator	
L	Large (Airport classification) / Low complexity (En-route/Terminal Airspace classification)	
LC	Low complexity (airport)	
Lden	Day-evening-night noise level	

Acronym	Definition	
Μ	Medium (Airport classification) / Medium complexity (En-route/Terminal Airspace classification)	
M€	Millions of euros	
NM	Network Manager / Nautical Mile	
NOI	Noise	
NPV	Net Present Value	
NSA	National Supervisory Authority	
0	Optional (enabler)	
OE	Operating Environment	
01	Operational Improvement	
OPEX	Operating Expenditure (Considers Changes in Operating Costs)	
ORD	Optimised Runway Delivery (Tool)	
OSED	Operational Service and Environment Definition	
PAPI	Precision Approach Path Indicator	
PAR	Performance Assessment Report	
PAX	Passengers	
PBN	Performance Based Navigation	
РСР	Pilot Common Project	
PI	Performance Indicator	
PJ	Project	
PMP	Project Management Plan	
PRD	Predictability	
PUN	Punctuality	
R	Required (enabler)	
R&D	Research and Development	
RECAT	Wake Turbulence Re-categorisation	
REG	Regulation (enabler)	
RES	Resilience	
RET	Rapid Exit Taxiway	
RNAV	Area Navigation	
RNP	Required Navigation Performance	
RNP APCH	Required Navigation Performance Approach	
ROT	Runway Occupancy Time	
RTS	Real Time Simulation	
RWY	Runway	
S	Small (Airport classification)	

Acronym	Definition
S3JU	SESAR3 Joint Undertaking
SA	Scheduled Aviation
SAF	Safety
SBAS	Satellite-based Augmentation Systems
SEC	Security
SESAR	Single European Sky ATM Research Programme
SJU	SESAR Joint Undertaking
SOL	Solution
SPR	Safety and Performance Requirements
SRAP	Second Runway Aiming Point (SRAP)
STD	Standardisation (enabler)
sWP	Sub-Work Package
TEFF	Time Efficiency (KPA)
TMA	Terminal Manoeuvring Area
V3	Pre-industrial development and integration stage of the Concept Lifecycle Model (E-OCVM)
VASI	Visual Approach Slope Indicator
VH	Very High complexity (En-route/Terminal Airspace classification)
VL	Very Large (Airport classification)
VLD	Very Large Demonstration
W1	SESAR 2020 Wave 1
W2	SESAR 2020 Wave 2
WHO	World Health Organisation
WP	Work Package

Table 2: List of acronyms

309 3 Objectives and scope of the CBA

310 3.1 Problem addressed by the solution

Some airports face the following two problems, which could be improved by deploying an IncreasedGlide Slope to a Second Runway Aiming Point (IGS-to-SRAP):

- Managing arrival traffic during high-demand periods when there is a mix of aircraft sizes. The number of aircraft in the heavy category is increasing at major airports, and also at secondary airports where such aircraft types were rare in the past. At these airports, it is becoming more and more difficult to manage the cohabitation of large aircraft with the much smaller aircraft that have historically operated from secondary airports or that are interested in establishing new business jet connections with major airports. The difficulty in managing wake vortex separations can lead airports to not accept smaller aircraft during peak hours.
- The noise impact of aircraft flying ILS (Instrument Landing System) approaches, especially during the night. This noise impact is a major limitation that constrains the operations at some airports because most airports provide straight-in ILS precision approaches on a standard 3-degree glide slope that obliges aircraft to fly low over built-up, often residential, areas. The aircraft are not always able to follow trajectories that allow optimum flap settings and engine thrust for both fuel consumption and noise.

IGS-to-SRAP will help airports meet their operational needs to optimize wake turbulence separationsbetween arrivals while reducing the noise below the final approach.

328 **3.2** SESAR Solution description

329 The Solution description in EATMA (DS23 draft) is:

This Solution introduces the Increased Glide Slope to a Second Runway Aiming Point (IGS-to-SRAP) as
 a new concept of enhanced approach operation. The distance between the second threshold and the
 nominal one is at least of 1100m.

333 IGS-to-SRAP increases runway performance by using two active thresholds on a single runway and an334 increased glide slope to the second one.

By doing so, the environmental impact (e.g. noise, fuel) should be reduced. In addition, runway throughput may be increased (e.g. via optimization of runway occupancy time (ROT) and/or wake turbulence separations).

The following description is based on the Solution description from the OSED, section 3.1 (version 00.01.00, dated 27/09/22) [24].

IGS-to-SRAP is an enhanced approach operation (EAO) that will apply an Increased Glide Slope (above the angle in use to the nominal runway threshold and up to 4.49°) to a Second Runway Aiming Point further down the runway threshold (as specified in the published chart). The distance between the second threshold and the nominal one is at least 1100m. The IGS-to-SRAP procedure would be published as an alternate final procedure which can be captured at any time during the approach phase before the Final Approach Point (FAP).

- 347 Using IGS-to-SRAP will enable inbound aircraft to reduce their noise footprint (environmental benefit)
- 348 and possibly reduce runway occupancy time and/or taxi-in time depending on local runway/taxiway
- 349 layout. The airport capacity related benefits will be realised at capacity-constrained airports in periods

- of over-demand related to wake turbulence separation minima. Constraints such as weather, runway configuration, mode of operations and traffic mix will need to be considered.
- 352 The aim is to optimise traffic throughput with the existing infrastructure, while improving safety. Using
- an increased glide slope to a second runway aiming point could also serve as an enabler for reducing

the wake vortex encounter risk, therefore potentially bringing a secondary benefit in reducing wake

355 vortex separation minima for specific combination of leader/follower aircraft pairs. For example, IGS-

356 to-SRAP permits 'light wake' category aircraft to fly a final approach above the approach profile of

- heavier aircraft flying to the primary runway threshold; this enables the smaller aircraft to avoid the
- 358 wake vortex of the larger aircraft, and results in an increase in runway throughput.

359 Approach guidance is required for the operation of IGS-to-SRAP. This can be RNP (Required Navigation

360 Performance), SBAS (Satellite Based Augmentation System) or GBAS (Ground Based Augmentation

361 System). RNAV (Required Vertical Navigation Performance) guidance is also considered because it is

- anticipated that in 2025 most aircraft will be able to follow RNAV procedures, whereas only 25% of
- the fleet is expected to be GBAS-equipped.
- The IGS-to-SRAP function aims at being compatible with any approach with vertical guidance: ILS, GLS (GBAS), APV-Baro or APV-SBAS based approaches.
- Table 3 provides the definition of the PJ.02-W2-14.5 OI Step.

	SESAR Solution ID	OI Steps ref.	OI Steps definition
PJ.02-W2-14.5 AO-0331		AO-0331	Enhanced approach operations using an increased glide slope to a second runway aiming point (IGS-to-SRAP)
	Table 3: SESAR Solution PJ.02-W2-14.5 OI step		

- 368 Costs and benefits are both calculated on the assumption that all required enablers are deployed by
- the relevant stakeholders. In addition, as the validation simulations made use of the separation

delivery tool (eORD), the optional enablers corresponding to the tool have also been included for the

5 airports targeting airport capacity benefits. The other Optional enablers are not included in the cost

372 assessment.

367

Table 4 lists the Required and Optional enablers, while Table 5 lists the institutional enablers.

Enabler ⁷ ref.	Enabler definition	Applicable stakeholders
AERODROME-ATC-102 (R)	Aerodrome ATC system to support final approach operations (distinguish approach procedures)	Air Navigation Service Provider - Civil ATS Aerodrome Service Provider - Military ATS Aerodrome Service Provider
AIRPORT-56 (R)	Runway marking, lighting and PAPI for SRAP/IGS-to-SRAP approach procedures	Airport Operator - Civil APT operator - Military APT operator
APP ATC 170 (R)	Approach ATC system upgraded to support approach procedure assignment	Air Navigation Service Provider - Civil ATS Approach Service Provider - Military ATS Approach Service Provider
HUM-024 (R)	Flight Crew new role for handling IGS- to-SRAP approach	Airspace User - Civil Scheduled Aviation - Civil Business Aviation-Fixed Wing

⁷ This includes System, Procedural and Human Enablers

Enabler ⁷ ref.	Enabler definition	Applicable stakeholders
		- Civil General Aviation
		- Military Transport
		- Military Fighter
		- Military Light Aircraft
HUM-033 (R)	ATC new role for handling IGS-to-SRAP	Air Navigation Service Provider
	approach	- Civil ATS Aerodrome Service Provider
		- Civil ATS Approach Service Provider
		- Military ATS Aerodrome Service Provider
		- Military ATS Approach Service Provider
A/C-86 (O)	On-board assistance to aircraft energy	Airspace User
	management	- Civil Scheduled Aviation
		- Civil Business Aviation-Fixed Wing
		- Civil General Aviation
		- Military Transport
		- Military Fighter
		- Military Light Aircraft
A/C-87 (O)	On-board assistance to flare	Airspace User
		- Civil Scheduled Aviation
		- Civil Business Aviation-Fixed Wing
		- Civil General Aviation
		- Military Transport
		- Military Fighter
		- Military Light Aircraft
AERODROME-ATC-94	Aerodrome ATC System to support	Air Navigation Service Provider
(O)	IGS-to-SRAP operations (separation delivery)	- Civil ATS Aerodrome Service Provider
		- Military ATS Aerodrome Service Provider
APP ATC 163 (O)	Approach ATC System to support IGS-	Air Navigation Service Provider
	to-SRAP operations (separation	- Civil ATS Approach Service Provider
	delivery)	- Military ATS Approach Service Provider
	Table 4: AO-0331 related Er	hablers

Table 4: AO-0331 related Enablers

375 The institutional enablers, REG-0533 and STD-112, listed in the Wave 1 PJ.02-02 CBA, have been allocated to system and human enablers in more recent datasets. They are listed in Table 5 to give a 376

link to the Wave 1 PJ02-02 CBA. Section 5 explains how they are considered in the cost assessment. 377

Enabler ref.	Enabler definition	Applicable stakeholders	
REG-0533	Regulatory provisions for Increased	Institutional enabler -	
Allocated to AERODROME-ATC-94 (O), APP ATC 163 (O)	Glide Slope to Second Runway Aiming Point operations (IGS-to-SRAP)	unassigned in DS23 draft	
STD-112	Update of EASA and ICAO regulatory	Institutional enabler -	
Allocated to HUM-024 (R), AIRPORT-56 (R)	frameworks for new visual ground aids (SRAP)	unassigned in DS23 draft	

