

SESAR Solution PJ.02-01-06 SPR/INTEROP-OSED for V3 - Part V - Performance Assessment Report (PAR)

PU

Project Acronym:	PJ.02-W2 AART
Grant:	874477
Call:	H2020-SESAR-2019-1
Topic:	Airport, Airside and Runway Throughput
Consortium coordinator:	EUROCONTROL
Edition date:	31st October 2022
Edition:	00.01.00
Template Edition:	00.00.09

Authoring & Approval

Authors of the document		
Beneficiary	Date	
EUROCONTROL	31/10/2022	
NATS	31/01/2020	
AT-ONE	02/10/2019	
AIRBUS	28/10/2019	

Reviewers internal to the project	
Beneficiary	Date
EUROCONTROL	11/11/2022
NATS	11/11/2022
HAL	

Reviewers external to the project

Beneficiary Date	
------------------	--

Approved for submission to the S3JU By - Representa	atives of all beneficiaries involved in the project
Beneficiary	Date
EUROCONTROL	11/11/2022
NATS	11/11/2022
HAL*	17/11/2022

Rejected By - Representatives of beneficiaries involved in the project

Beneficiary	Date

Document History

Edition	Date	Status	Beneficiary	Justification
00.00.01	05/11/2020	Draft	EUROCONTROL	Initial draft of the document
00.01.00	31/10/2022	Final	EUROCONTROL	Final version for submission

*silent approval

Copyright Statement

© 2022 – EUROCONTROL, NATS, HAL. All rights reserved. Licensed to SESAR3 Joint Undertaking under conditions.

PJ.02-W2 AART

AIRPORT, AIRSIDE AND RUNWAY THROUGHPUT

This Performance Assessment Report is part of a project that has received funding from the SESAR3 Joint Undertaking under grant agreement No 874477 under European Union's Horizon 2020 research and innovation programme.

Abstract

This document contains the Performance Assessment Report for the SESAR 2020 Wave 1 SESAR Solution PJ.02-01 (WTS for Departures) which consists of the extrapolation to ECAC wide level of the performance assessment results conducted according at V3 level of maturity for the concepts in PJ.02-01 and the process applied to obtain the results. Report covers the concepts that contribute to WTS (for Departures):

- AO-0329: Optimised Separation Delivery for Departure (OSD);
- AO-0323: Wake Turbulence Separations (for departures) based on Static Aircraft Characteristics (PWS-D);
- AO-0304: Weather-dependent reductions of Wake Turbulence Separations for Departure (WDS-D).

No updates to the SESAR 2020 Wave 1 PJ02-01 PAR have been made in SESAR 2020 Wave 2 PJ.02-01-06, as the validation activities conducted in SESAR 2020 Wave2 PJ.02-01-06 did not impact the PAR results.

Table of Contents

	Abstra	ct	4
1	Exec	cutive Summary	. 8
2	Intro	oduction	15
	2.1	Purpose of the document	15
	2.2	Intended readership	15
	2.3	Inputs from other projects	15
	2.4	Glossary of terms	16
	2.5	Acronyms and Terminology	16
3	Solu	tion Scope	21
	3.1	Detailed Description of the Solution	21
	3.2	Detailed Description of relationship with other Solutions	21
4	Solu	ition Performance Assessment	25
	4.1	Assessment Sources and Summary of Validation Exercise Performance Results	25
	4.2	Conditions / Assumptions for Applicability	28
	4.3	Safety	29
	4.3.1		
	4.3.2		
	4.3.3	Extrapolation to ECAC wide	44
	4.3.4	Discussion of Assessment Result	44
	4.3.5	Additional Comments and Notes	44
	4.4	Environment: Fuel Efficiency / CO2 emissions	44
	4.4.1	Performance Mechanism	44
	4.4.2	Assessment Data (Exercises and Expectations)	45
	4.4.3	Extrapolation to ECAC wide	45
	4.4.4	Discussion of Assessment Result	52
	4.4.5	Additional Comments and Notes	52
	4.5	Airport Capacity (Runway Throughput Flights/Hour)	52
	4.5.1		
	4.5.2	Assessment Data (Exercises and Expectations)	53
	4.5.3	Extrapolation to ECAC wide	55
	4.5.4	Discussion of Assessment Result	56
	4.5.5	Additional Comments and Notes	57
	4.5.6	Resilience (% Loss of Airport & Airspace Capacity Avoided)	57
	4.6	Predictability	
	4.6.1		
	4.6.2	Assessment Data (Exercises and Expectations)	60
	4.6.3	Extrapolation to ECAC wide	60
	4.6.4	Discussion of Assessment Result	64

4.6.5	5 Additional Comments and Notes	54
4.7	Human Performance	54
4.7.1	HP arguments, activities and metrics	54
4.7.2	2 Extrapolation to ECAC wide	57
4.7.3		
4.7.4		57
4.7.5		58
4.7.6	5 Additional Comments and Notes	59
4.8	Gap Analysis	59
5 Refe	erences	'1
Appendi		

List of Tables

Table 1: KPI Assessment Results Summary
Table 2 Mandatory PIs Assessment Summary 14
Table 3: Acronyms and terminology
Table 4: Relationships with other Solutions
Table 5: SESAR2020 Validation Exercises 25
Table 6: Summary of Validation Results
Table 7: Applicable Operating Environments
Table 8: Deployment details
Table 9: Influence of Equipage on benefits
Table 10 - Safety Criteria for the Departures Concepts 30
Table 11: Fuel burn and CO2 emissions saving for Mandatory KPIs /Pis
Table 12: Fuel burn and CO2 emissions saving per flight phase. 52
Table 13: Airport Capacity for Mandatory KPIs /Pis
Table 14: Summary of differences between the cases for WDS-D in the context of PWS-D56
Table 15: Summary breakdown of potential gains by solution (gains measured in minutes and secondsper day) from additional capacity analysis
Table 16: Predictability benefits for Mandatory KPIs /PIs 63
Table 17: Predictability benefit per flight phase 64
Table 18: HP arguments, activities and metrics 67
Table 19: Open HP issues/ recommendations and requirements 67

Table 20: Most important HP issues	68
Table 21: Gap analysis Summary	70
Table 22: OI Steps allocated to the Solution	73

List of Figures

1 Executive Summary

This document provides the Performance Assessment Report (PAR) for SESAR 2020 Wave 1 Solution PJ.02-01 (WTS (for Departures). No updates to the SESAR 2020 Wave 1 PJ02-01 PAR have been made in SESAR 2020 Wave 2 PJ.02-01-06, as the validation activities conducted in SESAR 2020 Wave2 PJ.02-01-06 did not impact the PAR results

The PAR is consolidating Solution performance validation results addressing KPIs/PIs and metrics from the SESAR2020 Performance Framework [2].

This Performance Assessment Report provides the results for the three concepts of the SESAR Solution PJ.02-01.

- AO-0329: Optimised Separation Delivery for Departure (OSD);
- AO-0323: Wake Turbulence Separations (for departures) based on Static Aircraft Characteristics (PWS-D);
- AO-0304: Weather-dependent reductions of Wake Turbulence Separations for Departure (WDS-D).

Definition of Solution Scenarios:

Throughout the document, the departures tools solutions will be referred to in simplified forms for convenience to the reader. These are:

- **OSD** (A0-0329);
- **PWS-D** TB PWS-D (A0-0323) with OSD (AO-0329) tool support;
- WDS-D WDS-D (A0-0304) in the context of TB PWS-D (A0-0323) with OSD (A0-0329) tool support.

Assessment Results Summary:

The following tables summarise the assessment outcomes per KPI (Table 1) and mandatory PI (Table 2) against Validation Targets in case of KPI from PJ.19 [7]. The impact of a Solution on the performances is described in the Benefit and Impact Mechanisms. All the KPIs and mandatory PIs from the Benefit Mechanisms expected to be impacted by the solution have been assessed via validation activities (RTS, FTS, expert judgment etc.).

There are three cases:

- 1. An assessment result of 0 with confidence level High, Medium or Low indicates that the Solution is expected to impact in a marginal way the KPI or mandatory PI;
- 2. An assessment result (positive or negative) different than 0 with confidence level High, Medium or Low indicates that the Solution is expected to impact the KPI or mandatory PI;
- 3. An assessment result of N/A (Not Applicable) with confidence level N/A indicates that the Solution is not expected to impact at all the KPI or mandatory PI consistently with the Benefit Mechanism.

КРІ	Validation Targets – Network Level (ECAC Wide)	Performance Benefits at Network Level (ECAC Wide or Local depending on the KPI)	Confidence in Results
FEFF1: Fuel Efficiency - Actual average fuel burn per flight	26.7 kg	 Flights Impacted = 9850000 (flights/year) x 59.5% (high density airports contributions) x 50% (departures contribution) = <u>2931038</u> flights OSD (AO-0329) tool support for RECAT-EU TBS = <u>1.79 kg reduction</u> in fuel consumption per flight at ECAC level, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323): <u>10.53kg reduction</u> in fuel consumption per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; <u>2.28kg reduction</u> in fuel consumption per flight at ECAC level, compared to RECAT- EU without OSD tool support, with a Barcelona traffic mix; <u>2.28kg reduction</u> in fuel consumption per flight at ECAC level, compared to RECAT- EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO- 0323) = <u>2.23 kg</u> 	Low ²

² Confidence in the results was impacted by anomalies in the measures across comparative exercise runs.

		reduction ¹ in fuel consumption per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	
CAP3: Airport Capacity – Peak Runway Throughput (Mixed mode).	2.6%	 OSD (AO-0329) - <u>1.0%</u> <u>increase</u> in departure movements/hour, compared to RECAT-EU without OSD tools support, with a Heathrow traffic mix. PWS-D (AO-0323): <u>8.65% increase</u> in departure movements/hour, compared to ICAO without OSD tool support, with a Barcelona traffic mix; <u>2.41% increase</u> in departure movements/hour, compared to RECAT- EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO- 0323) - <u>0.1% increase</u> in departure movements/hour¹, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	Low ²

¹ This is an anomalous result as changes to the take-off order due to trying to induce WDS-D pairs resulted in a less efficient departure order and lost nearly all of the benefit gains of PWS-D. In theory, WDS-D in the context of PWS-D should be a delta increase to the benefits of PWS-D alone.

		Number of flights impacts = 2931038 flights OSD (AO-0329) = <u>1.22mins^2 (2.5%)</u> reduction in flight duration variability,	
		compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	
PRD1: Variance of Difference in actual & Flight Plan or RBT durations	0.27% ³	 PWS-D (AO-0323): <u>3.71mins^2 (7.57%)</u> reduction in flight duration variability, compared to ICAO without OSD tool support, with a Barcelona traffic mix; <u>0.92 mins^2 (1.87%)</u> reduction in flight duration variability, compared to RECAT- EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO- 0323) = <u>0.91 mins^2</u> (<u>1.85%) reduction¹ In</u> flight duration variability, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix 	Low ²

Table 1: KPI Assessment Results Summary

³ In Validation Targets [18] the unit for PRD1 is % Reduction in variance of block-to-block flight time.

Mandatory PI	Performance Benefits Expectations at Network Level (ECAC Wide or Local depending on the KPI)	Confidence in Results
FEFF2: CO2 Emissions.	 OSD (AO-0329) = 5.62 kg reduction in CO2 emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323): 33.18 kg reduction in CO2 emissions per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 7.17 kg reduction in CO2 emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Barcelona traffic mix; 7.17 kg reduction in CO2 emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO-0323) = 7.03 kg reduction¹ in CO2 emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	Low ²
FEFF3: Reduction in average flight duration.	 OSD (AO-0329) = 0.12 minutes reduction in flight duration (taxi- out time) per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323): 0.7 minutes reduction in flight duration (taxi-out time) per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 0.3 minutes reduction in flight duration (taxi-out time) per flight at ECAC level, compared to RECAT-EU without OSD tool 	Low ²

	support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO-0323) = 0.15 minutes reduction ¹ in flight duration (taxi-out time) per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	
CAP3.1: Peak Departure throughput per hour (Segregated mode)	 OSD (AO-0329) – 0.6 increase in departure movements/hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323): 3.92 increase in departure movements/hour, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 1.2 increase in departure movements/hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.05 increase¹ in departure movements/hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	Low ²
CAP4: Un-accommodated traffic reduction	OSD (AO-0329) - 0.6 reduction in un-accommodated departures/hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323) – 1.1 reduction in un-accommodated departures/hour, compared to RECAT-EU without OSD tool	Low ²

	support, with a Heathrow traffic mix.	
	WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.05 reduction ¹ in un-accommodated departures/hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	
	OSD (AO-0329) – 0.6 departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tools support, with a Heathrow traffic mix.	
RES1: Loss of Airport Capacity Avoided	PWS-D (AO-0323) – 1.1 departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tools support, with a Heathrow traffic mix.	Low ²
	WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.05 departure movements ¹ per hour loss of capacity avoided, compared to RECAT-EU without OSD tools support, with a Heathrow traffic mix.	
HP1: Consistency of human role with respect to human capabilities and limitations	See Section 4.7.	N/A
HP2: Suitability of technical system in supporting the tasks of human actors	See Section 4.7.	N/A
HP3: Adequacy of team structure and team communication in supporting the human actors	See Section 4.7.	N/A
HP4: Feasibility with regard to HP- related transition factors	See Section 4.7.	N/A

Table 2 Mandatory PIs Assessment Summary

2 Introduction

2.1 Purpose of the document

The Performance Assessment⁴ covers the Key Performance Areas (KPAs) defined in the SESAR2020 Performance Framework [2]. The Key Performance Indicators (KPIs) and the mandatory Performance Indicators (PIs) are assessed, but also additional PIs as needed to capture the performance impacts of the Solution. It considers the guidance document on KPIs/PIs [2] for practical considerations, on metrics for example.