Table 5: AO-0331 Institutional Enablers

3.3 Objectives of the CBA 379

- This V3 Cost Benefit Analysis helps to build an assessment of whether PJ.02-W2-14.5 is worth deploying from an economic perspective for the involved stakeholders.
- The objective is to provide an assessment of the costs and benefits of deploying an increased glide slope to a second runway aiming points (IGS-to-SRAP) at the 32 Very Large and Large airports that have been included in the ECAC-level CBA Solution Scenario. Five of the airports target the airport capacity benefits while all of them receive the noise benefits. The airports are not named in the CBA to avoid the implication that those airports have made any commitment to deploy PJ.02-W2-14.5.
- This CBA assesses whether the benefits of the deployed Solution are expected to exceed the costs over the CBA time horizon (up to 2043). It does this using discounted cash flow analysis which provides the Net Present Value (NPV) for the Solution and per stakeholder group. As there is a positive NPV, the break-even year and payback period are provided; respectively, these are the year from which the
- benefits will cover the costs incurred and the number of years from the start of the project before this
- 392 occurs.
- The CBA results are also explored through a sensitivity analysis to assess the impact on the NPV of changes to the input values, e.g. a doubling of the costs and a halving of the benefits.
- As the CBA provides results at ECAC-level it does not provide sufficient detail to support individual deployment decisions that must take into account the local environment/situation (e.g. current operational systems, their lifespan(s), replacement timing, etc.). However, interested parties can take the mechanisms and inputs used here and refine them for their local CBAs, if appropriate.
- Note that the key inputs for the PJ.02-W2-14.5 CBA come from SESAR 2020 Wave 1 PJ.02-02 as no additional performance data will be produced by the PJ.02-W2-14.5 Wave 2 validation activities. Cost data was originally provided by PJ.02-01 and PJ.02-02 members and has been reviewed in Wave 2 with Airport Operator costs being updated.

403 **3.4 Stakeholders⁸ identification**

- The CBA results are presented at solution level and individually from the viewpoint of each impacted stakeholder group, i.e. those that need to invest and those who will receive benefits from the Solution.
- 406 <u>ANSPs</u> providing approach (APP) and tower (AERO) services at the deploying airports
- 407 <u>Airport Operators</u> at the deploying airports
- 408 <u>Airspace Users</u>⁹ who operate at the deploying airports
- 409 <u>Society</u> focused on the inhabitants living around the deploying airports
- Table 6 describes how each stakeholder is impacted by the IGS-to-SRAP solution in terms of costs andbenefits.

Stakeholder Type of Type of Impact stakeholder and/or applicable sub-OE	Involvement in the CBA task	Quantitative results available in the CBA
---	-----------------------------------	--

⁸ Note that the terminology used to describe AU stakeholders in the CBA differs from that associated with Enablers in the dataset. This is due to costing being provided for different types of aircraft regardless of the operations they perform.

⁹ Note that the terminology used to describe AU stakeholders in the CBA differs from that associated with Enablers in the dataset. This is due to costing being provided for different types of aircraft regardless of the operations they perform.

				INT UNDERTAKING
ANSPs	ATCOs, TMA (APP) and Tower (Aerodrome) control Centres	Benefits: ANS charges from the additional movements <u>Costs</u> : implementation of tools and functionalities (assigning and identifying the approach procedures and separate delivery, where needed) to allow the ATCO to handle arrivals using two glide slopes to separate runway aiming points	PJ.02 partners providing cost inputs	Costs and monetised benefits
Airport Operators	Very Large and Large Airports	 <u>Benefits</u>: Noise reduction in the areas close to the airport could reduce capacity restrictions due to noise allowing an improved quality of service to AUs Runway Occupancy Time 	No involvement	Costs and monetised benefits
		reduction, leading to potential increase in runway capacity <u>Costs</u> : investments are needed for the runway (lighting, marking) and PAPI (Precision Approach Path Indicator)		
Network Manager	Network	Benefits: no direct benefits for NM although the network will benefit from additional runway capacity during relevant airport capacity- constrained periods <u>Costs</u> : no costs as there are no	No involvement	No costs o benefits included
Scheduled Airlines (Mainline and Regional) / Business Aviation	Flight Crew, Schedule Planner, Safety and Training Departments	changes to NM systems or operations <u>Benefits</u> : time efficiency and fuel efficiency associated with improved flight profiles, reduced runway occupancy time and shorter taxi routes, where applicable, when using the IGS-to-SRAP. AU will also benefit from the increase of runway capacity during peak periods which can enable additional flights (reduce unaccommodated demand). Costs: investments are needed for	No involvement	Costs and monetised benefits
Regulation Authority	National Supervisory Authority	<u>Costs</u> : Investments are needed for flight crew training (pilot) for IGS-to- SRAP procedures New operations need to be approved before they can become operational and provide the stakeholder benefits	No involvement	No costs of benefits
	(NSA) / Ministry of Transport	mentioned in this table. Benefits: no benefits Costs: no costs for regulatory authorities, the cost for regulation		

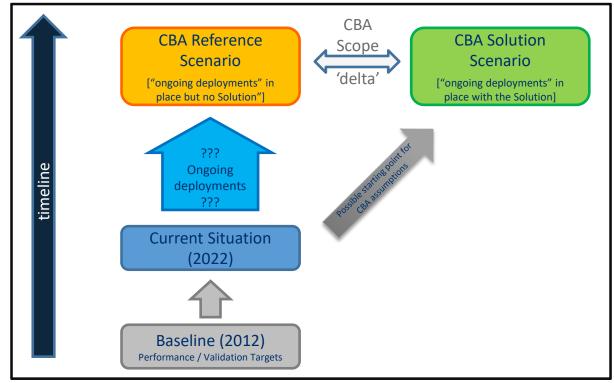
		drafting are taken into account in the ANSP costs		
Society	Communities around airports and passengers	Benefits: Communities around airports are interested in environmental benefits, especially noise reduction, coming from the implementation of the IGS-to-SRAP solution Passengers will indirectly benefit from SRAP through the increase in runway capacity, which could result, for example, in an increase in available destinations and the avoidance of diversions due to missing curfews.	No involvement	Societal benefits have been monetised following the reduction in noise contours around the airports. The other mentioned passenger benefits are not included in the CBA.

Table 6: SESAR PJ.02-W2-14.5 solution CBA Stakeholders and impacts

413 **3.5 CBA Scenarios and Assumptions**

This section describes the scenarios that are compared in the CBA. The comparison is between the CBA Reference scenario (where the Solution is not deployed - the orange box in Figure 1) and the Solution scenario (reflecting the proposed deployment of the Solution at applicable locations across ECAC - the green box in Figure 1). The CBA uses a delta approach where the focus is on the costs and benefits associated with the ECAC-level deployment of the solution, i.e. with the changes from the CBA Reference Scenario.

420 Defining the CBA Reference Scenario has proven to be very challenging for many Solutions because of


the assumptions that need to be made regarding the 'ongoing deployments' (blue arrow in Figure 1).

422 To avoid being blocked by this issue this V3 CBA is currently based more on the difference between

423 the current situation (2022) and the Solution Scenario.

424 425

Figure 1: Scenario Overview

426 3.5.1 CBA Reference Scenario

- 427 The CBA Reference Scenario reflects the future situation where PJ.02-W2-14.5 is not deployed.
- 428 It is assumed that any relevant Common Project 1 (CP1) elements have been deployed at applicable429 airports in line with the SESAR Deployment Programme planning.
- 430 For the wake turbulence schemes, the current operational environment is assumed in the CBA
- Reference Scenario i.e. RECAT-EU¹⁰ and ICAO¹¹ (3 categories+A380). Relevant benefits are assessed
 from this starting point.

433 **3.5.2 CBA Solution Scenario**

- The deployment of the Solution involves the implementation of the enablers listed in section 3.2,which include:
- The runway markings, lighting and PAPI for each second runway aiming point (Airport-56 (R));
 the CBA includes one implementation per airport, the costs of deploying on additional
 runways are not included in this CBA
- 439 A controller tool to support final approach operations (Aerodrome-ATC-102 (R), APP ATC 170 (R))
 440 (R))

¹¹ ICAO Wake Turbulence Scheme <u>https://www.skybrary.aero/index.php/ICAO_Wake_Turbulence_Category</u> (applicable scheme at all other airports)

¹⁰ <u>RECAT-EU: European Wake Turbulence Categorisation and Separation Minima on Approach and Departure</u> (applicable scheme at Charles de Gaulle and London Heathrow)

- A controller separation support tool (eORD) to support the use of IGS-to-SRAP (optional for
 lower traffic levels where the focus is on the noise benefits) (Aerodrome-ATC-94 (O), APP ATC
 163 (O))
- ATCO training (HUM-033 (R))
- Flight crew training (HUM-024 (R))

The 32 airports included in the CBA Scenario are assumed to deploy IGS-to-SRAP to achieve the noise benefits. The airports all come from the Very Large and Large airport categories [11]. Five of those airports are considered to target the airport capacity benefits and will deploy the optional separation tool as they have significant periods of capacity-constrained peak traffic. The airports are not named to avoid the implication that those airports have made any commitment to deploy PJ.02-W2-14.5. Medium or smaller airports may also choose to deploy the solution to gain the noise reduction benefits, however, such deployments are not included in the CBA.

The capacity benefits will depend on the percentage of Medium aircraft that are able to use the IGSto-SRAP and on the distance between the two thresholds. As mentioned above, the CBA includes capacity benefits for 5 airports. However, it is expected that both the number of airports with capacityconstrained peaks and the duration of peaks will increase over time, which could result in additional capacity benefits in the future.

For each airport the exact benefits will depend on several factors including specific traffic mix, length of traffic peak, wind conditions, applicable surveillance minima, glide parameters, fraction of aircraft type operating on the IGS-to-SRAP, runway occupancy time, glide length, runway layout, airport infrastructure, etc.

- 462 The key criteria that identify an airport as a candidate deployment location for IGS-to-SRAP are:
- 463 1) Final Spacing

IGS-to-SRAP is assumed to be compatible with both current and future separation schemes such as Time Based Spacing. It is however worth noting that Enhanced separation minima, based on legacy ICAO wake turbulence categories or on RECAT-EU categories, are specified as a function of which approach the lead and follower aircraft are flying, the EAO glideslope angle and the distance between the conventional landing threshold and the displaced one. This, for example, may allow a safe separation minima reduction of up to 1.5 NM for some pairs like Lower Medium behind Upper Heavies, compared to the standard in-trail separation.

471 2) Airport layout

IGS-to-SRAP is applicable to any airport layout from single to multiple runways with simple or complex taxiway structures. However, the overall airport layout along with airport neighbourhood topography may bring constraints that will be determine if implementation is feasible and will bring the intended benefits, (e.g. the runway length which needs to be long enough to accommodate the second threshold, the availability or lack of rapid runway exits (RET) at appropriate positions, the impact on runway occupancy time).

478 3) Runway operating mode

IGS-to-SRAP is applicable to both dependent and independent runways in both mixed and segregatedmode operations.

481 4) En-Route/TMA Operations

- 482 IGS-to-SRAP is applicable to any arrival traffic management operations (radar vectoring, PBN route 483 structure, vertical instructions, Continuous Descent Operations, speed instructions, etc.)
- 484 5) Traffic Mix

IGS-to-SRAP is applicable to airports serving both IGS-to-SRAP capable and non-capable aircraft. Any aircraft wake category mix can be serviced. However, it is worth noting that, as anticipated in the near to medium term horizon, only part of the traffic will be equipped with advanced satellite-based approach capability (e.g. GBAS or SBAS), some aircraft types from the Medium or Light category groups will need to remain on the conventional approach if RNP APCH types are needed. In order to apply the adequate separation minima for an arrival pair, the Approach and Tower ATCOs need to know which aircraft types are eligible to use the IGS-to-SRAP.

492 6) Weather

493 Wind has an impact on increased glide slope operations due to more challenging aircraft energy 494 management under tailwind conditions. Thus, a reduced use of IGS-to-SRAP operations can be 495 expected under such conditions.

- 496 7) Runway conditions
- 497 IGS-to-SRAP is applicable regardless of the runway conditions.
- 498 8) Airspace consideration

IGS-to-SRAP is compatible with both high traffic density and low traffic density situations, although
 the realised benefits will differ. IGS-to-SRAP will be conducted only in controlled airspace where
 separation is ensured (classes A, B, C, D and E, according to ICAO classification of airspaces).

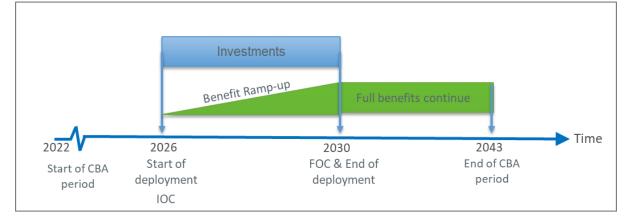
502 CBA timeline

503 The CBA covers the period from 2022 to 2043 as defined by PJ19.04; this mean that Net Present Value 504 is calculated by discounting the cash-flows back to 2022 (the end of Wave 2).

Table 7 lists the key dates used in the CBA and Figure 2 shows them over a timeline.

Dates	PJ.02-W2-14.5
Start of deployment date: the start of investments for the first deployment location	2025
End of deployment date : the end of the investments for the final deployment location, same as FOC	2030
Initial Operating Capability (IOC) : the time when the first benefits occur following the <i>minimum deployment</i> necessary to provide them. Costs continue after this date as further deployment occurs at other locations.	Late 2026
Final Operating Capability (FOC) : Maximum benefits from the <i>full deployment</i> ¹² of the Solution at applicable locations. Investment costs are considered to end ¹³ here although any operating cost impacts would continue.	2030

506


Table 7: CBA Investment and Benefit Dates

¹³ The basic assumption is that infrastructure does not need to be replaced during the CBA period

¹² Where *full deployment* means deploying the Solution in the all the locations where it makes sense to deploy it (i.e. it does not mean it has to be deployed everywhere)

Figure 2: Overview of CBA Dates

- 509 Figure 2 shows that:
- 510 Investment costs are spread linearly between the Start and End of Deployment dates.
- 511-Benefits ramp-up linearly between IOC and FOC and then continue up to the end of the CBA512period.
- 513 Operating cost impacts (increases or decreases) would also start at IOC and ramp-up linearly 514 to FOC before continuing for the rest of the CBA duration.

515 **3.5.3** Assumptions

516 Costs and benefits have been computed from fast-time validation exercise results, partners' 517 contributions and average values taken from the PJ.19.04 Common Assumptions for extrapolation to 518 ECAC-Level.

As it is not feasible to identify exact costs for each airport separately, the costs have been estimated assuming that they would be of same order of magnitude, implying that all targeted airports will support the same kind of costs.

523 **4 Benefits**

524 The main objective of solution PJ.02-W2-14.5 IGS-to-SRAP is to **reduce the environmental impact** 525 (mainly the noise footprint) during the arrival procedure to airports while **increasing airport capacity** 526 when possible.

527 The solution Performance Assessment Report (PAR¹⁴, [25]) shows that the solution improves fuel 528 efficiency (FEFF1), time efficiency (TEFF1), airport noise (NOI2), airport capacity (CAP3.2), and ATCO 529 productivity (CEF2). The PAR extrapolates the local performance gains (calculated based on a fast-time 530 simulations in Wave 1) to ECAC level assuming that the solution will impact all the traffic occurring at 531 "high-density airports" (SESAR 1 airport classification [11]).

- 532 This CBA re-calculates the extrapolation, introducing the following changes in comparison with the 533 PAR:
- The CBA assumes implementation in Very Large and Large airports (SESAR2020 Wave 2
 Classification [11]), instead of "high-density airports"
- 536 The CBA considers that the solution works during peak and off-peak hours so that the fuel 537 savings, flight time savings, and noise reduction benefits are present the whole day
- The CBA only considers peak periods to extrapolate the airport capacity gain (& ATCO productivity). Therefore, the CBA only monetises the extra runway throughput when there is demand for it (i.e. in capacity-constrained peak periods).
- As per section 3.5.2, fuel & flight time savings and airport capacity gain only applies to five (5)
 airports, whereas the noise reduction applies to all the thirty-two (32) VL and L airports. This
 is a conservative approach to avoid over-estimating the benefits, as any flight using the IGS to-SRAP may receive the fuel and flight time saving benefits depending on the airport and its
 layout.
- Table 8 shows the local benefits the CBA applies to the Very Large and Large airports, as per the bullets
 listed above. The average value in each case is used to calculate the benefits.

Performance gain	KPI	Low value ¹⁵	High value
Fuel savings	FEFF1	-9.08 kg fuel per arrival	-186.76 kg fuel per arrival
Flight time savings	TEFF1	-0.25 minutes per arrival	-3.16 minutes per arrival
Airport capacity gain	CAP3.2	-1.8%	+7.7%
ATCO productivity gain	CEF2	-1.8%	+7.7%
Noise reduction	NOI2 – 55dB contour	+0.92 km ² per airport	-2.73 km ² per airport

¹⁴ Note that the PJ.02-W2-14.5 PAR [25] inputs are taken from the SESAR 2020 Wave 1 PJ.02-02 PAR [18] as no additional performance data will be produced by the PJ.02-W2-14.5 Wave 2 validation activities as they only focus on non-nominal situations.

¹⁵ Note that for the Low value, the airport capacity, ATCO productivity and noise reduction are negatively impacted so the airport capacity is reduced and the noise contour actually increases. These results are due to the specific traffic and assumptions used in the fast time simulations to explore the limits of the concept, see the Validation Report [26] for more details.

		NOI2 – 65dB contour	-0.50 km ² per airport	-0.57 km ² per airport
		NOI2 – 75dB contour	-0.07 km ² per airport	-0.14 km ² per airport
548	Table	8: Solution PJ.02-W2-14.5	ISGS-to-SRAP local benefits	[25]

549 4.1 Benefit Monetisation Mechanisms

550 **4.1.1 Extrapolation assumptions**

Table 9 shows the SESAR Common Assumptions [12] that the CBA uses to extrapolate IGS-to-SRAP local benefits to the Very Large and Large airports.

Item	ID	Value	Unit
Contribution to total En- Route traffic from Very Large airports	APT-VL-2035	0.71	Movements per ECAC flight ¹⁶
Contribution to total En- Route traffic from Large airports	APT-L-2035	0.21	Movements per ECAC flight
Contribution to total En- Route traffic from Very Large airports during peak traffic	APT-PC-VL-2035	0.47	Movements per ECAC flight
Contribution to total En- Route traffic from Large airports during peak traffic	APT-PC-L-2035	0.15	Movements per ECAC flight
Percentage of arrivals per TMA movement	M-0012	50%	%
Average ECAC flight time	T-0010	1.7	hours
Average fuel burn per flight	F-0001	5,280	Kg per flight

553

Table 9: SESAR Common Assumptions (Annex 1, v5, 17-10-2019)

554 The percentage of ECAC traffic that benefits from the solution are calculated as follows:

- Traffic at VL and L airports: 0.71 + 0.21 = 0.92 movements per ECAC flight
- Arrivals at VL and L airports: $0.92 \cdot 50\% = 46\%$ of the ECAC flights
- Arrivals at 5 VL and L airports: $\frac{5}{32} \cdot 46\% = 7.2\%$ of the ECAC flights

558 Therefore, the FEFF1 and TEFF1 local benefits are multiplied by 7.2% to calculate the ECAC-wide 559 performance gain. The NOI2 benefit calculation follows a different approach (see section 4.1.6).

¹⁶ For Airports the traffic contribution to total traffic handled per sub-OE category is the sum of annual movements at each specific sub-OE within the same category divided by the annual IFR ECAC flights, because the volume of arrival and departure traffic is best considered in number of movements. The sum of all sub-OE traffic contributions of the TMA and airport OEs, respectively, is less than 2 movements per flight because of flights departing to or arriving from outside ECAC.