The purpose of this document is to present the performance assessment results from the validation exercises at SESAR Solution level. The KPA performance results are used for the performance assessment at strategy level and provide inputs to the SESAR Joint Undertaking (SJU) for decisions on the SESAR2020 Programme.

In addition to the results, this document presents the assumptions and mechanisms (how the validation exercises results have been consolidated) used to achieve this performance assessment result.

One Performance Assessment Report shall be produced or iterated per Solution.

2.2 Intended readership

In general, this document provides the ATM stakeholders (e.g. airspace users, ANSPs, airports, airspace industry) and SJU performance data for the Solution addressed.

Produced by the Solution project, the main recipient in the SESAR performance management process is PJ.19, which will aggregate all the performance assessment results from the SESAR2020 solution projects PJ.01-PJ.18 and provide the data to PJ.20 for considering the performance data for the European ATM Master Plan. The aggregation will be done at higher levels suitable for use at Master Planning Level, such as deployment scenarios. Additionally, the consolidation process will be carried out annually, based on the SESAR Solution's available inputs.

In addition, other intended readership are the SESAR Solution PJ.02-01-06 project members, the other solutions in SESAR Project PJ.02 Increased Runway and Airport Throughput, the related solutions in SESAR Project PJ.01 Enhanced Arrivals and Departures, the related solutions in SESAR Project PJ.04 Total Airport Management and the related solutions in SESAR Project PJ.09 Advanced Demand & Capacity Balancing.

2.3 Inputs from other projects

⁴ The opinions expressed herein reflect the authors view only. Under no circumstances shall the SESAR Joint Undertaking be responsible for any use that may be made of the information contained herein.

The document includes information from the following SESAR 1 projects:

- B.05 D72 [2]: SESAR 1 Final Performance Assessment, where are described the principles used in SESAR1 for producing the performance assessment report.

PJ.19 will manage and provide:

- PJ.19.04.01 D4.1 [3]: Performance Framework (2018), guidance on KPIs and Data collection supports.
- PJ.19.04.03 D4.0.1: S2020 Common assumptions, used to aggregate results obtained during validation exercises (and captured into validation reports) into KPIs at the ECAC level, which will in turn be captured in Performance Assessment Reports and used as inputs to the CBAs produced by the Solution projects. Where are also included performance aggregation assumptions, with traffic data items.
- For guidance and support PJ.19 have put in place the Community of Practice (CoP)⁵ within STELLAR, gathering experts and providing best practices.

2.4 Glossary of terms

See the AIRM Glossary [1] for a comprehensive glossary of terms.

Term	Definition
AIM	Accident Incident Model
AIRM	ATM Information Reference Model
ANS	Air Navigation Service
ANSP	Air Navigation Service Provider
APP	Approach
APT	Airport
ARES	Airspace REServation
ATC	Air Traffic Control

2.5 Acronyms and Terminology

5

https://stellar.sesarju.eu/?link=true&domainName=saas&redirectUrl=%2Fjsp%2Fproject%2Fproject.j sp%3Fobjld%3Dxrn%3Aview%3Axrn%3Adatabase%3Aondb%2Ftable%2F59_anonymous%402333834 .13%403834139.13

Term	Definition
ATCO	Air Traffic Control Officer
ATFM	Air Traffic Flow Management
ATM	Air Traffic Management
BAD	Benefits Assessment Date
BAER	Benefit Assessment Equipment Rate
BIM	Benefit Impact Mechanism
САР	Capacity
СВА	Cost Benefit Analysis
CDG	Charles De Gaulle
CFIT	Controlled Flight into Terrain
CREDOS	Crosswind Reduced Separations for Departure Operations
CRT	Criteria
CSPR	Closely Spaced Parallel Runway Operations
CWP	Controller Working Position
DB	Deployment Baseline
DBS	Distance-Based Separation
DOD	Detailed Operational Description
E-ATMS	European Air Traffic Management System
E-OCVM	European Operational Concept Validation Methodology
EARTH	Increased runway and airport throughput
EASA	European Aviation Safety Agency
EATMA	European ATM Architecture
ECAC	European Civil Aviation Conference
ECTL	EUROCONTROL
FEFF	Fuel Efficiency
FTS	Fast Time Simulation

Term	Definition
GBAS	Ground Based Augmentation System
HMI	Human-Machine Interface
IAF	Initial Approach Fix
ICAO	International Civil Aviation Organization
IFR	Instrument Flight Rules
ISRM	Information Services Reference Model
ITD	Integrated Technology Demonstrators
ITM	Intermediate Approach controller
КРА	Key Performance Area
KPI	Key Performance Indicator
LVP	Low-Visibility Procedures
MAC	Mid-Air Collision
MET	Meteorological services for air navigation
MRS	Minimum Radar Separation
N/A	Not Applicable
OBJ	Objective
ORD	Optimised Runway Delivery
01	Operational Improvement
OSD	Optimised Separation Delivery
OSED	Operational Service and Environment Definition
PAR	Performance Assessment Report
PBN	Performance Based Navigation
PI	Performance Indicator
PRD	Predictability
PRU	Performance Review Unit
PWS	Pair Wise Separation(s)

	Definition
QoS	Quality of Service
RBT	Reference Business / Mission Trajectory
RECAT	Re-categorisation of Wake Turbulence Separation Minima
RES	Resilience
RIMCAS	Runway Incursion Monitoring and Conflict Alert System
ROT	Runway Occupancy Time
RSP	Required Surveillance Performance
RTS	Real-Time Simulation
RWY	Runway
SAC	Safety Criteria
SAF	SAFety
SAR	Safety Assessment Report
SESAR	Single European Sky ATM Research Programme
SESAR2020 Programme	The programme which defines the Research and Development activities and Projects for the SJU.
SID	Standard Instrument Departure
SJU	SESAR Joint Undertaking
SPR	Safety and Performance Requirements
SRM	Safety Reference Material
STATFOR	EUROCONTROL Statistics and Forecasts Service
SWIM	System-Wide Information Management
TBS	Time-Based Separation
TEAM	Tactically-Enhanced Arrivals Mode
ТМА	Tactical Manoeuvring Area
TWR	Tower
TWY	TaxiWaY
VALP	Validation Plan

Term	Definition
VALR	Validation Report
VALS	Validation Strategy
WDS	Weather-Dependant Separation
WTA	Wake Turbulence-induced Accident
WTC	Wake Turbulence Category

Table 3: Acronyms and terminology

3 Solution Scope

3.1 Detailed Description of the Solution

The departures concepts solutions consist of Wake Turbulence Separations for Departure based on Static Aircraft Characteristics (PWS-D), Optimised Separation Delivery for Departure (OSD) and Weather-Dependent Reductions of Wake Turbulence Separation for Departure (WDS-D).

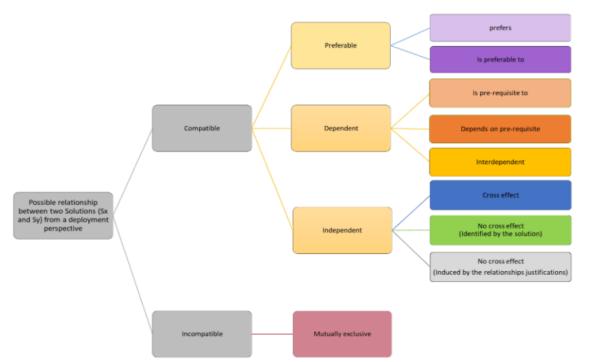
OSD is the ATC support tool to enable consistent and efficient delivery of the required separation or spacing between departure pairs on the initial departure path.

PWS-D is the efficient aircraft type pairwise wake separation rules for departure operations currently consist of the time-based seven wake category (7-CAT) based wake separation minima, or the distance-based 96 x 96 aircraft type based pairwise wake separation minima in conjunction with the twenty wake category (20-CAT) based wake separation minima for departure pairs involving other aircraft types.

Planned for SESAR 2020 Wave 2 is an activity to develop the aircraft type pairwise time-based wake separation minima for departures and the refined wake category time-based wake separation minima. This is subject to having sufficient departure aircraft data for carrying out the wake risk analysis for the supporting safety case. In SESAR 2020 Wave 1 draft aircraft type pairwise time-based wake separation minima and refined wake category time-based wake separation minima were established and employed in the validation exercises in order to support assessment of the Human Performance, Safety and Performance validation objectives.

WDS-D is the conditional reduction or suspension of the wake separation minima for departure operations, applicable under pre-defined wind conditions so as to enable a runway throughput increase compared to the applicable standard weather independent wake separation minima. This is on the basis that under the pre-defined wind conditions the wake turbulence generated by the lead aircraft is either crosswind transported out of the path of the follower aircraft on the initial departure path or has decayed sufficiently to be acceptable to be encountered by the follower aircraft on the initial departure path.

The wake separation minima on the initial departure path are defined as both distance-based minima and time-based minima, and so may be applied as either distance-based minima or time-based minima.


OSD, PWS-D and WDS-D will increase departure runway capacity, and improve the efficiency, predictability and resilience of departure operations, while maintaining safety.

3.2 Detailed Description of relationship with other Solutions

The figure below shows types of relationship that can exist between Solutions:

Solution Number	Solution Title	Relationship	Rational for the relationship
PJ.02-08	Traffic optimisation on single and multiple runway airports	Compatible, Independent, cross effect	Solution 8 provides enhanced prediction of Runway Occupancy Time to be integrated in the ATCO support tool to compute the separations to apply for optimizing runway throughput.
			Solution 8 provides integrated arrival and departure sequence that can support PJ.02-01-06 concepts.
			PJ.02-01-06 can provide wake separation requirements to be considered in the refinement of the (more stable) integrated arrival and departure sequence.
PJ.02-03	Minimum-Pair separations based on RSP	Compatible - independent - cross effect	Solution 3 is focused on the Required Surveillance Performance (RSP) for a 2 NM Minimum Radar Separation (MRS) on final approach. It has provided the expected requirements and specifications for the RSP such as the MRS update rate of 4s to be

			used in the RTS. The ECTL RTS for PJ.02.01/PJ.02.03 has considered PWS-A at both the current 2.5 NM MRS and at a future 2 NM MRS.
PJ.02-02	Enhanced arrival procedures	Compatible - independent - cross effect	Solution 2 look at procedures that could provide noise and capacity benefits. This procedure may need additional separation buffer. Solution 2 will provide requirements, specifications and procedures for GBAS operations that are expected for the validation activities.
			Solution 1 provides requirements for wake separation based on pair. The results of Solution 1 simulations will be an input for Solution 2.
			The decrease/increase of separations can be defined at the granularity of aircraft type, but since the separation reductions are always bigger than the separation increases, cross benefits are expected in terms of APT capacity when the solutions for arrivals are combined.
PJ.01-07	Approach Improvement through Assisted Visual Separation	Compatible - independent - cross effect	PJ.02-01-06 and PJ.01-07 coordination to provide PJ.01-07 with needed expertise on wake turbulence issues.
			PJ.02-01-06 look at the wake turbulence monitoring on airborne cockpit point of view.
			No impact on APT CAP (as airborne only enhancement for wake monitoring). Cross effect as may improve situation awareness of the pilot and therefore may improve SAF and HP.
PJ.18-04b	MET information	Compatible – preferable - prefers	PJ.18-04b: PJ.02-01-06 prefers PJ.18-04b as better wind conditions

	have a positive effect, although this can be difficult to quantify.	