- 560 The CAP3.2 (and CEF2) benefits are multiplied by 4.9% instead, to monetise airport capacity benefits 561 only during peak hours:
- Peak traffic at VL and L airports: 0.47 + 0.15 = 0.62 movements per ECAC flight
- Peak arrivals at VL and L airports: $0.62 \cdot 50\% = 31\%$ of the ECAC flights
- Peak arrivals at 5 VL and L airports: $\frac{5}{32} \cdot 31\% = 4.9\%$ of the ECAC flights

565 4.1.2 Fuel Efficiency (FEFF1)

The CBA considers the average local performance gain to calculate the FEFF1 extrapolation to the ECAC:

- Average local FEFF1 gain: -97.92 kg per arrival
- ECAC FEFF1 gain (absolute): -97.92 kg per arrival $\cdot 7.2\% = -7.07$ kg per flight
- ECAC FEFF1 gain (relative): -7.07kg / 5280kg = -0.13%

571 The CBA monetise the Fuel Efficiency as the value of the savings in fuel (FEFF1) and, consequently, in 572 CO₂ (ENV1). Figure 3 shows the CBA monetisation mechanism for Fuel Efficiency.

574

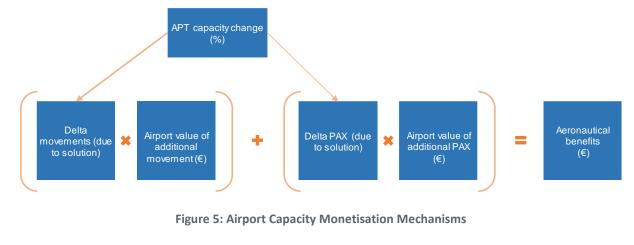
Figure 3: Fuel Efficiency and CO2 Monetisation Mechanisms

575 4.1.3 Time Efficiency (TEFF1)

576 The Time Efficiency savings refer to a reduction in the average flight time (minutes/flight) for each 577 aircraft. Again, the CBA considers the average local performance gain to calculate the TEFF1 578 extrapolation to the ECAC:

- Average local TEFF1 gain: -1.71 minutes per arrival
- ECAC TEFF1 gain (absolute): -1.71 minutes per arrival $\cdot 7.2\% = -0.12$ minutes per flight
- ECAC TEFF1 gain (relative): $-0.12 \text{ min} / (1.7 \text{ hours} \cdot 60 \text{ min}) = -0.12\%$

The CBA model monetises time efficiency only as strategic delay savings, see Figure 4, to avoiddouble counting benefits with the flight efficiency gain (fuel and emissions).

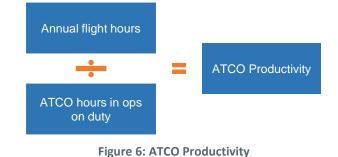


587 4.1.4 Airport Capacity (CAP3.2)

588 The CBA only monetises the airport capacity gain during the peak periods at the implementing 589 airports, reflecting when there is unaccommodated demand that would benefit from the extra runway 590 throughput. Once again, the CBA considers the average local performance gain to calculate the CAP3.2 591 extrapolation to the ECAC:

- Average local CAP3.2 gain: +3.0% arrivals
- ECAC CAP3.2 gain (relative): +3.0% arrivals $\cdot 4.9\% = +0.15\%$

594 These values have been further monetised in terms of additional flights that can be operated per year 595 at otherwise congested airports, multiplied by the reference values provided in EUROCONTROL 596 Standard Inputs. This gives the economic value of additional airport capacity.



600 4.1.5 ATCO Productivity (CEF2)

The PAR [25] also claims an ATCO Productivity change (CEF2) based on the additional runway throughput (i.e., the same number of APP-TWR ATCOs will handle more movements during the airports' peak periods).

• ECAC CEF2 gain (relative): = +0.15%

The mechanisms in the CBA model are based ATCO Productivity, as shown in Figure 6, which come from the ATM Cost Effectiveness (ACE) benchmarking report [21].

607

597 598 599

608

609

4.1.6 Noise Reduction (NOI2)

610 Whilst the increase in traffic volume results in higher noise levels, the increase in urbanisation results

611 in a higher number of people experiencing disutility due to noise. Communities around airports are

612 interested in environmental benefits, especially noise, coming from the implementation of the IGS-to-

613 SRAP solution. In general, noise can be defined as unwanted sounds of varying duration, intensity or

other quality that cause physical or psychological harm to humans.

- The PAR [25] calculates the noise benefits as the reduction in the size of the noise contours (NOI2)
- around the airport area when the IGS-to-SRAP solution is applied. The CBA considers the average
- 617 reduction in this noise contour and then multiplies it by (i) the average population density and (ii) the
- 618 value of noise per person.
- 519 Since the PAR calculates the change in noise contour area per decibel band, the CBA estimates the 520 cost of noise per decibel band too.
- The population density is the average of the cities where the Very Large and Large airports are located,
 which results in 4,788 inhabitants per square kilometre¹⁷.
- 623 The cost of noise (EU28 averages) is extracted from the Handbook¹⁸ on the external costs of transport
- Version 2019 [22], which takes into account only health and annoyance costs. Section 7 refers to these
- 625 benefits as Societal Benefits.

Annoyance	Health	Total	Unit
34	5	39	
68	6	74	
68	9	77	EUR per dB per
129	12	141	person per year
129	16	145	
129	21	150	
	34 68 68 129 129	34 5 68 6 68 9 129 12 129 16	34 5 39 68 6 74 68 9 77 129 12 141 129 16 145

Table 10: Environmental price of traffic noise for EU28 (CE Delft- Handbook on the external costs of transport Version 2019)

Annoyance represents the disturbance individuals experience when they are exposed to traffic noise. It can hinder people from performing certain activities, which may lead to a variety of negative responses, including irritation, disappointment, anxiety, exhaustion and sleep disturbance (WHO, 2011). Sleep disturbance is not considered a separate component in this value to avoid potential double counting. If one is asked about their annoyance they are inclined to also take into account the effects of sleep disturbance; therefore sleep disturbance is assumed to be included in the annoyance.

634 Concerning health, exposure to noise results in several health endpoints due to prolonged and 635 frequent exposure to transport noise. According to the CE Delft report, "these health endpoints can take a multitude of forms. Health endpoints for which significant evidence is available are ischaemic 636 637 heart disease, stroke, dementia and hypertension. For health endpoints not mentioned in the list above, e.g. breast cancer and depression, only fragmented evidence is available. Therefore, these costs 638 639 are not included in the noise costs estimated in this study. For the same reason, productivity losses 640 (e.g. loss of concentration) and environmental impacts of traffic noise (e.g. harmful effects on wildlife) are not covered. Finally, direct material damages as a result of vibrations are not included in the costs 641 642 of noise in this study, as the vibrations are not necessarily an effect of noise, but rather an external 643 effect on its own."

- Further benefits related to reduced noise taxes have not been included in this CBA due to limited, thusnon-exhaustive, information concerning noise taxation around the ECAC area airports.
- 646 The following tables translate the solution noise benefit (NOI2) into avoided "cost of noise" for the 647 population¹⁹ living in the airports' cities.

Noise (Lden)	Area reduction (km ²)	Population density	Population reduction
		(hab/km²)	(inhabitants)

¹⁷ European Commission, <u>Urban Centre Database UCDB R2019A</u>, Population density value in 2015.

¹⁸ CE Delft (on behalf of the European Commission).

¹⁹ Differences are due to rounding

75 dB(A)	0.11	4,788	503
65 dB(A)	0.54	4,788	2,562
55 dB(A)	0.91	4,788	4,333

Table 11: Reduction in population impacted by noise per airport

Noise (Lden)	Population reduction (inhabitants)	Noise cost (EUR per person per year) ²⁰	Noise cost (EUR per year)
75 dB(A)	503	150	75,414
65 dB(A)	2,562	141	361,199
55 dB(A)	4,333	74	320,667
		Total	757,281

649

Table 12: Avoided cost of noise per airport

The CBA considers that 32 Very Large and Large airports benefit from the IGS-to-SRAP procedures interms of reduction of noise. Therefore:

• Noise cost savings (ECAC): €757,281 per airport · 32 airports = 24.2 M€ per year

653 Finally, Figure 7 shows the noise monetisation mechanism applied in the CBA model.

654

655

Figure 7: Noise reduction Monetisation Mechanism

656 4.1.7 Summary of benefits

Table 13 summarises the benefit inputs for the CBA model, which have been calculated based on the solution Performance Assessment Report (PAR, [25]) and updated as described in section 4:

Performance gain	КРІ	CBA input (ECAC)
Fuel savings	FEFF1	-7.07kg of fuel per flight
	(ENV1)	(-22.26kg of CO ₂ per flight)
Flight time savings	TEFF1	-0.12%
		(-0.12min per flight)
Airport capacity	CAP3.2	+0.15%
ATCO productivity	CEF2	+0.15%
Noise reduction	NOI2	€24.2m per year (aggregated benefit for 32 Very Large and Large airports)

659

Table 13: Solution PJ.02-W2-14.5 IGS-to-SRAP ECAC-wide benefits

²⁰ Considering only 1dB reduction per person. This is a conservative assumption since the PAR provides the noise footprints every 10dB.