Table 4: Relationships with other Solutions

4 Solution Performance Assessment

4.1 Assessment Sources and Summary of Validation Exercise Performance Results

No previous Validation Exercises (pre-SESAR2020, etc.) relevant for this assessment have been identified.

Exercise ID	Exercise Title	Release	Maturity	Status
RTS3a	PWS-A with ORD for Arrivals, and PWS-D with OSD for Departures, on single RWY in mixed mode, for Vienna airport	9	V3	Completed
RTS4a	ORD for Arrivals, and PWS-D with OSD for Departures, on a single RWY in mixed mode, for Vienna airport	9	V3	Completed
RTS4b	PWS-A with ORD for Arrivals on CSPR runways, and PWS-D with OSD for Departures, on partially segregated runway, for Paris CDG airport	9	V3	Completed
RTS5	PWS-D and WDS-D with OSD for Departures, on dependent parallel RWYs in segregated mode, with a small number of arrivals landing on the departure runway under tactically enhanced arrival management, and encompassing transition in case of degraded mode, for London Heathrow airport	9	V3	Completed
RTS6	RTS conducted by ENAIRE to evaluate the feasibility of WDS-A for Arrivals, and PWS-D with OSD for Departures on parallel RWYs operating in segregated mode for Barcelona airport	9	V3	Completed

SESAR Validation Exercises of this Solution are listed below:

Table 5: SESAR2020 Validation Exercises

The following table provides a summary of information collected from available performance outcomes:

Exercise	OI Step	Exercise scenario & scope	Performance Results
RTS3a	AO-0328 (ORD) AO-0306 (PWS-A)	PWS-A with ORD for Arrivals, and PWS-D with OSD for Departures, on single RWY in mixed mode, for Vienna airport	 SAF: TB PWS-A with ORD tool is operationally feasible in mixed mode runway operations and controllers are able to safely and successfully deliver the aircraft under Time Based PWS-A on the final approach using the ORD tool. HP: Controllers provide feedback that TB PWS-A separation scheme with the ORD tool is operationally acceptable in single runway mixed mode environment. CAP: ORD (AO-0328) - <u>7.9% increase</u> in movements/hour with ORD and mixed mode procedures of single consecutive arrivals and departures PWS-A (AO-0306) - <u>0.01% increase</u> in movements/hour with ORD and mixed mode procedures of single consecutive arrivals and departures.
RTS4a	AO-0328 (ORD) AO-0306 (PWS-A) AO-0329 (OSD) AO-0323 (PWS-D)	PWS-A with ORD for Arrivals, and PWS-D with OSD for Departures, on a single RWY in mixed mode, for Vienna airport	HP: Controllers provide feedback that is operationally feasible to use the ORD tool in the mixed mode single runway operations to support the delivery of gap spacings in the arrival flow to allow for departures. Pair wise separations for departures using the OSD tool in mixed mode runway operations in the low wind conditions tested were reported to be operationally feasible. SAF: Safe working practices were observed during the simulation and the controllers reported that PWS with OSD tool did not increase the risk of human error in any way.
RTS4b	AO-0328 (ORD) AO-0306 (PWS-A) AO-0329 (OSD) AO-0323 (PWS-D)	PWS-A with ORD for Arrivals on CSPR runways, and PWS-D with OSD for Departures, on partially segregated runway, for Paris CDG airport	 CAP: increase of 4.7 ac/h on departures with PWS-D and OSD when compared to reference scenario (ICAO separation). Increase of 2.5 ac/hour on arrivals with PWS-A and ORD when compared to reference scenario (RECAT-EU separation). HP: the ORD tool with PWS – A concept in CSPR at CDG airport is operationally feasible in approach environment only. OSD with PWS-D in CSPR are considered to be operationally feasible by providing additional functionalities to support the mixed mode runway operations. SAF: approach controllers were observed to apply safe standard practices during TB-PWS-A with ORD in CSPR for Arrivals operations.

RTS5	AO-0329 (OSD) AO-0323 (PWS-D) AO-0304 (WDS-D)	RTS assessed OSD, PWS-D and WDS-D in segregated mode operations in the London Heathrow Very Large Airport Operational Environment.	Runway Capacity results showed a 1.0%, 2.0% and 0.1% ¹ increase in runway throughput in the OSD, PWS-D and WDS-D solution scenarios compared to the reference scenario. Mean Taxi-out time reduced by 0.4minutes, 0.7minutes and 0.5minutes ¹ in the OSD, PWS-D and WDS-D solution scenarios compared to the reference scenario. Predictability (variability in taxi-out time) reduced by 11.1%, 11.1% and 8.1% ¹ in the OSD, PWS-D and WDS-D solution scenarios compared to the reference scenario.
RTS6	AO-0310 (WDS-A) AO-0329 (OSD) AO-0323 (PWS-D)	RTS conducted by ENAIRE to evaluate the feasibility of WDS-A for Arrivals, and PWS-D with OSD for Departures on parallel RWYs operating in segregated mode for Barcelona airport.	Runway Capacity results showed an 8.65% increase in runway throughput compared to ICAO separations and a 2.81% increase compared to RECAT-EU separations. Mean Taxi-out time reduced by 2.36 minutes compared to ICAO separations and 0.32 minutes compared to RECAT-EU separations. Predictability (variability in taxi-out time) reduced by 39.7% compared to ICAO separations and 5.3% compared to RECAT-EU

Table 6: Summary of Validation Results.

Note: The common assumption values were not used in the calculation of FTS KPA benefits in all cases. Instead, individual input values were used for each of the utilised traffic mixes. This is to provide more representative and detailed results, which would be lost through the use of single values.

4.2 Conditions / Assumptions for Applicability

OE	Applicable sub-OE	Special characteristics		
	TMA Very High Complexity	Very High complexity ATC operational unit mainly providing Approach Control Services in a part of the airspace under control has a complexity score of equal or more than 10		
TMA	TMA High Complexity	High complexity ATC operational unit mainly providing Approach Control Services in a part of the airspace under control has a complexity score of between 6 and 10		
	TMA Medium Complexity	Medium complexity ATC operational unit mainly providing Approach Control Services in a part of the airspace under control has a complexity score of between 2 and 6		
Network	Network	Contribution of the network to ATM performance		
	Very Large Airport	Airports with more than 250k movements per year		
Airport	Large Airport	Airports with more or equal than 150k and less or equal than 250k movements per year		
	Medium Airport	Airports with more or equal than 40k and less than 150k movements per year		

The following Table 7 summarises the applicable operating environments.

Table 7: Applicable Operating Environments.

The following Table 8 summarises the essential deployment details:

BAD	Specific geographical and/or stakeholder deployment				
	Very Large Airports, Large Airports, Medium Airports environment operating at capacity constrained levels.				

Table 8: Deployment details.

Equipage details and how equipage influences benefits in the ramp-up phase is given in Table 9:

Min flight	Opt flight	BAER	AUs that need	Start of flight	End of flight
equipage rate	equipage rate		to equip	equipage	equipage
N/A	N/A	N/A	N/A	N/A	N/A

Table 9: Influence of Equipage on benefits.

4.3 Safety

4.3.1 Safety Design drivers and Performance Mechanism

The following (amended) SAC⁶ (Table 10) apply to all departure concepts⁷:

SAC Ref	SAC	Associated Hazard Ref	Associated Hazard
SAC#D1	There shall be no increase of imminent wake infringement on departure induced by ATC (or the crew of the 1 st aircraft), when the 2 nd aircraft is not yet airborne, in the wake turbulence scheme under consideration, compared to current operations' wake turbulence scheme (e.g. ICAO, RECAT-EU or UK 5-Cat) Precursor: WE8.a.1, WE8.1.2 leading to WE8.a	Hp#D1	Wake Turbulence-induced Accident (WTA) on Initial Common Departure Path
SAC#D2	There shall be no increase of imminent wake infringement on departure induced by ATC (or the crew of the 1 st or 2 nd aircraft), when the 2 nd aircraft is airborne, in the wake turbulence scheme under consideration, compared to current operations' wake turbulence scheme (e.g. ICAO, RECAT-EU or UK 5-Cat) Precursor: WE8.b.1 leading to WE8.b	Hp#D1	Wake Turbulence-induced Accident (WTA) on Initial Common Departure Path
SAC#D3	There shall be no increase in imminent infringement of separation (non-wake) on departure induced by ATC	Hp#D2	Situation in which the intended 4-dimensional (4D) trajectories of two or more airborne aircraft are in conflict- Initial Common Departure Path"
SAC#D4	There shall be no increase in imminent wake infringement on departure due to incorrect design of the rule Precursor: WE7S	Hp#D1	Wake Turbulence-induced Accident (WTA) on Initial Common Departure Path. (Situation where wake separation on departure is eroded by catch-up scenario)

 $^{\rm 6}$ SACs amended following revision of the Departure Wake AIM

⁷ D-TB-WDS-Tw, D-TB-WDS-Xw, D-PWS-EU

SAC#D5	There shall be no increase of ATC tactical conflicts	Hp#D2	Situation in which the intended 4-dimensional (4D) trajectories of two or more airborne aircraft are in conflict- Initial Common Departure Path
SAC#D6 ⁸	There shall be no increase in ATC induced Runway Incursion(s) (related to line- up/take-off) Precursor: RP3.2B	Hp#D3	The preceding landing/departing aircraft are not clear of the runway-in- use
SAC#D7	The probability of wake turbulence encounter (in the wake turbulence scheme under consideration), of a given severity for a given traffic pair on the initial common departure path, shall not increase compared to current operations' wake turbulence scheme (e.g. ICAO, RECAT-EU or UK 5-Cat) in reasonable worst-case conditions. Pre-cursor: WE7S1	Hp#D1	Wake Turbulence-induced Accident (WTA) on Initial Common Departure Path

Table 10 - Safety Criteria for the Departures Concepts

The following are the Performance Mechanisms associated with Safety.

OSD (AO-0329): With the OSD system support, the accuracy of the spacing delivered between departure aircraft can be improved compared to what is achieved today. Improving spacing delivery accuracy can enable the consistent separation delivery to the wake separation rules, with a reduced level of 'under separation delivery' compared to what is achieved today which links to Safety. Controller reliance on the OSD system support should have no impact on Task Performance (i.e. Workload, Situational Awareness and User Acceptance). Overall workload should not increase. It is expected that any workload increase for some tasks will be offset as a result of the OSD system support and reduce workload in other areas, so no changes are anticipated to Safety. Situational Awareness is not expected to be impacted and thus no changes are anticipated on Safety.

PWS-D (AO-0323) and the support of OSD (AO-0329): With the OSD system support, the accuracy of the spacing delivered between departure aircraft can be improved compared to what is achieved today. Improved spacing delivery accuracy with the OSD system support can enable the improved separation delivery to the PWS-D rules, reducing the level of 'under separation delivery' compared to what is achieved today, thus enabling a safe reduction in the overall amount of wake separation that is required to be delivered, which links to Safety. Controller reliance on the OSD system support should have no impact on Task Performance (i.e. Workload, Situational Awareness and User Acceptance). Overall workload should not increase. It is expected that any workload increase for some tasks will be offset as a result of the OSD system support and reduce workload in other areas, so no changes are

⁸ RWY Collision risk model V2.0 08/04/2019

anticipated to Safety. Situational Awareness is not expected to be impacted and thus no changes are anticipated on Safety. Using PWS-D will not increase the frequency of potential WV encounters for a given wind and a given traffic pair compared to reference traffic pair at current standard operations in reasonable worst-case conditions. No increase in the frequency of potential WVEs compared to reference traffic pair at current standard operations in reasonable worst-case conditions. No increase in the frequency of potential WVEs compared to reference traffic pair at current standard operations in reasonable worst-case conditions, will not impact Safety Performance – links to Safety.

WDS-D (AO-0304) in the context of PWS-D (AO-0323) and the support of OSD (AO-0329): With the OSD system support, the accuracy of the spacing delivered between departure aircraft can be improved compared to what is achieved today. Improving spacing delivery accuracy with the OSD system support can enable the improved separation delivery to the WDS-D rules, reducing the level of 'under separation delivery' compared to what is achieved today, thus enabling a safe reduction in the overall amount of wake separation that is required to be delivered, which links to Safety. Controller reliance on the OSD system support should have no impact on Task Performance (i.e. Workload, Situational Awareness and User Acceptance). Overall workload should not increase. It is expected that any workload increase for some tasks will be offset as a result of the OSD system support and reduce workload in other areas, so no changes are anticipated to Safety. Using WDS-D will not increase the frequency of potential WV encounters for a given wind and a given traffic pair compared to reference traffic pair at current standard operations in reasonable worst-case conditions. No increase in the frequency of potential WVEs compared to reference traffic pair at current standard operations in reasonable worst-case conditions, will not impact Safety Performance – links to Safety.

4.3.2 Data collection and Assessment

The analysis conducted was as a result of RTS and hazard identification discussion along with end user workshops.

Functionality requirements have been identified along with high level integrity requirements. No shadow or live trials have been performed. Reference has been made to CREDOS[26] and whilst the requirements from that project are mentioned, they are included only for reference and it is recommended that they are referred to if local implementation is considered.

The safety assessment report does not replace any requirement for ANSPs to conduct bespoke safety cases when implementing the concept at local level.

Exercise ID, Name, Objective	Exercise Validation objective	Success criterion	Safety Criteria coverage	Validation results & Level of safety evidence
RTS04b - Conducted by EUROCONTROL to assess the operational feasibility of the static PairWise Separations departure concept	OBJ-PJ2.02- V3-VALP-SA5 To assess the impact of PWS- D with OSD on operational safety compared to	CRT-PJ2.01-V3- VALP-SA5-001 Check that safe standard controller working practices are employed for managing	D- SAC#F2, D- SAC#F4, D- SAC#F5,	No unsafe controller working practices were seen to be introduced by the OSD tool alone. However, due to the fact that the OSD tool was not taking into account the
(S-PWS) – wake turbulence	current operations	departures under PWS-D with OSD		arrivals on RWY28L, which could increase the

separations for departing aircraft based on static aircraft characteristics (AO- 0323) with Optimised Separation Delivery (OSD – AO-0329) for departure aircraft under partially segregated runway departure operations. RTS4b was conducted using the Paris CDG airport and approach environment.	vortex separation scheme for departures without OSD tool in partially	tool in partially segregated runway operations. Controllers' feedback and observations based on expert judgement indicate there is no increase in the potential for human error with safety implication due to the introduction of time based PWS-D with OSD tool for managing departures in partially segregated runway operations e.g. either in terms of the severity of existing possible human errors or introduction of new potential causes for human errors.	D- SAC#R3	potential for human error with safety implications, PWS-D with OSD in partially segregated runway operations is considered as <u>not</u> acceptable. The OSD tool needs to be developed further for partially segregated and mixed mode runway operations, to indicate to the TWR ATCO that the runway is in use by an arrival, which would stop the TWR ATCO from clearing a departure for line-up.
		CRT-PJ2.01-V3- VALP-SA5-002 The number* of minor under-separated aircraft on the Initial departure in operations is not higher under time based PWS-D with OSD tool to the reference scenario in partially segregated	D- SAC#F1, D- SAC#F2, D-SAC#F4	The number of minor and major under-separated aircraft on the initial departure path is not higher under time based PWS-D with OSD compared to the Solution 1 scenario (TB ICAO no OSD).

runway operations. *The number will be expressed as a percentage of the traffic sample of each exercise, for normalization needs. The number of major under- separated aircraft (to be defined) on the initial departure in partially segregated runway operations is reduced under time based PWS-D with OSD tool compared to the		
CRT-PJ2.01-V3- VALP-SA5-003 The number* of Departure-related Runway incursions in partially segregated runway operations is not higher under time based PWS-D with OSD compared to the reference scenario. *The number will be expressed as a percentage of the number of Departures (only	D- SAC#R3	There were no RWY incursions observed in the runs where PWS-D with the OSD tool was applied (i.e. Solution 2).

		occurrences involving conflicts with Departures will be counted).		
RTS5 – Conducted by NATS to assess the operational feasibility of the static PairWise Separations departure concept (S-PWS) – wake turbulence separations for departing aircraft based on static aircraft characteristics (AO- 0323) with Optimised Separation Delivery (OSD – AO-0329) for departure aircraft under partially segregated runway departure operations. RTS5 also assessed Weather- dependent separations for departures (WDS-D – AO-0304). RTS5 was conducted using the London Heathrow airport and approach environment.	impact of the use of OSD tool with RECAT-EU 6- CAT wake time separations on operational safety compared to current operations with no OSD tool	There is evidence that the level of safety is maintained and not negatively impacted in solution scenario versus reference scenario in terms of: -Safe controller working procedures and practices are employed for managing RECAT- EU 6-CAT wake time separations with OSD tool -Positive feedback from controllers on the safety level of the employed working procedures and practices -Potential for Human errors with safety implications are not increased -ATCOs do not issue take-off clearances such that following ac become airborne prior to the required SID departure separation time	SAC#D1 SAC#D2 SAC#D3 SAC#D5 SAC#D7	ATCOs provided positive feedback by either agreeing or strongly agreeing with the statement that the working procedures/practises under the OSD scenario are safe. No controller disagreed with the statement that the potential for human error is the same (low) as current operations in the OSD scenario. Some controllers highlighted the potential risk of over- relying on the tool as well as the risk of being mislead with the use of the word "NONE" on the NBAT even when a SID separation still applies. The OSD scenario runs show a minor change in the proportion of under- separated SID pairs compared to the matched reference scenario runs. However, there were still instances of SID under-separation during the OSD scenario.

There is evidence	SAC#D1	The OSD scenario runs
that OSD tool in	SAC#D2	show a reduction in the
the context of	SAC#D3	proportion of minor
RECAT-EU 6-CAT		under-separated wake
wake time	SAC#D5	pairs compared to the
separations for	SAC#D7	matched reference
departures does		scenario runs.
not increase the		The number of large
number of minor		under-separated wake
under-separations		pairs in the OSD scenario
and decreases the		runs was comparable to
number of large		the matched reference
under-separations		scenario runs.
(i.e. those with		
potential for		There were no
severe wake		occurrences of aborted
encounters)		take-offs or go-arounds in
compared to the		any of the matched runs.
reference		During 09R runs, no
scenarios in terms of:		TEAM arrivals were
-		observed to be
-Departure aircraft minor		constrained in the OSD
		scenario runs.
under-separations $(-, -, -, -, -, -, -, -, -, -, -, -, -, -$		
(= <10 s) are no more than in the		There were instances of
solution scenarios		under-separated wake
versus the		pairs indicating the take-
reference		off clearance was issued
scenario		such that the follower ac
-Departure		became airborne prior to
aircraft major		the NBAT.
under-separations		The OSD scenario runs
(>10 s) are less		show negligible change in
than in the		the proportion of under-
solution scenarios		separated SID pairs
versus the		compared to the
reference		matched reference
scenario		scenario runs. However,
-Number of		there were still instances
aborted take-off		of under-separated SID
-Number of go-		pairs indicating the take-
around for arrival		off clearance was issued
aircraft landing on		such that the follower ac
the departure		became airborne prior to
runway		the SID separation time.
-ATCOs do not		the ord separation time.
issue line up		
clearances such		
 clearances such		

that during TEAM	
arriving aircraft	
approaches are	
constrained	
-ATCOs do not	
issue take-off	
clearances such	
that following ac	
become airborne	
prior to the NBAT	
There is evidence	Same as above
that in OSD	
solution scenario	
with RECAT-EU 6-	
CAT wake time	
separations the	
probability of	
Departure-related	
Runway	
incursions is not	
higher than the	
reference	
scenario in terms	
of:	
-Departure	
aircraft minor	
under-separations	
(= <10 s) are no	
more than in the	
solution scenarios	
versus the	
reference	
scenario	
-Departure	
aircraft major	
under-separations	
(>10 s) are less	
than in the	
solution scenarios	
versus the	
reference	
scenario	
-Number of	
aborted take-off	
-Number of go-	
around for arrival	
aircraft landing on	
an crait idriving Off	

-Potential for Human errors with safety implications are not increased issue take-off scenario runs.The PWS-D scenario runs the proportion of under- separated SID pairs compared to the matched reference scenarioATCOS do not issue take-off clearances such that following ac become airborne prior to the separation timeSACMD1 SACMD2The PWS-D scenario runs show a refuction in the proportion of minor under-separation during the PWS-D scenario.There is evidence that PWS-D Stool for departure departures does number of minor under-separations and decrease the number of large under-separations and decreases the number of large under-separations and decreases the number of large under-separations and decreases the number of large under-separations and decreases the number of large under-separations (i.e. those with potential for severe wake encounters) compared to the reference scenario in terms of: -Departure aircraft minor under-separations (i = <10 s) are no more than in the solution scenarios versus the reference scenarioThere were no occurrence of aborted take-offs or go-arounds in any of the matched runs.There were instances of under-separations (i = <10 s) are no more than in the solution scenarios versus the reference scenarioThere were instances of under-separations compared to the costrained in the PWS-D scenario runs.There were istances of under-separations (i = <10 s) are no more than in the solution scenarios versus the reference (i >10 s) are less than in the solution scenarios versus the reference scenarioThere were instances of			
There is evidence that PWS-D with OSD tool for departures does number of minor under-separations and decreases the number of large under-separations (i.e. those with potential for severe wake encounters) compared to the reference sicenarios in terms of: -Departure aircraft minor under-separations (i < <10 s) are no more than in the solution scenariosSAC#D7 SAC#D7The PWS-D scenario runs show a reduction in the portion of minor under-separations (i.e. those with potential for scenarios in terms of: -Departure aircraft minor under-separations (i < <10 s) are no more than in the solution scenariosThe PWS-D scenario runs scenario runsThe number of large under-separations (i.e. those with potential for scenarios in terms of: -Departure aircraft minor under-separations (i < <10 s) are no more than in the solution scenarios versus the reference scenarioThe PWS-D scenario runsThe number of large under-separations (i.e. those with encounters)The number of large under-separations compared to the matched reference scenario runs.There was observed to be constrained in the PWS-D scenario under-separations (>10 s) are less (>10 s) are less (>10 s) are less than in the solution scenariosThere were instances of under-separations (>10 s) are less than in the solution scenariosNore than in the solution scenariosSolution scenarios (>10 s) are less than in the solution scenariosSolution scenarios than in the solution scenariosSolution scenarios than in the solution scenariosSolution scenarios than i	Human errors with safety implications are not increased -ATCOs do not issue take-off clearances such that following ac become airborne prior to the required SID departure		show a minor change in the proportion of under- separated SID pairs compared to the matched reference scenario runs. However, there were still instances of SID under-separation during the PWS-D
	There is evidence that PWS-D with OSD tool for departures does not increase the number of minor under-separations and decreases the number of large under-separations (i.e. those with potential for severe wake encounters) compared to the reference scenarios in terms of: -Departure aircraft minor under-separations (= <10 s) are no more than in the solution scenarios versus the reference scenario -Departure aircraft major under-separations (>10 s) are less than in the solution scenarios	SAC#D2 SAC#D3 SAC#D5	show a reduction in the proportion of minor under-separated wake pairs compared to the matched reference scenario runs. The number of large under-separated wake pairs in the PWS-D scenario runs was comparable to the matched reference scenario runs. There were no occurrences of aborted take-offs or go-arounds in any of the matched runs. During 09R runs, no TEAM arrivals were observed to be constrained in the PWS-D scenario runs. There were instances of under-separated wake off on the pairs any of the matched runs.

reference	The PWS-D scenario runs
scenario	show negligible change in
-Number of	the proportion of under-
aborted take-off	separated SID pairs
-Number of go-	compared to the
around for arrival	matched reference
aircraft landing on	scenario runs. However,
the departure	there were still instances
runway	of under-separated SID
-ATCOs do not	pairs indicating the take-
issue line up	off clearance was issued
clearances such	such that the follower ac
that during TEAM	became airborne prior to
arriving aircraft	the SID separation time.
approaches are	
constrained	
-ATCOs do not	
issue take-off	
clearances such	
that following ac	
become airborne	
prior to the NBAT	
There is evidence	Same as above
that in PWS-D	
solution scenario	
the probability of	
Departure-related	
Runway	
incursions is not	
higher than the	
reference	
scenario in terms	
of:	
-Departure	
aircraft minor	
under-separations	
(= <10 s) are no	
more than in the	
solution scenarios	
versus the	
reference	
scenario	
-Departure	
aircraft major	
under-separations	
(>10 s) are less	
than in the	
solution scenarios	
solution sechanos	