660 **4.2 Benefit Monetisation of the Performance Framework KPI/PI**

Performance Framework KPA ²¹	Focus Area	KPI/PI from the Performance Framework	Unit	Metric for the CBA	Unit	Total benefits from IOC to 2040
Cost Efficiency	ANS Cost efficiency	CEF2	Nb	ATCO employment Cost change	€	0 M€
		Flights per ATCO-Hour on duty		Support Staff Employment Cost Change	€	The additional traffic is handled
				Non-staff Operating Costs Change	€	with the same ATCO-hours
		CEF3 Technology cost per flight	EUR / flight	G2G ANS cost changes related to technology and equipment	€/year	No Validation Target
	Airspace User Cost efficiency	AUC3 Direct operating costs for an airspace user	EUR / flight	Impact on direct costs related to the aeroplane and passengers. Examples: fuel, staff expenses, passenger service costs, maintenance and repairs, navigation charges, strategic delay, landing fees, catering	€/year	No Validation Target
		AUC4 Indirect operating costs for an airspace user	EUR / flight	Impact on operating costs that do not relate to a specific flight. Examples: parking charges, crew and cabin salary, handling prices at Base Stations	€/year	No Validation Target
		AUC5 Overhead costs for an airspace user	EUR / flight	Impact on overhead costs. Examples: dispatchers, training, IT infrastructure, sales.	€/year	No Validation Target
Capacity	Airspace capacity	CAP1	% and # movements	Tactical delay cost (avoided-; additional +)	€/year	No validation target€

²¹ For information, the mapping to the Performance Ambition KPAs (used in the ATM Master Plan) is available in the Appendix C

Performance Framework KPA ²¹	Focus Area	KPI/PI from the Performance Framework	Unit	Metric for the CBA	Unit	Total benefits from IOC to 2040
		TMA throughput, in challenging airspace, per unit time	% and # movements	Strategic delay cost (avoided-; additional +)	€/year	No Validation Target
		CAP2 En-route throughput, in challenging airspace, per unit time	% and # movements	Tactical delay cost (avoided-; additional +)	€/year	No Validation Target
			% and # movements	Strategic delay cost (avoided-; additional +)	€/year	No Validation Target
	Airport capacity	CAP3 Peak Runway Throughput	% and # movements	Value of additional flights	€	1,308 M€
	Resilience	RES4a Minutes of delays	Minutes	Tactical delay cost (avoided-; additional +)	€/year	No Validation Target
		RES4b Cancellations	% and # movements	Cost of cancellations	€/year	No Validation Target
		Diversions	% and # movements	Cost of diversions	€/year	No Validation Target
Predictability and punctuality	Predictability	PRD1 Variance of Difference in actual & Flight Plan or RBT durations	Minutes^2	Strategic delay cost (avoided-; additional +)	€	No Validation Target
	Punctuality	PUN1 % Departures < +/- 3 mins vs. schedule due to ATM causes	% (and # movements)	Tactical delay cost (avoided-; additional +)	€/year	No Validation Target
Flexibility	ATM System & Airport ability to respond to changes in	FLX1 Average delay for scheduled civil/military flights with change request and non-	Minutes	Tactical delay cost (avoided-; additional +)	€/year	No Validation Target

Performance Framework KPA ²¹	Focus Area	KPI/PI from the Performance Framework	Unit	Metric for the CBA	Unit	Total benefits from IOC to 2040
	planned flights and mission	scheduled / late flight plan request				
Environment	Time Efficiency	TEFF1 Reduction in average flight duration	% and minutes	Strategic delay: airborne: direct cost to an airline <u>excl. Fuel</u> (avoided-; additional +)	€	870 M€
	Fuel Efficiency	FEFF1 Average fuel burn per flight	Kg fuel per movement	Fuel Costs	€	1,566 M€
	Fuel Efficiency	FEFF2 CO2 Emissions	Kg CO2 per movement	CO2 Costs	€	55 M€
	Noise	NOI2 Surface of these contours(Km2)	km^2 (per decibel band)	- Cost of noise	€	387 M€
	Noise	NOI4 Number of people inside noise contours	People affected			
Civil-Military Cooperation & Coordination	Civil-Military Cooperation & Coordination	CMC2.1a Fuel saving (for GAT operations)	Kg fuel per movement	Fuel Costs	€/year	No Validation Target
		CMC2.1b Distance saving (for GAT operations)	NM per movement	Time Costs	€/year	No Validation Target

Table 14: Results of the benefits monetisation per KPA

5 Cost assessment

This section contains the cost assessment information for the stakeholders that need to deploy 664 665 enablers for PJ.02-W2-14.5. The costs cover the implementation of IGS-to-SRAP at 32 candidate airports, 5 of which will use it to increase airport capacity while all will receive the noise reduction 666 667 benefits. The costs include the investment costs of acquiring or developing the systems, specific adaptations and functionalities, additional inputs of static information, integration costs, training 668 669 costs, regulatory costs as well as the costs associated with the project management and development 670 and documentation of procedures, (i.e. everything needed to get IGS-to-SRAP into operations). An 671 assessment has also been made of changes in annual operating costs following the deployment, for 672 example, changes in maintenance costs or ongoing training costs.

The optional enablers related to the separation delivery tool (eORD) are included in the CBA for the 5
airports as they are considered necessary to achieve the airport capacity benefits during peak periods.
The airborne optional enablers are not included in the cost assessment.

The values included here were initially defined in Wave 1, by the PJ.02-02 (Enhanced Arrival Procedures) and PJ.02-01 (Wake Turbulence Separation Optimization) CBA teams along with other operational and technical experts, using a bottom-up approach to estimate the stakeholders' implementation and operating costs. The values have been reviewed in Wave 2 leading to some updates.

As mentioned in section 3.2, the institutional enablers related to IGS-to-SRAP, REG-0533 and STD-112, are now linked to the system and human enablers, rather that appearing independently as they did when the PJ.02-02 CBA was produced. For the following cost assessment, it is assumed that:

- STD-112 "Update of EASA/ICAO regulatory frameworks for new visual ground aids (SRAP)" is
 a pre-requisite to the deployment of IGS-to-SRAP and the costs of updating the frameworks
 are not included.
- REG-0533 "Regulatory provisions for Increased Glide Slope to Second Runway Aiming Point operations (IGS-to-SRAP)" is an enabler that is addressed for each deployment with the relevant ANSP covering the costs of the activity to get advice from the regulatory authorities on the acceptability of the safety case supporting the IGS-to-SRAP related ATM rule modification.

5.1 ANSPs costs

The ANSP stakeholder covers several different service provision aspects, for PJ.02-W2-14.5 this includes ATS provision at Aerodromes (Tower) and in Approach (terminal airspace, TMA). Within DS23 draft, some of the enablers are identified as applicable for Military ANSPs, however, due to the candidate airports included in the CBA the Military stakeholders are not included in the cost assessment for this solution¹.

698 **5.1.1** ANSPs cost approach

Costs were estimated based on expert judgement and are in line with other PJ.02 solutions consideringan increased glide slope and those using the separation delivery tool (eORD) as an optional enabler.

The separation delivery tool is included in the cost assessment for the 5 candidate airports targeting the airport capacity benefit. For the other candidate airports, the eORD is not included as it is not

¹ Some enablers are also required or optional for other solutions in which the Military stakeholders may have a role.

considered necessary to achieve the noise reduction benefits during off-peak periods, especially atnight.

705 What is needed is the information for the approach controller to know which aircraft are capable of

flying the IGS-to-SRAP and to record which glide slope a flight has been assigned. The aerodrome
 (Tower) controller then needs to be provided with the information. The cost impact of providing and

capturing this information can differ depending on the system being used, for example, if the

709 controllers are still using paper strips or have electronic strips.

710 **5.1.2** ANSPs cost assumptions

Costs for this solution are mainly borne by the ANSPs to provide the relevant tools and functionalities
 in the approach and aerodrome (tower) systems. This assumes that costs for the controller systems
 used at the airports and their relevant maintenance are incurred by the ANSPs².

The CBA includes the set of Very High and High complexity Approach Centres handling Terminal Airspace (either Terminal Airspace Only or En-route and Terminal Airspace [10]) and assumes that these handle the arrivals for the Very Large and Large airports, where some handle arrivals for two or more Very Large or Large airports. As a conservative approach, the costs for the optional separation delivery tool are allocated to 5 airports and 5 approach centres.

719 While not included in the CBA, the following costs, without the separation tool, are considered 720 applicable for other airports, e.g. Medium airports, that may want to deploy IGS-to-SRAP for the noise

721 benefits.

722 **5.1.3** Number of deployment locations (units)

Table 15 shows that the CBA includes the ANSPs providing services at the 32 Very Large and Large candidate airports included in the CBA Solution Scenario. Of those 32 airports, 5 are also allocated costs for the optional separation delivery tool to enable them to benefit from increased airport capacity during peak periods. The other 27 airports are only allocated the required enablers.

Five approach centres are also allocated the costs for the optional separation delivery tool. The other20 approach centres are only allocated the required enablers.

Airport (Aerodrome)	Approach Centre handling Terminal Airspace	En-route		
VL L M S	VH H M L	VH H M L		
5 + 27 (32) 0 0	5 + 20 (25) 0 0	Not applicable		

729

Table 15: Number of investment instances – ANSPs

730 **5.1.4 Cost per unit**

Table 17 shows the cost per enabler for the deployment per airport (aerodrome) while Table 17 shows

the costs per approach centre. The tables show the total cost with and without the optional separationtool.

The costs associated with REG-0533 are only allocated to the aerodrome costs to avoid double counting.

² In reality the situation will differ across airports as some airports may own and maintain the systems.

Enabler	Enabler Title	Implementation Costs (M€)	Operating costs (M€/year)
AERODROME-ATC-102 (R)	Aerodrome ATC system to support final approach operations (distinguish approach procedures)	0.20	-
AERODROME-ATC-94 (O)	Aerodrome ATC system to support IGS-to-SRAP operations (separation delivery)	2.50	0.05
REG-0533 ³ (R)	Regulatory provisions for Second Runway Aiming Points operations (SRAP)	0.05	-
HUM-31 (R)	ATC training for IGS-to-SRAP approach	Included in the tool costs	-
Aerodrome	With optional Separation tool (5 airports)	2.75	0.05
Total for AO-0331	Without the optional Separation tool (27 airports)	0.25	0

 Table 16: ANSP Costs per Enabler (Aerodrome) and per deployment location

Enabler	Enabler Title	Implementation Costs (M€)	Operating costs (M€/year)
APP ATC 163 (O)	Approach ATC system to support IGS-to-SRAP operations (separation delivery)	7.50	0.05
APP ATC 170 (R)	Approach ATC system upgraded to support approach procedure assignment	0.20	-
HUM-31 (R)	ATC training for IGS-to-SRAP approach	Included in the tool costs	-
Approach	With optional Separation tool (5 approach centres)	7.70	0.05
Total for AO-0331	Without the optional Separation tool (20 approach centres)	0.20	0

737

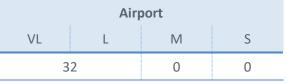
Table 17: ANSP Costs per Enabler (Approach) and per deployment location

738 **5.2 Airport operator costs**

The Airport operator enabler is identified within the DS23 draft as being applicable to both civil and
 military airports. Due to the candidate airports included in the CBA the Military airport operators are
 not considered applicable for this solution⁴.

 ³ REG-0533 is a regulatory enabler that is now assigned to several of the system and human enablers rather than appearing as a standalone enabler. However, it remains listed here to reflect the structure when the cost assessment was performed.
 ⁴ Some enablers are also required or optional for other solutions in which the Military stakeholders may have a role.