	1		
	versus the		
	reference		
	scenario		
	-Number of		
	aborted take-off		
	-Number of go-		
	around for arrival		
	aircraft landing on		
	the departure		
	runway		
	-ATCOs do not		
	issue line up		
	clearances such		
	that during TEAM		
	arriving aircraft		
	approaches are		
	constrained		
	-ATCOs do not		
	issue take-off		
	clearances such		
	that following ac		
	become airborne		
	prior to the NBAT		
	-ATCOs do not		
	issue take-off		
	clearances such		
	that following ac		
	become airborne		
	prior to the		
	required SID		
	departure		
	separation time		
To confirm the	There is evidence	SAC#D1	ATCOs provided positive
impact of	that the level of	SAC#D2	feedback by either
WDS-D	safety is	SAC#D3	agreeing or strongly
Crosswind	maintained and	SAC#D5	agreeing with the
concept on	not negatively		statement that the
operational	impacted in	SAC#D7	working
safety	solution scenario		procedures/practises
compared to	versus reference		under the WDS-D
current wake	scenario in terms		scenario are safe.
vortex	of:		No controllor discorregel
separation	-Safe controller		No controller disagreed
scheme	working		with the statement that
	procedures and		the potential for human
	practices are		error is the same (low) as
	employed for		current operations in the
	managing WDS-D		WDS-D scenario. Some
			controllers highlighted

I			
	in solution		the potential risk of over-
	scenario		relying on the tool as well
	improving the		as the risk of being
	level of safety		mislead with the use of
	respect to the		the word "NONE" on the
	reference		NBAT even when a SID
	scenarios		separation still applies.
	-Positive feedback		The WDS-D scenario runs
	from controllers		
	on the safety level		show a minor change in
	of the employed		the proportion of under-
	working		separated SID pairs
	procedures and		compared to the
	practices		matched reference
	-Potential for		scenario runs. However,
	Human errors		there were still instances
	with safety		of SID under-separation
	implications are		during the WDS-D
	not increased		scenario.
	-ATCOs do not		
	issue take-off		
	clearances such		
	that following ac		
	become airborne		
	prior to the		
	required SID		
	departure		
	separation time		
	There is evidence	SAC#D1	The WDS-D scenario runs
	that WDS-D		show a reduction in the
	separations for	SAC#D2	proportion of minor
	departures does	SAC#D3	under-separated wake
	not increase the	SAC#D5	pairs compared to the
	number of minor	SAC#D7	matched reference
	under-separations	JACTUI	scenario runs.
	and decreases the		
	number of large		There were no large
	under-separations		under-separated wake
	(i.e. those with		pairs in the WDS-D
	potential for		scenario runs.
	severe wake		
			There were no
	encounters)		occurrences of aborted
	compared to the		take-offs or go-arounds in
	reference		any of the matched runs.
	scenarios in terms		, During 09R runs, no
	of:		TEAM arrivals were
	-Departure		observed to be
	aircraft minor		

r		
	under-separations	constrained in the WDS-D
	(= <10 s) are no	scenario runs.
	more than in the	These sugar instances of
	solution scenarios	There were instances of
	versus the	under-separated wake
	reference	pairs indicating the take-
	scenario	off clearance was issued
	-Departure	such that the follower ac
	aircraft major	became airborne prior to
	under-separations	the NBAT.
	(>10 s) are less	
	· · ·	The WDS-D scenario runs
	than in the	show negligible change in
	solution scenarios	the proportion of under-
	versus the	separated SID pairs
	reference	compared to the
	scenario	matched reference
	-Number of	
	aborted take-off	scenario runs. However,
	-Number of go-	there were still instances
	around for arrival	of under-separated SID
	aircraft landing on	pairs indicating the take-
	the departure	off clearance was issued
		such that the follower ac
	runway	became airborne prior to
	-ATCOs do not	the SID separation time.
	issue line up	
	clearances such	
	that during TEAM	
	arriving aircraft	
	approaches are	
	constrained	
	-ATCOs do not	
	issue take-off	
	clearances such	
	that following ac	
	become airborne	
	prior to the NBAT	
	There is evidence	Same as above
	that in WDS-D	
	solution scenario	
	the probability of	
	Departure-related	
	Runway	
	incursions is not	
	higher than the	
	-	
	reference	
	scenario in terms	
	of:	

-Departure
aircraft minor
under-separations
(= <10 s) are no
more than in the
solution scenarios
versus the
reference
scenario
-Departure
aircraft major
under-separations
(>10 s) are less
than in the
solution scenarios
versus the
reference
scenario
-Number of
aborted take-off
-Number of go-
around for arrival
aircraft landing on
the departure
runway
-ATCOs do not
issue line up
clearances such
that during TEAM
arriving aircraft
approaches are
constrained
-ATCOs do not
issue take-off
clearances such
that following ac
become airborne
prior to the NBAT
-ATCOs do not
issue take-off
clearances such
that following ac
become airborne
prior to the
required SID
departure
separation time
separation time

4.3.3 Extrapolation to ECAC wide

The results obtained from the validation activities are for the moment limited to a specific set of operational environments, in terms of runway layout and configuration as well as in terms of traffic.

These results could be extrapolated to similar aerodromes in ECAC, meaning that the level of safety would not be degraded when applying the PJ.02-01-06 Departures concepts (even if not all abnormal and degraded modes have been assessed) at these types of aerodromes.

However, not enough evidence is available to extrapolate this statement to the rest of the environments outside the scope of the PJ.02-01-06 validation activities. The number of aerodromes to which this Solution could be applied while ensuring the level of safety is maintained needs then to be defined.

4.3.4 Discussion of Assessment Result

N/A

4.3.5 Additional Comments and Notes

No additional comments.

4.4 Environment: Fuel Efficiency / CO2 emissions

Often fuel efficiency is improved through a reduction of flight or taxi time. This time benefit is also assessed, in this section, as it is additional input for the business case.

4.4.1 Performance Mechanism

OSD (AO-0329): Optimised delivery of departure aircraft separations can reduce the average ground delay per flight. As ground delay uses more fuel (e.g. in case of ground holding), a reduction in this delay will result in reduced fuel burn on the ground. This has a positive impact on Fuel Efficiency.

PWS-D (AO-0323) and the support of OSD (AO-0329): The use of PWS-D Reducing the wake departure aircraft separations will reduce the average ground delay per flight. As ground delay uses more fuel

(e.g. in case of ground holding), a reduction in this delay will result in reduced fuel burn on the ground. This has a positive impact on Fuel Efficiency.

WDS-D (AO-0304) in the context of PWS-D (AO-0323) and the support of OSD (AO-0329): The use of WDS-D reducing the wake departure aircraft separations will reduce the average ground delay per flight. As ground delay uses more fuel (e.g. in case of ground holding), a reduction in this delay will result in reduced fuel burn on the ground. This has a positive impact on Fuel Efficiency.

4.4.2 Assessment Data (Exercises and Expectations)

The following results are taken from the RTS5 validation exercise (with a Heathrow traffic mix):

- AO-0329 (OSD) results showed an average 0.40 minutes reduction per flight in taxi-out time for RECAT-EU departure wake separations;
- AO-0323 (PWS-D) results showed an average 0.70 minutes reduction per flight in taxi-out time when compared to a reference scenario of RECAT-EU departure separation;
- AO-0304 (WDS-D) results in the context of PWS-D showed an average 0.50 minutes reduction1 per flight in taxi-out time when compared to a reference scenario of RECAT-EU departure wake separations.

The following results are taken from the RTS6 validation exercise (with a Barcelona traffic mix):

- AO-0323 (PWS-D) results showed on average:
 - 2.36 minutes reduction per flight in taxi-out time, when compared to a reference scenario of ICAO departure wake separations;
 - 0.32 minutes reduction per flight in taxi-out time, when compared to a reference scenario of RECAT-EU departure wake separations.

4.4.3 Extrapolation to ECAC wide

The following PJ.19 common assumptions have been used:

- Taxi Fuel burn rate = 900 kg/hour = 15kg/minute,
- Average fuel burn per flight = 4800kg,
- High density airports traffic contribution to total airport traffic = 59.5%
- Departures traffic contribution to total traffic = 50%
- CO₂/Fuel ratio = 3.15
- Average ECAC flight time = 1.5 hours = 90 minutes

The following methodology describes how the FEFF1, FEFF2 and FEFF3 metrics were obtained for <u>AO-0329 (OSD)</u>:

- 1.) Taxi-time reduction per flight (RTS5 validation exercise result) = 0.40 minutes
- 2.) Flight time reduction (FEFF3) at ECAC level = 50% (departure traffic contribution) * 59.5% (high density airports traffic contribution) * 0.40 minutes (taxi-time reduction per flight) = 0.12 minutes
- **3.)** Relative flight time reduction at ECAC level = 0.12 minutes (flight time reduction at ECAC level) * 90 minutes (average ECAC flight time) * 100 = 0.13%

- 4.) Fuel consumption reduction per flight = 15 kg/minute (taxi fuel burn rate) *0.40 minutes (taxi time reduction per flight) = 6.00 kg
- 5.) Fuel consumption reduction (FEFF1) at ECAC level = 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) * 6.00 kg (fuel consumption reduction) = 1.79 kg
- 6.) Relative fuel consumption reduction at ECAC level = 1.79 kg (fuel consumption reduction at ECAC level) /4800 kg (average fuel burn per flight) * 100 = 0.04%
- 7.) CO₂ emission reduction (FEFF2) at ECAC level = 1.79 kg fuel consumption reduction at ECAC level * 3.15 (CO₂/Fuel ratio) = 5.62 kg
- 8.) Relative CO₂ consumption reduction at ECAC level = 5.62kg (CO₂ consumption reduction at ECAC level) / [4800 kg (average fuel burn per flight) * 3.15 (CO₂/Fuel ratio)] * 100 = 0.04%

The following methodology describes how the FEFF1, FEFF2 and FEFF3 metrics were obtained for <u>AO-</u><u>0323 (PWS-D)</u>, when compared to a reference scenario of ICAO departure wake separations:

- 1.) Taxi-time reduction per flight (RTS5 validation exercise result) = 2.36 minutes
- 2.) Flight time reduction (FEFF3) at ECAC level = 50% (departure traffic contribution) * 59.5% (high density airports traffic contribution) * 2.36 minutes (taxi-time reduction per flight) = 0.7 minutes
- 3.) Relative flight time reduction at ECAC level = 0.7 minutes (flight time reduction at ECAC level)
 * 90 minutes (average ECAC flight time) * 100 = 0.78%
- 4.) Fuel consumption reduction per flight = 15 kg/minute (taxi fuel burn rate) *2.36 minutes (taxi time reduction per flight) = 35.4 kg
- 5.) Fuel consumption reduction (FEFF1) at ECAC level = 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution)*35.4 kg (fuel consumption reduction) = 10.53 kg
- 6.) Relative fuel consumption reduction at ECAC level = 10.53kg (fuel consumption reduction at ECAC level) /4800 kg (average fuel burn per flight) * 100 = 0.22%
- 7.) CO₂ emission reduction (FEFF2) at ECAC level = 10.53 kg fuel consumption reduction at ECAC level * 3.15 (CO₂/Fuel ratio) = 33.18 kg
- Relative CO₂ consumption reduction at ECAC level = 33.18kg (CO₂ consumption reduction at ECAC level) /[4800 kg (average fuel burn per flight)* 3.15 (CO₂/Fuel ratio)] * 100 = 0.22%

The following methodology describes how the FEFF1, FEFF2 and FEFF3 metrics were obtained for <u>AO-0323 (PWS-D)</u>, when compared to a reference scenario of RECAT-EU departure wake separations:

Aggregation

1.) Taxi-time reduction per flight = 0.7 (RTS5) + 0.32 (RTS6)/2 = 0.51 minutes

Extrapolation of Aggregated results

- 1.) Taxi-time reduction per flight = 0.51 minutes
- 2.) Flight time reduction (FEFF3) at ECAC level = 50% (departure traffic contribution) * 59.5% (high density airports traffic contribution) * 0.51 minutes (taxi-time reduction per flight) = 0.15 minutes
- **3.)** Relative flight time reduction at ECAC level = 0.15 minutes (flight time reduction at ECAC level) * 90 minutes (average ECAC flight time) * 100 = 0.17%
- 4.) Fuel consumption reduction per flight = 15 kg/minute (taxi fuel burn rate) *0.51 minutes (taxi time reduction per flight) = 7.65kg
- 5.) Fuel consumption reduction (FEFF1) at ECAC level = 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) * 7.65 kg (fuel consumption reduction) = 2.28 kg
- 6.) Relative fuel consumption reduction at ECAC level = 2.28 kg (fuel consumption reduction at ECAC level) /4800 kg (average fuel burn per flight) * 100 = 0.05%
- 7.) CO₂ emission reduction (FEFF2) at ECAC level = 2.28 kg fuel consumption reduction at ECAC level * 3.15 (CO₂/Fuel ratio) = 7.17 kg
- 8.) Relative CO_2 consumption reduction at ECAC level = 7.17 kg (CO_2 consumption reduction at ECAC level) /[4800 kg (average fuel burn per flight)* 3.15 (CO_2 /Fuel ratio)] * 100 = 0.05%

The following methodology describes how the FEFF1, FEFF2 and FEFF3 metrics were obtained for <u>AO-0304 (WDS-D)</u>:

- 1.) Taxi-time reduction per flight (RTS5 validation exercise result) = 0.50 minutes
- 2.) Flight time reduction (FEFF3) at ECAC level = 50% (departure traffic contribution) * 59.5% (high density airports traffic contribution) * 0.50 minutes (taxi-time reduction per flight) = 0.15 minutes
- 3.) Relative flight time reduction at ECAC level = 0.15 minutes (flight time reduction at ECAC level)
 * 90 minutes (average ECAC flight time) * 100 = 0.17%
- 4.) Fuel consumption reduction per flight = 15 kg/minute (taxi fuel burn rate) *0.50 minutes (taxi time reduction per flight) = 7.50 kg
- 5.) Fuel consumption reduction (FEFF1) at ECAC level = 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) * 7.50 kg (fuel consumption reduction) = 2.23 kg
- 6.) Relative fuel consumption reduction at ECAC level = 2.23 kg (fuel consumption reduction at ECAC level) /4800 kg (average fuel burn per flight) * 100 = 0.05%
- 7.) CO₂ emission reduction (FEFF2) at ECAC level = 2.23 kg fuel consumption reduction at ECAC level * 3.15 (CO₂/Fuel ratio) = 7.03 kg
- 8.) Relative CO₂ consumption reduction at ECAC level = 7.03kg (CO₂ consumption reduction at ECAC level) / [4800 kg (average fuel burn per flight) * 3.15 (CO₂/Fuel ratio)] * 100 = 0.05%

The following table summarises the results for each OI step. Please provide validation results or initial estimation of the Solution's performance in SESAR2020 (horizon 2035, compared to 2012 extrapolated to ECAC wide). (Please use the metrics stated below)

KPIs / PIs	Unit	Calculation	Mandatory	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
FEFF1 Actual Average fuel burn per flight	Kg fuel per movement	Total amount of actual fuel burn divided by the number of movements	YES	the context of PWS-D (AO-0323) = 2.23 kg reduction ¹ in fuel consumption per flight at ECAC level, compared to RECAT-	reduction in fuel

KPIs / PIs	Unit	Calculation	Mandatory	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
				support, with a Heathrow traffic mix.	support, with a Heathrow traffic mix.
FEFF2 Actual Average CO ₂ Emission per flight	Kg CO2 per flight	Amount of fuel burn x 3.15 (CO ₂ emission index) divided by the number of flights	YES	the context of PWS-D (AO-0323) = 7.03 kg reduction ¹ in CO ₂	(AO-0323) = 0.05% reduction in in CO ₂
				(AO-0323) = 7.03 kg	(AO-0323) = 0.05% reduction in in CO ₂

KPIs / PIs	Unit	Calculation	Mandatory	Absolute expected performance benefit in SESAR2020	
FEFF3 Reduction in average flight duration	Minutes per flight	Average actual flight duration measured in the Reference Scenario – Average flight duration measured in the Solution Scenario	YES	(AO-0323) = 0.15	AO-0329 (OSD) = 0.13% reduction in flight duration per flight at ECAC level, compared to RECAT- EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): - 0.78% reduction in flight duration per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; - 0.34% reduction in flight duration per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. AO-0304 (WDS-D) in the context of PWS-D (AO-0323) = 0.17% reduction 1 in flight duration per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.

Table 11: Fuel burn and CO2 emissions saving for Mandatory KPIs /Pis

	Taxi out	TMA departure	En- route	TMA arrival	Taxi in
FEFF1 Actual Average fuel burn per flight	 AO-0329 (OSD) = 1.79 kg reduction in fuel consumption per flight at ECAC level compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): 10.53kg reduction in fuel consumption per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 2.28kg reduction in fuel consumption per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. AO-0304 (WDS-D) in the context of PWS-D = 2.23 kg reduction¹ in fuel consumption per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	N/A	N/A	N/A	N/A
FEFF2 Actual Average CO ₂ Emission per flight	 AO-0329 (OSD) = 5.62 kg reduction in CO₂ emissions per flight at ECAC level, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix, compared to RECAT-EU without OSD tool support. AO-0323 (PWS-D): 33.18 kg reduction in CO₂ emissions per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 7.17 kg reduction in CO₂ emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. AO-0304 (WDS-D) in the context of PWS-D = 7.03 kg reduction¹ in CO₂ emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	N/A	N/A	N/A	N/A
FEFF3 Reduction in average flight duration	 AO-0329 (OSD) = 0.12 minutes reduction in flight duration (taxi-out time) per flight at ECAC level, compared to RECAT- EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): 0.7 minutes reduction in flight duration (taxi-out time) per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 0.31 minutes reduction in flight duration (taxi-out time) per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. AO-0304 (WDS-D) in the context of PWS-D (AO-0323) = 0.15 minutes reduction¹ in flight duration (taxi-out time) 	N/A	N/A	N/A	N/A

 per flight at ECAC level, compared to RECAT-EU without		
OSD tool support, with a Heathrow traffic mix.		

Table 12: Fuel burn and CO2 emissions saving per flight phase.

4.4.4 Discussion of Assessment Result

The fuel efficiency results show a reduction in taxi-out time in each of the OI steps due to increased departure throughputs and hence reduced delays. There is low confidence in these results.

4.4.5 Additional Comments and Notes

No additional comments.

4.5 Airport Capacity (Runway Throughput Flights/Hour)

4.5.1 Performance Mechanism

OSD (AO-0329): With the OSD system support, the accuracy of the spacing delivered between departure aircraft can be improved compared to what is achieved today. Improving spacing delivery accuracy can reduce the level of 'over spacing delivery' compared to what is achieved today, thus enabling the efficient reduction of the overall amount of wake separation that is required to be delivered, which links to Capacity. The use of OSD is expected to optimise the delivery of departure aircraft separations and thus increasing runway throughput. Optimised spacing delivery between departure aircraft has a positive impact on the runway throughput. The higher the departure aircraft throughput, the higher the number of departure aircraft movements, leading to a positive impact on Capacity.

PWS-D (AO-0323) and the support of OSD (AO-0329): The use of PWS-D is expected to reduce wake separation between departure aircraft. OSD is expected to optimise the accuracy of the spacing delivered between departure aircraft. The reduced wake separations and optimised spacing delivery increases the runway throughput. PWS-D reduces wake separation and OSD Optimised spacing delivery accuracy between departure aircraft has a positive impact on the runway throughput. The higher the departure aircraft throughput, the higher the number of departure aircraft movements, leading to a positive impact on Capacity. Improved spacing delivery accuracy with the OSD system support can enable the improved separation delivery to the PWS-D rules, reducing the level of 'over spacing delivery' compared to what is achieved today, thus enabling the efficient reduction of the overall amount of wake separation that is required to be delivered, which links to Capacity.

WDS-D (AO-0304) in the context of PWS-D (AO-0323) and the support of OSD (AO-0329): The use of WDS-D (e.g. for WDS based on crosswind when crosswind is above the activation threshold) is expected to reduce wake separation between departure aircraft. OSD is expected to optimise the accuracy of the spacing delivered between departure aircraft. The reduced wake separations and optimised spacing delivery increasing the runway throughput. WDS-D reduced wake separation and OSD optimised spacing delivery accuracy between departure aircraft has a positive impact on the runway throughput. The higher the departure aircraft throughput, the higher the number of departure aircraft movements, leading to a positive impact on Capacity. Improving spacing delivery accuracy with the OSD system support can enable the improved separation delivery to the WDS-D rules, reducing the level of 'over spacing delivery' compared to what is achieved today, thus enabling the

efficient reduction of the overall amount of wake separation that is required to be delivered, which links to Capacity.

4.5.2 Assessment Data (Exercises and Expectations)

The following results were taken from the RTS5 validation exercise (with a Heathrow traffic mix) that assessed departure throughput in segregated mode operations:

- OSD (AO-0329) showed on average a 1.0% increase in departure throughput, which equates to a 0.6 increase in departure movements per hour, compared to RECAT-EU without OSD tools support;
- PWS-D (AO-0323) showed on average a 2.0% increase in departure throughput, which equates to a 1.1 increase in departure movements per hour, compared to RECAT-EU without OSD tools support;
- WDS-D (AO-0304) in the context of PWS-D (AO-0323) showed on average a 0.1% increase¹ in departure throughput, which equates to a 0.05 increase in departure movements per hour, compared to RECAT-EU without OSD tools support.

The following results were taken from the RTS6 validation exercise (with a Barcelona traffic mix) that assessed departure throughput in segregated mode operations:

- PWS-D (AO-0323) showed on average:
 - A 8.65% increase in departure throughput, which equates to a 3.9 increase in departure movements per hour, when compared to a reference of ICAO departure wake separations;
 - A 2.81% increase in departure throughput, which equates to a 1.3 increase in departure movements per hour, when compared to a reference of RECAT-EU departure wake separations.

Aggregation of Results for PWS-D

1.) Peak Departure throughput per hour (Segregated mode) (CAP3.1) = 1.1 (RTS5) + 1.3 (RTS6)/2 = 1.2

KPIs / Pis	Unit	Calculation	Mandatory	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
CAP3 Peak Runway Throughput (Mixed mode)	% and Flight per hour	% and also total number of movements per one runway per one hour for specific traffic mix and density (in mixed mode RWY operations). The percentage change is measured against the maximum observed throughput during peak demand hours in the mixed-mode RWY operations airports group.	YES	Mixed Mode not assessed in RTS5/RTS6.	Mixed Mode not assessed in RTS5/RTS6.
CAP3.1 Peak Departure throughput per hour	% and Flight per hour			OSD (AO-0329) – 0.6 increase in departure movements per hour, compared	OSD (AO-0329) – 1.0% increase in departure movements per hour, compared

KPIs / Pis U	Unit	Calculation	Mandatory	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
(Segregated mode)		measured against the maximum observed throughput during peak demand hours in the segregated- mode RWY operations airports group.		to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix.	to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix.
				PWS-D (AO- 0323):	PWS-D (AO- 0323):
				 3.92 increase in departure movements per hour, compared to ICAO without OSD tools support, with a Barcelona traffic mix; 1.2 increase in departure movements per hour, compared to RECAT-EU without OSD tool support, with Heathrow and Barcelona traffic mixes. WDS-D (AO-0304) in the context of PWS-D (AO-0323) - 0.05 increase¹in departure movements per hour, compared to RECAT-EU without OSD tool 	 8.65% increase in departure movements per hour, compared to ICAO without OSD tools support, with a Barcelona traffic mix; 2.41% increase in departure movements per hour, compared to RECAT-EU without OSD tool support, with Heathrow and Barcelona traffic mixes. WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.1% increase¹ in departure

KPIs / Pis	Unit	Calculation	Mandatory	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
CAP3.2 Peak Arrival throughput per hour (Segregated mode)	% and	% and also total number of arrivals per one runway per one hour for specific traffic mix and density (in segregated mode of operations). The percentage change is measured against the maximum observed throughput during peak demand hours in the segregated- mode RWY operations airports group.		N/A	N/A
CAP4 Un- accommodated traffic reduction	Flights/year	Reduction in the number of un- accommodated flights i.e. a flight that would have been scheduled if there were available slots at the origin/destination airports. NB: Supports CBA Inputs. NB: Relates to Airport Capacity because this is STATFOR computation. CBA calculate this based on the assessment of the runway throughput we provide with and without the solutions and STATFOR data.	YES For CBA.	OSD (AO-0329) – 0.6 reduction in un- accommodated departures per hour, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323) – 1.1 reduction in un- accommodated departures per hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.05 reduction ¹ in un- accommodated departures per hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	0304) in the context of PWS-D (AO-0323) – 0.05 reduction¹ in un- accommodated departures per hour, compared to RECAT-EU without OSD tool support, with a

Table 13: Airport Capacity for Mandatory KPIs /Pis

4.5.3 Extrapolation to ECAC wide

There is no ECAC wide extrapolation required for this KPI.