742 **5.2.1** Airport operator cost approach


Costs were estimated in Wave 1 by expert judgement by PJ.02.02 and PJ.02-01 teams. The value hasbeen refined in Wave 2.

745 **5.2.2** Airport operator cost assumptions

- Airports will incur costs related to installing runway lighting, marking and PAPI for the increased glideslope and the second runway aiming point.
- The CBA model also calculates costs related to induced investments that the airports would have to do following the additional passengers that the increase in airport capacity brings.

750 **5.2.3** Number of deployment locations (units)

- The CBA includes the 32 Very Large and Large candidate airports where it is assumed that IGS-to-SRAP will be deployed. The CBA includes one implementation per airport, the costs of deploying on
- 753 additional runways are not included.

754

Table 18: Number of deployment locations - Airports

755 **5.2.4 Cost per unit**

Table 19 shows the cost for the enabler, which is also the per location.

Enabler	Enabler Title	Implementation Costs (M€)	Operating costs (M€/year)
AIRPORT-56 (R)	Runway marking, lighting and PAPI for SRAP/IGS-to-SRAP approach procedures	1.4	0.30
Total for AO-0331		1.4	0.3

757

 Table 19: Airport Costs per Enabler and per deployment location

758 **5.3 Network Manager costs**

759 No Network Manager investments are required.

760 **5.4 Airspace User costs**

761 **5.4.1** Airspace User cost approach

- Airspace users will incur costs related to pilots' training for the IGS-to-SRAP procedures. Training willneed to cover topics such as:
- visual references for approaches to runways operating two different thresholds for arrivals
 (i.e. marking, lightning and VASI/PAPI) and an increased glide path angle (i.e. visual
 assessment of the external environment)

- energy management and flare for approaches with an increased glide path angle (when no particular assistance is provided by the avionics)
- Ianding preparation and management as the available landing distance will be reduced when
 landing on the second threshold
- assessment of feasibility of IGS-to-SRAP operation considering aircraft capabilities and operational conditions
- There are no investments required at the Flight Operation Centres (FOC) (ground).
- The two airborne enablers are not included in the CBA because they are optional.
- A/C-86 (O): On-board assistance to aircraft energy management an on-board system that provides energy management cues to the flight crew supporting them in managing appropriately the overall aircraft energy to succeed in reaching energy rendez-vous. The reference used is the stabilization gate, usually at 1000 ft above airport elevation.
- A/C-87 (O): On-board assistance to flare an on-board system that provides flare assistance
 information to the flight crew supporting them in landing appropriately.

For both of the above enablers it is mentioned that steeper operations (use of an increased glide slope) is a major driver for providing these kinds of assistance. However, they are optional which reflects that they will only be needed for certain aircraft and as described in the dataset "decisions on providing such systems are left to aircraft manufacturers who must decide on the significance of such assistance versus their products' capacities (for instance deceleration capacity), operating methods (SOP application), etc.".

787 **5.4.2** Airspace User cost assumptions

Table 20 shows the Airspace User (Scheduled Airlines and Business Aviation) training costs based on
 the SESAR Training cost tool data [23]. The value considers ECAC pilots, across a range of Scheduled
 Airlines and Business Aviation operators, who will operate at the candidate airports. Within the CBA
 model these costs are allocated 90% for Scheduled Airlines and 10% for Business Aviation.

Enabler	Enabler Title	Development Costs (M€)	Operating costs (M€/year)
HUM-24 (R)	Flight Crew training for IGS-to-SRAP approach	17.5	0
Total for AO-0331		17.5	0

792

Table 20: Airspace User (Scheduled Airlines and Business Aviation) Training Costs

793 **5.5 Military costs**

No Military investments are required.

795 **5.6 Other relevant stakeholders**

No other stakeholders are required to invest for PJ.02-W2-14.5.

797 **5.7 Cost Summary**

- 798 This section provides a summary of how the data in the previous sections is used to feed the CBA
- model. The tables show the values that are used to produce the CBA results in section 7.

800 Investment Costs

	Cost per-unit		Deployment Locations		Cost
ANCD (Asradrama)	2.75 M€	х	5	=	13.75 M€
ANSP (Aerodrome)	0.25 M€	х	27	=	6.75 M€
ANCD (Approach)	7.70 M€	х	5	=	38.50 M€
ANSP (Approach)	0.20 M€	Х	20	=	4.00 M€
Airport Operator	1.4 M€ x 32 ÷		=	44.80 M€	
Airspace Users (SA)	17.5 M€ total cost x 90%			=	15.75 M€
Airspace Users (BA)	17.5 M€ total cost x 10%			=	1.75 M€
Total Investment Costs					125.30 M€

801

Table 21: Investment Cost Summary

802 Annual Operating Cost changes

	Annual costs		Deployment Locations		Cost	
ANSP (Aerodrome)	0.05 M€	х	5	=	0.25 M€	
ANSP (Approach)	0.05 M€	х	5	=	0.25 M€	
Airport Operator	0.3 M€	х	32	=	9.60 M€	
Annual Operating Cost Change 10.10 M€						

803

Table 22: Operating Cost Summary

805 6 CBA Model

The model used to calculate the CBA results will be the Single Solution CBA model (s7.4.1) developed by PJ.19. This CBA Model has been developed in Excel and calculates the costs and benefits of the implementation of the PJ.02-W2-14.5 IGS-to-SRAP Solution as described in the CBA Solution Scenario.

- 810 The CBA model uses the benefit values from section4:
- Scenario 1 uses the low benefit values
- Scenario 2 uses the high benefit values
- Scenario 3 uses the average benefit values and is used to produce the results in section 7.
- 814 The same cost data is used in the 3 scenarios.

815

816 **6.1 Data sources**

817 Cost Inputs

Cost data reflect a combination of inputs from relevant partners gathered in Wave 1 projects PJ.02-01
 and PJ.02-02 and reviewed in PJ.02-W2-14.5. Costs relating to the runway marking, lighting systems
 and PAPI have been updated in Wave 2. The CBA team together with other project team members
 calculated pilot training using available information on the number of ECAC pilots. No airborne costs

are included.

823 Benefit Inputs

The main source for the benefit calculation inputs is a combination of Performance Assessment Results from the PJ.02-02 Wave 1 Performance Assessment Report (PAR) [18], as included in the PJ.02-W2-14.5 PAR [25] and separate calculations based on the noise calculation methods used in Wave 1.

827 More information on the calculation of these benefits is available in the Benefit section.

828 Other Inputs Parameters

- 829 The data sources for the non-Solution specific CBA Model parameters are referenced in the various
- 830 input sheets of the CBA Model with details provided in the sheet 'Source of Reference'. These are part
- of the PJ.19.04 Common Assumptions [12].

832

7 CBA Results

The following section provides the results of the ECAC-level PJ.02-W2-14.5 V3 CBA that has assessed the deployment of IGS-to-SRAP at 32 candidate airports where it is assumed that 5 airports will realise the airport capacity benefits during capacity-constrained peak hours and all 32 will realise the noise reduction benefits during peak and off-peak periods, including at night.

- 839 The CBA has been built on the following information:
- The Investments costs (pre-implementation and implementation costs) and Operating Costs
 have been identified for the main stakeholders impacted: ANSPs, Airports and Airspace
 Users⁵.
- The impact of IGS-to-SRAP on the Capital Expenditures (CAPEX) has been analysed and only
 the costs on top of what could be expected in the CBA Reference Scenario have been
 estimated in the cost assessment and integrated in the CBA Model.
- Benefits (fuel and time efficiency, airport capacity and noise reduction) have been estimated
 and monetised in the CBA Model for Airspace Users (Scheduled Airlines and BA operating in
 Large and Very Large Airports) and Airport Operators. See section 4 for more details.
- No airport capacity, fuel or time efficiency benefits are included for Medium Airports and airports operating in mixed mode due, respectively, to a lack of traffics peaks and limitations in the validation modelling tool.
- The noise reduction benefits from IGS-to-SRAP are considered to be attractive for all airports
 with high surrounding population density. However, this analysis has limited the scope and
 only assessed noise benefits for the 32 Very Large and Large candidate airports.
- The PJ.02-W2-14.5 CBA results⁶ shown here are visible in the CBA model (see section 6) by selecting Scenario 3.
- The <u>Net Present Value (NPV)</u> is <u>1320 M€</u>, this is discounted at 8% over the period 2022 to 2043. Table
 24 shows the undiscounted values, which show that <u>without discounting the overall net benefits are</u>
 3987 M€.
- The discounted values are detailed in section 7.1.1 while the undiscounted values are detailed in section 7.1.2.

862 **7.1.1 Discounted Values**

- This section provides the discounted CBA results. The values shown in table 14 below are discounted to account for the time value of money⁷. Undiscounted values are shown in the next section.
- The Net Present Value (NPV) for PJ.02-W2-14.5 is 1320 M€. This is calculated with an 8% discount
 rate over the period 2022 to 2043.
- The payback year is 2027, this is shown in Figure 8 where the discounted cumulative net benefits line crosses back over the x-axis.

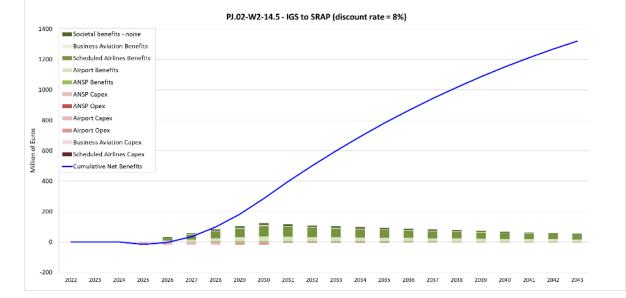
⁷ The time value of money reflects the idea that 1€ received today has more value than 1€ received in 2040 because it could be invested and earn interest over that period.

⁵ No specific aircraft equipment or certification is currently required to fly approach slopes in the range considered by IGSto-SRAP (between 3.01° and 4.49°). However, in order to enhance safety when IGS-to-SRAP operations get widely deployed, manufacturers might prescribe the use of energy management and flare assisting functions for some aircraft.

⁶ Any differences in totals are due to rounding errors

Discounted 8% (M€)	Net Present Value	Сарех	Орех	Benefits
ANSP	48	-39	-3	89
Airport operators	253	-44	-54	351
Business Aviation	67	-1	0	69
Scheduled Aviation	816	-10	0	826
Societal Benefits	136	0	0	136
Overall	1320	-93	-57	1471

 Table 23: PJ.02-W2-14.5 Discounted CBA results (per stakeholder and overall)


870 Based on the current assumptions and inputs, the expected benefits offset the overall costs.

871 The sensitivity analysis in section 8 will explore these results in more detail to see the impact on the

872 NPV of changing some of the assumptions.

873 Figure 8 shows these discounted values on a year-by-year basis. The net benefits are the benefit value

874 per year minus the cost value for that year; these are then shown cumulatively as a line in the figure.

875 876

Figure 8: PJ.02-W2-14.5 Annual Investment Levels and Benefits (discounted)

Figure 9 shows the cost and benefit data without the cumulative net benefits line so that the scale of the costs and benefits per stakeholder are easier to read.

Co-funded by the European Union

PJ.02-W2-14.5 - IGS to SRAP (discount rate = 8%)

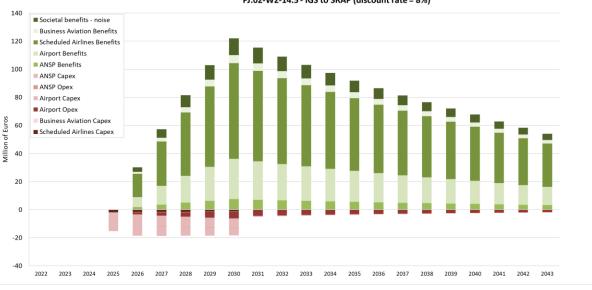


Figure 9: PJ.02-W2-14.5 Annual Investment Levels and Benefits expanded (discounted)

881 7.1.2 Undiscounted Values

The values shown in this section do not consider the time value of money, so one unit of currency spent or received in 2043 is considered to have the same value as one unit of currency spent or received today.

Table 24 contains the undiscounted values, which show that without discounting, i.e. doing the CBA
calculation with a discount rate of 0%, the overall net benefits are **3987 M€**.

Undiscounted	Net Benefits	CAPEX	OPEX	Benefits
ANSP	189	-63	-8	260
Airport operators	802	-76	-154	1032
Business Aviation	199	-2	0	201
Scheduled Aviation	2410	-16	0	2426
Societal Benefits	387	0	0	387
Overall	3987	-157	-162	4306

887

Table 24: PJ.02-W2-14.5 Undiscounted CBA results (per stakeholder and overall)

888 Figure 10 shows the undiscounted costs and benefits over each year.

PJ.02-W2-14.5 (undiscounted values) 350.0 Societal benefits -noise Business Aviation Benefits 300.0 Scheduled Airlines Benefits Airport Benefits ANSP Benefits 250.0 ANSP Capex ANSP Opex Airport Capex 200.0 Airport Opex Business Aviation Capex Million of Euros Schedule Airlines Capex 150.0 100.0 50.0 0.0 -50.0 -100.0 2022 2023 2024 2026 2027 2028 2029 2031 2032 2033 2034 2035 2036 2037 2038 2041 2042 2043 2025 2030 2039 2040

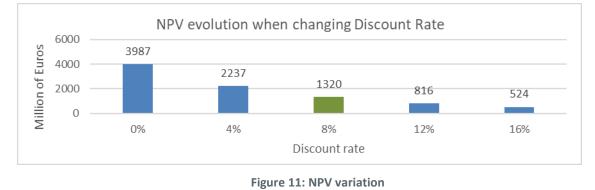
889 890

Figure 10: PJ.02-W2-14.5 Annual Investment Levels and Benefits (undiscounted)

The undiscounted values are useful, especially for the costs, as they provide an idea of the overall investments that will be required. For example, based on these results, the stakeholders will need to invest **157** M€ (CAPEX) to deploy this Solution over the deployment period. The **93** M€ discounted cost value, Table 23, simply reflects the present value of those investments in 2022.

895 **8 Sensitivity analysis**

This section⁸ provides data on how sensitive the CBA results are to changes in the inputs values. When making investments it is useful to know which values can have the most impact on the results to help focus further work on refining data and assumptions.


899 8.1 Discount Rate

900 The discount rate is used to reflect the time value of money⁹ so reducing the discount rate reduces 901 the difference between the value of money today and its value in the future. There is often much

discussion on which discount rate to use so it is useful to look at a range of values. In this case, doubling

903 the discount rate, from 8% to 16% still provides a positive Net Present Value.

907 8.2 Sensitivity Comparison

905 906

Figure 12 shows the tornado diagram produced when the different cost and benefit inputs were each
 varied by -10% to +10%. The input values which produce the larger changes in the NPV are candidates
 for further investigation as they have the most potential to negatively impact the NPV.

911 The figure shows that the inputs Fuel Efficiency and Airport Capacity have the largest impact on the
912 NPV, while the costs AU Ground CAPEX (pilot training) along with Ground CAPEX and OPEX (ANSP and
913 Airport) have the lowest impact on the CBA results.

914 For Fuel Efficiency, the tornado diagram shows that a 10% reduction in fuel burn benefits would result

915 in just over a 4% reduction in the Net Present Value. The CBA is considered to be very sensitive to an

916 input value if the impact on the NPV is higher than the change in the input value, e.g. a 10% change in

917 the input value resulted in a 15% change in the NPV.

⁸ Risk Analysis has not been performed for this CBA as the Excel CBA model is not designed to apply Monte Carlo simulation techniques which are needed to calculate the NPV results for thousands of scenarios where different combinations of the input values (taken from probability distributions) are used in each.

⁹ The time value of money reflects the idea that 1€ received today has more value than 1€ received in 2040 because it could be invested an earn interest over that period.

920 8.3 Sensitivity Scenario

- 921 This section provides the Net Present Value when the cost inputs are doubled at the same time as the922 benefit inputs are halved. This can be considered as a pessimistic view.
- 923 The CBA input values are shown below.

924 **8.3.1 Costs double**

925 Investment Costs

	Cost per-unit		Deployment Locations		Cost
ANCD (Asradrama)	5.50 M€	х	5	=	27.50 M€
ANSP (Aerodrome)	0.50 M€	х	27	=	13.50 M€
ANCD (Approach)	15.40 M€	х	5	=	77.00 M€
ANSP (Approach)	0.40 M€	Х	20	=	8.00 M€
Airport Operator	2.8 M€	х	32	=	89.60 M€
Airspace Users (SA)	(SA) 17.5 M€ total cost x 90%			=	31.50 M€
Airspace Users (BA)	17.5 M€ total cost x 10%			=	3.50 M€
Total Investment Costs					250.60 M€

926

Table 25: Investment Cost Summary

927 Annual Operating Cost changes

	Annual costs		Deployment Locations		Cost
ANSP (Aerodrome)	0.1 M€	х	5	=	0.5 M€
ANSP (Approach)	0.1 M€	х	5	=	0.5 M€
Airport Operator	0.6 M€	х	32	=	19.2 M€
Annual Operating Cost Change					

Table 26: Operating Cost Summary

929 8.3.2 Benefits halved

- 930 The benefits are set of half the value listed in section 4.1.7.
- Airport Capacity and ATCO Productivity become 0.15 % / 2 = 0.075%
- 932 Noise benefits (societal benefits) become 24.2 M€ / 2 = 12.2 M€ per year
- Fuel efficiency becomes -7.07 kg per arrival / 2 = -3.54 kg per flight
- Time Efficiency becomes -0.12 minutes per arrival / 2 = -0.06 minutes per flight

935 8.3.3 Pessimistic Scenario CBA Results

- Table 27 shows that even in the pessimistic situation where the costs doubled and the benefits are
- halved, the NPV was still positive, although much lower, at 460 M $\!\! \in \!\! .$

Discounted 8%	Net Present Value	Сарех	Орех	Benefits
ANSP	-38	-77	-6	45
Airport operators	4	-63	-108	176
Business Aviation	32	-2	0	34
Scheduled Aviation	393	-19	0	413
Societal Benefits	68	0	0	68
Overall	460	-162	-114	735

Table 27: PJ.02-W2-14.5 Pessimistic Scenario - Discounted CBA results (per stakeholder and overall)

938

939

940

941

943 9 Recommendations and next steps

In summary, the PJ.02-W2-14.5 'Increased glide slope to Second Runway Aiming Point (IGS-to-SRAP)'
V3 CBA results are positive with a Net Present Value (NPV) of <u>1320 M€</u> reflecting that the benefits
from deploying the solution at 32 candidate airports (5 for capacity benefits and 32 for noise benefits)
are expected to exceed the costs of deploying and operating it.

The NPV has been calculated with an 8% discount rate over the period 2022 to 2043, with PJ.02-W214.5 being deployed between 2025 and 2030 and with benefits starting to be realised from late 2026.
The payback year is 2027, which reflects when the cumulative net benefits will exceed the costs.

- 951 The expected IGS-to-SRAP **benefits** that are monetised in the CBA are:
- <u>Reduced environmental impact</u> from <u>Noise Reduction</u> below the final approach in peak and non-peak periods for aircraft using the IGS-to-SRAP. These benefits are based on the change in size of the noise contours around the airport areas, which reflects a reduction in aircraft noise for impacted residents.
- Increases in <u>Airport Capacity</u> during capacity-constrained peak periods when both runway
 aiming points are used to optimise wake turbulence separations for specific combinations of
 leader/follower aircraft pairs
- Improvements in <u>Fuel Efficiency</u> (reduced fuel burn and CO₂ emissions) and <u>Time Efficiency</u>
 in peak and non-peak periods where the optimised wake separations can help optimise flight
 profiles and the airport layout allows a reduction in runway occupancy time and taxi-in time
 for aircraft using IGS-to-SRAP
- 963 Confidence in the fuel and time efficiency benefits is medium as they are based on Fast Time 964 Simulation results. Confidence in the noise results is low to medium as they generalise the benefits 965 calculated from the noise simulations produced in the Wave 1 Solution PJ.02-02 'Enhanced Arrival 966 Procedures'.
- 967 The CBA results are underpinned by the assumptions that the required "updates to EASA/ICAO 968 regulatory frameworks for new visual ground aids (IGS-to-SRAP)" and "Regulatory provisions for 969 Increased Glide Slope operations to Second Runway Aiming Point (IGS-to-SRAP)" occur in the planned 970 timeframes.
- 971 The sensitivity analysis shows that even if the costs doubled and the benefits are halved, the
 972 deployment, as described in the CBA Solution Scenario, would still have a positive NPV of 460 M€.
- 973 The validation activities have shown that the Solution concept works and can bring airport capacity 974 benefits and reduce the impact of noise on the local inhabitants in peak and non-peak hours, including 975 at night. The scale of the results will differ across airports depending on airport specificities including, 976 but not limited to, traffic mix, runway length, capacity-constrained peak periods, operating mode 977 (mixed/segregated), population density under the final approach and the number of runways where 978 IGS-to-SRAP will be deployed.
- 979 The main recommendation is therefore, that airports considering the deployment of this Solution to 980 address their operational needs, should review the content of this CBA and develop their own CBA 981 based on their specific infrastructure, operations, layout, etc. to assess the scale of their potential 982 benefits. They should also review related solutions, such as PJ.02-W2-14.2 Second Runway Aiming 983 Point, which can also offer capacity benefits during peak hours and noise reduction benefits, or PJ.02-984 W2-14.3 Increased Second Glide Slope, which offers noise reduction benefits, to ensure they deploy 985 the most appropriate solution for their needs.