4.5.4 Discussion of Assessment Result

Varying performance between runs for some controllers led to unexpected departure throughput results. It was expected that AO-0329 (OSD) would bring negligible benefit due to keeping the wake separation scheme the same. AO-0304 (WDS-D) was expected to have a benefit in-line with AO-0323 (PWS-D) but it shows a smaller benefit. However, because of low departure throughput in the reference scenario the OSD and PWS-D throughputs are higher. Also, controllers noted during WDS-D runs that they were sequencing departures to try to achieve a reduced WDS-D separation, which may have not been the most optimal departure sequence. Hence, the WDS-D benefits showed a lower benefit than PWS-D. Therefore, it is recommended that validation exercises are conducted in the local environment to determine the benefits.

Following RTS5, consideration of 12 months' (April 2018-March 2019) worth of historical data was also used to investigate the potential benefits of PWS-D and WDS-D, local to London Heathrow[27]. In particular, this work intended to add insight to the RTS5 findings, to widen consideration via modelling and analysis of the Heathrow traffic beyond the four traffic samples deployed in RTS5.

Four cases were used in the analysis:

	SID pair constraint applied?	Crosswind constraint applied?
First Unconstrained Case	No	No
First Constrained Case	No	Yes
Second Unconstrained Case	Yes	No
Second Constrained Case	Yes	Yes

 Table 14: Summary of differences between the cases for WDS-D in the context of PWS-D

Greater gains are anticipated with the introduction of PWS-D in the context of RECAT-EU, compared with the introduction of WDS-D in the context of PWS-D. Table 15 summarises the model results for each solution, and for the unconstrained and constrained cases.

	PWS-D in the context of RECAT-EU	WDS-D in the context of PWS- D
First Unconstrained Case	11m 52s	9m 23s
First Constrained Case	9m 50s	1m 58s
Second Unconstrained Case	Not applicable	2m 55s
Second Constrained Case	Not applicable	0m 36s

Table 15: Summary breakdown of potential gains by solution (gains measured in minutes and seconds per day) from additional capacity analysis

For both solutions it is observed that the anticipated gains are not uniform through the day but are expected to be less at the beginning and end of the operational day, corresponding to hours when there are less wake pairs within the traffic mix. The pairing CAT-B – CAT-D, Heavy – Medium, is the category pairing expected to give rise to the greatest potential gain for both solutions.

The level of potential benefits with WDS-D is dependent on the weather conditions, as a sufficient crosswind on departure is required, and how often the reduced WDS-D wake separation would apply.

Further data is available in the full report[27].

4.5.5 Additional Comments and Notes

No additional comments.

4.5.6 Resilience (% Loss of Airport & Airspace Capacity Avoided)

4.5.6.1 Performance Mechanism

The increase in departure throughput discussed above may be used for resilience rather than extra capacity. The increase in departure throughput could help reduce the % loss of airport capacity and so result in improved resilience.

4.5.6.2 Assessment Data (Exercises and Expectations)

The loss of airport capacity avoided has been assumed to directly correspond to the increase in departure throughput results above.

The following results were taken from the RTS5 validation exercise (with a Heathrow traffic mix) which assessed departure throughput in segregated mode operations.

- OSD (AO-0329) showed a 1.0% increase in departure throughput compared to RECAT-EU without OSD tools support, which equates to a 0.6 increase in departure movements per hour;
- PWS-D (AO-0323) showed a 2.0% increase in departure throughput compared to RECAT-EU without OSD tools support, which equates to a 1.1 increase in departure movements per hour;
- WDS-D (AO-0304) in the context of PWS-D (AO-0323) showed a 0.1% increase¹ in departure throughput compared to RECAT-EU without OSD tools support, which equates to a 0.05 increase in departure movements per hour.

Pis	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
RES1 Loss of Airport Capacity Avoided	% and Movements per hour	Loss of Airport Capacity with the concept divided by the loss of Airport Capacity without the concept.	YES	N/A	OSD (AO-0329) – 0.6 departure movements per hour loss of capacity avoided, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323) – 1.1 departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.05¹ departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323) – 0.05¹ departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	OSD (AO-0329) – 1.0% departure movements per hour loss of capacity avoided, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323) – 2.0% departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.1% ¹ departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.
RES 1.1 Airport time to recover from non-nominal to nominal condition	Minutes	Duration of Airport lost capacity from non-nominal to nominal condition.	YES for Airport OE Solutions	N/A	Not assessed in RTS5/RTS6.	Not assessed in RTS5/RTS6.
RES2 Loss of Airspace Capacity Avoided	% and Movements per hour	Loss of Airspace Capacity with the concept divided by the loss of Airspace Capacity without the concept	YES	N/A	N/A	N/A

PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
RES2.1 Airspace time to recover from non- nominal to nominal condition	Minutes	Duration of Airspace lost capacity compared to non- nominal to nominal condition.	YES for Airspace OE Solutions	N/A	N/A	N/A
RES4 Minutes of delays	Minutes	Impact on AUs measured through delays resulting from capacity degradation RES1 and RES2 KPIs drive this PI, though the PI may need to be measured on a condition-by- condition basis (e.g. fog, wind, system outage).	YES	N/A	Not assessed in RTS5/RTS6.	Not assessed in RTS5/RTS6.
RES5 Number of cancellations	Nb flights	Impact on AUs measured through Cancellations resulting from capacity degradation. RES1 and RES2 KPIs drive this PI, though the PI may need to be measured on a condition-by- condition basis (e.g. fog, wind, system outage).	YES	N/A	Not assessed in RTS5/RTS6.	Not assessed in RTS5/RTS6.

4.5.6.3 Extrapolation to ECAC wide

There is no ECAC wide extrapolation required for this KPI.

4.5.6.4 Discussion of Assessment Result

% loss in capacity avoided has been assumed to directly relate to the increase in departure throughput from each of the OI steps. It would be up to individual airports to decide whether to use the increase in throughput to increase airport capacity (schedule extra movements) or improve resilience (not schedule extra movements).

4.5.6.5 Additional Comments and Notes

No additional comments.

4.6 Predictability

4.6.1 Performance Mechanism

AO-0329 (OSD) leads to optimised delivery of departure aircraft separations, and AO-0323 (PWS-D) and AO-0304 (WDS-D) leads to reduced wake departure aircraft separations, hence reducing the average ground delay per flight. This will result in less variability between the planned and actual departure time, and departures flying closer to their planned time which will improve on-time operations, and so improves predictability.

4.6.2 Assessment Data (Exercises and Expectations)

The following results are taken from the RTS5 validation exercise (with a Heathrow traffic mix).

- AO-0329 (OSD) results showed an average 11.1% reduction in taxi-out time variability compared to RECAT-EU without OSD tools support;
- AO-0323 (PWS-D) results showed an average 11.1% reduction in taxi-out time variability compared to RECAT-EU without OSD tool support.
- AO-0304 (WDS-D) in the context of PWS-D (AO-0323) results showed an average 8.1% reduction in taxi-out time variability compared to RECAT-EU without OSD tools support.

The following results are taken from the RTS6 validation exercise (with a Barcelona traffic mix):

- AO-0323 (PWS-D) results showed on average:
 - 39.7% reduction in taxi-out time variability, when compared to a reference scenario of ICAO departure wake separations;
 - 5.3% reduction in taxi-out time variability, when compared to a reference scenario of RECAT-EU departure wake separations.

4.6.3 Extrapolation to ECAC wide

The following PJ.19 common assumptions have been used:

- High density airports traffic contribution to total airport traffic = 59.5%
- Departures traffic contribution to total traffic = 50%
- B2B variance = 49.0 mins^2
- Taxi-out contribution to variability = 40%

The following methodology describes how the PRD1metric was obtained for AO-0329 (OSD):

- 1.) Current Taxi-Out time Variance = 49.0 min² (B2B variance) * 40% (taxi-out contribution to variability) = 19.60 min²
- 2.) Current Taxi-Out time Standard Deviation = sqrt (19.6 mins² (current taxi out time variance))= 4.43 minutes

- 3.) Improved Absolute Standard Deviation = 4.43 minutes (current taxi-out time variability) * (100-11.1% reduction in taxi-out variability) = 3.94 minutes
- 4.) Improved Absolute Variance = 4.43 minutes (current taxi out time variability) ^2 = 15.49 mins^2
- 5.) Absolute Difference in Variance = 15.49 mins² (improved absolute variance) 19.6 mins² (current taxi-out time variance) = -4.11mins²
- 6.) Absolute Predictability difference (PRD1) at ECAC level = -4.11 mins^2 (absolute difference in variance) * 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) = -1.22 mins^2
- 7.) Relative Predictability difference at ECAC level = -1.22 mins^2 (absolute predictability benefit at ECAC level) / 49.0 mins^2 (B2B variance) * 100 = -2.50%

The following methodology describes how the PRD1metric was obtained for <u>AO-0323 (PWS-D)</u>, when compared to a reference scenario of ICAO departure wake separations:

- 1.) Current Taxi-Out time Variance = 49.0 min² (B2B variance) * 40% (taxi-out contribution to variability) = 19.60 min²
- 2.) Current Taxi-Out time Standard Deviation = sqrt (19.6 mins² (current taxi out time variance))= 4.43 minutes
- 3.) Improved Absolute Standard Deviation = 4.43 minutes (current taxi-out time variability) * (100-39.7% reduction in taxi-out variability) = 2.67 minutes
- 4.) Improved Absolute Variance = minutes (current taxi out time variability) ^2 = 7.13 mins^2
- 5.) Absolute Difference in Variance = 7.13mins² (improved absolute variance) 19.6 mins²(current taxi-out time variance) = -12.47mins²
- 6.) Absolute Predictability difference (PRD1) at ECAC level = -12.47 mins^2 (absolute difference in variance) * 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) = -3.71 mins^2
- 7.) Relative Predictability difference at ECAC level = -1.22 mins^2 (absolute predictability benefit at ECAC level) / 49.0 mins^2 (B2B variance) * 100 = -7.57%

The following methodology describes how the PRD1metric was obtained for <u>AO-0323 (PWS-D)</u>, when compared to a reference scenario of RECAT-EU departure wake separations:

Aggregation

1.) Reduction in taxi-out time variability (PRD1) at ECAC level = 11.1 (RTS5) + 5.3 (RTS6)/2 = 8.2%

Extrapolation of Aggregated results

1.) Current Taxi-Out time Variance = 49.0 min² (B2B variance) * 40% (taxi-out contribution to variability) = 19.60 min²

- 2.) Current Taxi-Out time Standard Deviation = sqrt (19.6 mins² (current taxi out time variance))= 4.43 minutes
- 3.) Improved Absolute Standard Deviation = 4.43 minutes (current taxi-out time variability) * (100-8.2% reduction in taxi-out variability) = 4.06 minutes
- 4.) Improved Absolute Variance = 4.06 minutes (current taxi out time variability) ^2 = 16.52 mins^2
- 5.) Absolute Difference in Variance = 16.52 mins² (improved absolute variance) 19.6 mins² (current taxi-out time variance) = -3.08mins²
- 6.) Absolute Predictability difference (PRD1) at ECAC level = -3.08mins² (absolute difference in variance) * 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) = -0.92 mins²
- 7.) Relative Predictability difference at ECAC level = -0.92 mins^2 (absolute predictability benefit at ECAC level) / 49.0 mins^2 (B2B variance) * 100 = -1.87%

The following methodology describes how the PRD1metric was obtained for AO-0304 (WDS-D):

- 1.) Current Taxi-Out time Variance = 49.0 min² (B2B variance) * 40% (taxi-out contribution to variability) = 19.60 min²
- 2.) Current Taxi-Out time Standard Deviation = sqrt (19.6 mins² (current taxi out time variance)) = 4.43 minutes
- 3.) Improved Absolute Standard Deviation = 4.43 minutes (current taxi-out time variability) * (100-8.1% reduction in taxi-out variability) = 4.07 minutes
- 4.) Improved Absolute Variance = 4.07 minutes (current taxi out time variability) 2 = 16.55 mins²
- 5.) Absolute Difference in Variance = 16.55 mins² (improved absolute variance) 19.6 mins²(current taxi-out time variance) = -3.05mins²
- 6.) Absolute Predictability difference (PRD1) at ECAC level = -3.05 mins^2 (absolute difference in variance) * 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) = -0.91 mins^2
- 7.) Relative Predictability difference at ECAC level = -0.91 mins^2 (absolute predictability benefit at ECAC level) / 49.0 mins^2 (B2B variance) * 100 = -1.85%

KPIs / PIs	Unit	Calculation	Mandatory	Absolute expected performance benefit in SESAR2020	
PRD1 Variance of Difference in actual & Flight Plan or RBT durations	Minutes ²	Variance of Difference in actual & Flight Plan or RBT durations	YES	the context of PWS-D (AO-0323) = 0.91	variability, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): 7.57% reduction in flight duration variability, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 1.87% reduction in flight duration variability, compared to RECAT-EU without OSD tool support, with Heathrow and Barcelona traffic mixes. AO-0304 (WDS-D) in the context of PWS- D (AO-0323) = 1.85% reduction in flight duration variability, compared to RECAT- EU without OSD tool support, with a

Table 16: Predictability benefits for Mandatory KPIs /PIs

Table 17 is showing the impact on flight phases (provided when it is possible).