10 References and Applicable Documents

987 **10.1 Applicable Documents**

- 988 [1] SESAR 2020 Project Handbook, Edition 02.02.00, 08 June 2020
- 989 [2] SESAR Cost-Benefit Analysis Model³¹ (Single Solution Wave 2)
- [3] EUROCONTROL, Standard Inputs for EUROCONTROL Economic Analyses, Edition 9, December2020
- 992[4] SESAR 16.06.06-D26_03, Methods to Assess Costs and Monetise Benefits for CBAs, Ed.99300.02.02
- [5] EUROCONTROL, Method to assess cost of European ATM improvements and technologies,
 v1.0, 28 July 2014
- 996 [6] SESAR 16.06.06-D26_08, ATM CBA Quality checklist, Edition 02.00.01
- 997[7] SESAR 16.06.06-D26_04, Guidelines for Producing Benefit and Impact Mechanisms, Ed.99803.00.01
- 999 [8] European ATM Master Plan Portal 2019, https://www.atmmasterplan.eu/
- 1000 [9] SESAR 16.06.06-D51 SESAR 1 Business Case 2016, Edition 00.01.01, 13 July 2016

1001 **10.2 Reference Documents**

- 1002 [10]SESAR 2020, PJ19.04, En-route & Terminal Airspace OEs_October 2019 Version (1_0).xlsx
- 1003 [11]SESAR 2020 PJ19.04, Airport OE_October 2019 Version (1_0).xlsx
- 1004 [12]SESAR 2020, PJ19, D4.0.30 S2020 Common Assumptions (2019), Edition 00.00.02
- 1005 [13]SESAR 2020 D4.7, Performance Framework (2019), Edition 01.00.01
- 1006 [14]SESAR 2020 D4.8, Validation Targets (2019), Edition 01.00.01
- 1007[15]P06.08.08 D07 Enhanced Arrival Procedures enabled by GBAS OSED Consolidation, Edition100800.01.01
- 1009 [16]P06.08.05 D04 Operational Service and Environment Definition (OSED) Displaced Thresholds,
 1010 00.02.00
- 1011 [17]SESAR 2020 PJ.02-02 V3 SPR-INTEROP/OSED Part I, Deliverable ID D1.1.021, Edition 00.00.07,
 1012 15 November 2019
- 1013[18]SESAR 2020 PJ.02-02 V3 SPR-INTEROP/OSED Part V, Performance Assessment Report1014Deliverable D1.1.021, Edition 00.00.01, 31 October 2019
- 1015 [19]SESAR 2020 PJ.02-02 VALR (V3), Deliverable D2.1.048, Edition 00.00.01, 10 September 2019
- 1016 [20]SESAR 2020 W1, D2.1.05, PJ.02-02 CBA (V3), Edition 00.01.00, 25 March 2020
- 1017 [21]EUROCONTROL Performance Review Commission (PRC), ATM Cost-Effectiveness (ACE)
 1018 Benchmarking Report 2019, May 2021
- 1019 [22]CE Delft (on behalf of European Commission)- Handbook on the External Costs of Transport –
 1020 Version 2019
- 1021 [23]SESAR1 Training Cost assessment framework and database, Edition 2, 2019

³¹ This reference is no more accessible from Programme library but it is now available in ATM Performance Assessment Community of Practice. Page 51 Co-funded b

- 1022 [24]SESAR 2020, D4.5.002, PJ.02-W2-14.5 5 SPR-INTEROP/OSED V3 Part I- Final, Edition 00.01.00, 1023
 - 27 September 2022
- [25]SESAR 2020, D4.5.002, PJ.02-W2-14.5 SPR-INTEROP/OSED V3 Part V Final, Edition 00.01.00, 1024 1025 25 August 2022
- 1026 [26]SESAR 2020, D4.5.006, PJ.02-W2-14.5 VALR Final, Edition 00.00.04, 29 August 2022

1027Appendix ADescriptionoftheEnhancedArrival1028Procedure: IGS-to-SRAP (AO-0331)

1029

1030 IGS-to-SRAP concept consists in having two runway thresholds active at the same time on a runway,

- 1031 with two different final approach segment slope, typically an ILS 3° slope to the first threshold and a
- 1032 higher one to the second one.1033 Having two arrival slopes active at the same time, it can be envisaged to have one or two interception
- altitudes, according to each local case. The figures below show the two cases.
- 1035 IGS-to-SRAP ILS D 1036 1037 Figure 13: IGS-to-SRAP procedure with one interception altitude 1038 1039 IGS-to-SRAP ILS 3.5 3 1040 1041 Figure 14: IGS-to-SRAP procedure with two interception altitudes

1042 Appendix B Discount rate

- 1043 This note explains the choice of 8% for the discount rate in the SESAR CBAs.
- 1044 The discount rate is used to reflect the Time Value of Money (i.e. money received today has more 1045 value than money that will be received in 10 years because money received today can be invested to 1046 get some income.)
- 1047 The discount rate used to calculate the Net Present Value (NPV) can be interpreted as the interest on 1048 invested money (from a project or a savings account) or as the interest charged on borrowing money 1049 (to fund an investment).
- 1050 The 8% discount rate used in the SESAR CBA model to calculate the NPV reflects the higher end of the 1051 range of Cost of Capital values faced by the partners involved in PJ.20 sWP2.6 (Business Cases) to 1052 acquire the funds necessary to invest. This value is used by some partners in their local CBAs.
- 1053 If a Solution has a positive NPV at 8% then it will be more positive at lower discount rates. However, 1054 a positive NPV with a lower rate, e.g. 4%, may be negative at an 8% discount rate. Therefore 8% is a 1055 conservative value, which can also be considered to include a risk premium to cover the uncertainties 1056 associated with such broad CBAs. The undiscounted values (i.e. a discount rate of 0%) are also 1057 provided to allow a comparison.
- 1058 In addition, the SESAR CBAs do not consider inflation (i.e. the discount rate is the real rate and not the
- nominal rate). This is because it would be necessary to make many assumptions about how inflation
- 1060 rates evolve over the CBA period and how they would differ in the different states and how they would
- 1061 apply to the costs and benefits in each state.

Appendix C Mapping ATM Master Plan Performance Ambition KPAs and SESAR 2020 Performance Framework KPAs

1064

1065 Mapping between ATM Master Plan Performance Ambition KPAs and SESAR 2020 Performance Framework KPAs, Focus Areas and KPIs

ATM Master Plan SESAR Performance Ambition KPA	ATM Master Plan SESAR Performance Ambition KPI	Performance Framework KPA	Focus Area	#KPI / (#PI) / <design goal=""></design>	KPI definition
Cost efficiency	PA1 - 30-40% reduction in ANS costs per flight	Cost efficiency	ANS Cost efficiency	CEF2 CEF3	Flights per ATCO hour on duty Technology Cost per flight
Capacity	PA7 - System able to handle 80-100% more traffic		Airspace capacity	CAP1	TMA throughput, in challenging airspace, per unit time
	PA6 - 5-10% additional flights at congested airports	- Capacity	Airport capacity	CAP2 CAP3	En-route throughput, in challenging airspace, per unit time Peak Runway Throughput (Mixed Mode)
			Capacity resilience	RES1 RES2	% Loss of airport capacity avoided % Loss of airspace capacity avoided
	PA4 - 10-30% reduction in departure delays	Predictability and	Departure punctuality	PUN1	% of Flights departing (Actual Off-Block Time) within +/- 3 minutes of Scheduled Off-Block Time after accounting for ATM and weather related delay causes
Operational Efficiency	PA5 - Arrival predictability: 2 minute time window for 70% of flights actually arriving at gate	punctuality	Variance of actual and reference business trajectories	PRD1	Variance of differences between actual and flight plan or Reference Business Trajectory (RBT) durations

ATM Master Plan SESAR Performance Ambition KPA	ATM Master Plan SESAR Performance Ambition KPI	Performance Framework KPA	Focus Area	#KPI / (#PI) / <design goal=""></design>	KPI definition	
	PA2 - 3-6% reduction in flight time			(FEFF3)	Reduction in average flight duration	
	PA3 - 5-10% reduction in fuel burn	Environment	Fuel efficiency	FEFF1	Average fuel burn per flight	
Environment	PA8 - 5-10% reduction in CO2 emissions			(FEFF2)	CO2 Emissions	
Safety	PA9 - Safety improvement by a factor 3-4	Safety	Accidents/incidents with ATM contribution	<saf1> see section 3.4</saf1>	Total number of fatal accidents and incidents	
Security	PA10 - No increase in ATM related security incidents resulting in traffic disruptions	Security	Self-Protection of the ATM System / Collaborative Support	(SEC1)	Personnel (safety) risk after mitigation	
				(SEC2)	Capacity risk after mitigation	
				(SEC3)	Economic risk after mitigation	
				(SEC4)	Military mission effectiveness risk after mitigation	

Table 28: Mapping between ATM Master Plan Performance Ambition KPAs and SESAR 2020 Performance Framework KPAs, Focus Areas and KPIs

1067			
1068			
1069			
1070			
1071			
1072			
1073			
1074			
1075			
1076			
1077			
1078			
1079			