	Taxi out	TMA departure	En- route	TMA arrival	Taxi in
PRD1	AO-0329 (OSD) = 1.22mins^2 reduction in flight	N/A	N/A	N/A	N/A
Variance of Difference in actual &	duration variability, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix.				

Flight Plan or RBT durations	AO-0323 (PWS-D):		
	 3.71mins² reduction in flight duration variability, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 1.76 mins² reduction in flight duration variability, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 		
	AO-0304 (WDS-D) in the context of PWS-D (AO-0323) = 0.91 mins^2 reduction in flight duration variability, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.		

Table 17: Predictability benefit per flight phase

4.6.4 Discussion of Assessment Result

The results show an improvement in predictability due to reduce ground delays as a result of improved departure throughput. There is low confidence in the results.

4.6.5 Additional Comments and Notes

No additional comments.

4.7 Human Performance

4.7.1 HP arguments, activities and metrics

PIs	Activities & Metrics	Second level indicators	Covered
HP1 Consistency of human role with respect to human capabilities and limitations	Partner workshop Pre-RTS5 end- user workshop RTS5 Post-RTS5 partner/end- user workshop Structured interviews, observations,	HP1.1 Clarity and completeness of role and responsibilities of human actors Tower controllers indicated that procedures and practices within their roles are clear to them. Qualitative and quantitative data taken during the listed activities have been processed and results fall within the desired areas. As controller responsibilities for the separation of departing A/C remain the same only with the addition of an automated element, a WL-benefit in a form of a more efficient time-management has been observed. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs)	Yes
	WL, SA, UA scales, tailored HP scales	HP1.2 Adequacy of operating methods (procedures) in supporting human performance The role of a Tower Supervisor, esp. in AO-0304 (WDS-D) hasn't been assessed thoroughly and remains a requirement for the next stages of the project to analyse	Yes/Open

Pls	Activities & Metrics	Second level indicators	Covered
		For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs) HP1.3 Capability of human actors to achieve their tasks in a timely manner, with limited error rate and acceptable workload level Workload data collected during the assessment activities for all OI show acceptable values. HE rates have been reported as slightly higher WRT controller omitting to take SID information into consideration of the separation between departing A/C, where SID separation is not a part of the tool-provided figure. Appropriate mitigations have been produced in a form of Recommendations and Requirements.	Yes
		For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs) HP2.1	
HP2 Suitability of technical system in supporting the tasks of human actors Partner workshop Pre-RTS5 end- user workshop RTS5 Post-RTS5 partner/end- user workshop Structured interviews, observations, tailored HMI	Adequacy of allocation of tasks between the human and the machine (i.e. level of automation). With the exception described in HP1.2, the use of the technical equipment has been successfully assessed for its suitability in supporting the tasks of human actors. Feedback on the HMI prototypes has been collected as well as HMI-related mitigations in a form of Recommendations and Requirements to residual HP Hazards have been produced. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs)	Yes/Open	
	 HP2.2 Adequacy of technical systems in supporting Human Performance with respect to timeliness of system responses and accuracy of information provided. HP data collected during the Validation exercise, where the technical system was used in a high-fidelity testing environment, provided acceptable feedback wrt the system timely and accurate performance. Further details were explored during workshop activities and mitigations against residual HP risks have been produced. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Basemendations Basister Basister Basister Lab.</i>) 		
		Recommendations Register, Requirements Register tabs) HP2.3 Adequacy of the human machine interface in supporting the human in carrying out their tasks. HMI-specific questionnaires were used during the RTS5 exercise and satisfactory feedback gained. Residual HP risks have been addressed - for details; see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue- Objective-Outcome</i> and <i>Recommendations Register</i> , <i>Requirements Register</i> tabs).	
	Partner workshop	HP3.1 Adequacy of team composition in terms of identified roles	Yes

Pls	Activities & Metrics	Second level indicators	Covered
HP3	Pre-RTS5 end-	No changes in team composition	
Adequacy of team	user workshop	HP3.2	
structure and team communication in	RTS5	Adequacy of task allocation among human actors	Yes/Open
supporting the human	Post-RTS5 partner/end-	Please HP1.2 of this table refer to	
actors	user workshop	HP3.3	
	Structured interviews, observations, WL, SA, Teamwork and Communication questionnaires	Adequacy of team communication with regard to information type, technical enablers and impact on situation awareness/workload Impact on communication requiring mitigations hasn't been identified, with the exception of AO-0304 (WDS-D), where further input from airline representatives has been recorded as a Requirement. Qualitative and quantitative data on teamwork and the	Yes
		ability to communicate effectively are acceptable and show no significant difference from the Reference scenario.For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and	
		Recommendations Register, Requirements Register tabs)	
НР4	Partner workshop Pre-RTS5 end- user workshop RTS5	 HP4.1 User acceptability of the proposed solution User acceptability data that were collected during the RTS5 exercise show values within the desired range. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs) 	Yes
Feasibility with regard to HP-related transition	Post-RTS5 partner/end-	HP4.2	
factors	user workshop Structured	Feasibility in relation to changes in competence requirements.	
	interviews, observations, UA scale	No impact has been identified wrt ATC licencing, however training on the use of the tool within the relevant procedures will be required.	Yes
		For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs)	
		HP4.3	
		Feasibility in relation to changes in staffing levels, shift organization and workforce relocation.	Yes
		No changes identified for AO-0329 (OSD) AO-0323 (PWS-D) AO-0304 (WDS-D)	
		HP4.4	
		Feasibility in relation to changes in recruitment and selection requirements.	Yes
		No changes identified for AO-0329 (OSD) AO-0323 (PWS-D) AO-0304 (WDS-D)	
		HP4.5	

PIs	Activities & Metrics	Second level indicators	Covered
		Feasibility in terms of changes in training needs with regard to its contents, duration and modality. The content of training has been analysed and output has been recorded in a form of Recommendations and Requirements. Duration and modality will be defined in the future stages of the project. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs)	

Table 18: HP arguments, activities and metrics

4.7.2 Extrapolation to ECAC wide

There is no ECAC wide extrapolation required for this KPI.

4.7.3 Open HP issues/ recommendations and requirements

Pls	Number of open issues/ benefits	Number of recommendations	Number of requirements
HP1 Consistency of human role with respect to human capabilities and limitations	NATS 77 for AO-0304 (WDS-D) 27 for AO-0329 (OSD) 35 for AO-0323 (PWS-D)	ECTL+NATS 12	ECTL+NATS 126
HP2 Suitability of technical system in supporting the tasks of human actors	NATS 77 for AO-0304 (WDS-D) 27 for AO-0329 (OSD) 35 for AO-0323 (PWS-D)	ECTL+NATS 36	ECTL+NATS 116
HP3 Adequacy of team structure and team communication in supporting the human actors	NATS 77 for AO-0304 (WDS-D) 27 for AO-0329 (OSD) 35 for AO-0323 (PWS-D)	0	ECTL+NATS 1 (Please note, this req overlaps with HP1)
HP4 Feasibility with regard to HP-related transition factors	NATS 77 for AO-0304 (WDS-D) 27 for AO-0329 (OSD) 35 for AO-0323 (PWS-D)	ECTL+NATS 13	ECTL+NATS 33

Table 19: Open HP issues/ recommendations and requirements

4.7.4 Concept interaction

4.7.5 Most important HP issues

Pls	Most important issue of the solution	Most important issues due to solution interdependencies		
	Clarity and consistency of responsibilities between ATCOs (e.g. APP & TWR), pilots and supervisors, including between mode transition (ECTL+NATS).			
	Change to procedures and tasks as a result of different modes (ECTL).			
HP1 Consistency of human role with respect to human capabilities and limitations	Potential for human error and reduced trust in system as a result of inability/issues carrying out tasks and incorporating information in a time-efficient manner. Also leading to concerns regarding situation awareness and workload (ECTL).			
	Accuracy of the system information, trust in system and reliable transition from automatic to manual modes and vice versa (ECTL). Over-reliance on tool by ATC and omission of other non-wake related spacing (NATS)			
	Workload of the user (ECTL).			
	Information requirements, timeliness of information, alarms and alerts and HMI/workstation usability. Tool integration and compliance with CWP/platform (ECTL).			
	Communication load where tool leads to increase in R/T between pilots and ATCOs (ECTL).			
HP2	Current phraseology between ATCOs and pilots does not support some modes (e.g. WDS) (ECTL).			
Suitability of technical system in supporting the	WDS-D requires a small change in x-wind value transmission from ATC to air-crews (NATS)			
tasks of human actors	Issues related to job satisfaction as a result of tool deployment (ECTL).			
	Knowledge and skills, competence and training required to utilise tool effectively (ECTL).			
	Potential licensing concerns (ECTL).			
	Training on the use of the tool required, simulation time, while current skills retained			
HP3 Adequacy of team structure and team communication in supporting the human actors	n N/A N/A			
HP4 Feasibility with regard to HP- related transition factors	4.1.1-1: Supervisors and Systems Engineers are not accepting of the new responsibilities introduced to their roles to support the D-PWS-A ML model.	N/A		
	4.1.2-1: The new responsibilities introduced to support D-PWS-A negatively impact the job satisfaction of Supervisors and Systems Engineers.	N/A		
	4.5.1-1: The training curricula does not take into account potential operating methods changes or HMI updates.	N/A		
	4.5.1-2: Actors are not properly trained on D-PWS-A operations and are not able to provide separation under normal, abnormal and degraded modes of operations.	N/A		
Table 20: Most important HP issues				

Table 20: Most important HP issues

4.7.6 Additional Comments and Notes

No additional comments.

4.8 Gap Analysis

КРІ	Validation Targets – Network Level (ECAC Wide)	Performance Benefits at Network Level (ECAC Wide or Local depending on the KPI)	Rationale ⁹
FEFF1: Fuel Efficiency – Fuel burn per flight	26.7 kg	 AO-0329 (OSD) = 1.79 kg, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): 10.53kg compared to RECAT-EU without OSD tool support, with a Barcelona traffic mix; 2.28kg compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. AO-0304 (WDS-D) in the context of PWS-D (AO-0323) = 2.23 kg, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	The fuel efficiency results show a reduction in taxi-out time in each of the OI steps due to increased departure throughputs and hence reduced delays. There is low confidence in these results.
CAP3: Airport Capacity – Peak Runway Throughput (Mixed mode).	2.6%	 OSD (AO-0329) - 1.0% increase, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323): 8.65% increase compared to ICAO without OSD tools support, with a Barcelona traffic mix; 2.41% increase, compared to RECAT- EU without OSD tool 	Varying performance between runs for some controllers led to unexpected departure throughput results. It was expected that AO- 0329 (OSD) would bring negligible benefit due to keeping the wake separation scheme the same. AO-0304 (WDS-D) was expected to have a benefit in-line with AO-0323 (PWS-D) but it shows a smaller benefit. However, because of low departure throughput in the reference scenario the OSD and PWS-D throughputs are higher. Also, controllers noted during WDS-D runs that they were sequencing departures to try to achieve a reduced WDS-D separation, which may have not been the most optimal

⁹ Discuss the outcome if, and only if, the gap indicates a different understanding of the contribution of the Solution (for example, the Solution is enabling other Solutions and therefore is not contributing a direct benefit).

		support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO- 0323) – 0.1% increase , compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	departure sequence. Hence, the WDS-D benefits showed a lower benefit than PWS-D. Therefore, it is recommended that validation exercises are conducted in the local environment to determine the benefits.
PRD1: Predictability – Variance of Difference in actual & Flight Plan or RBT durations	0.27% ¹⁰	 AO-0329 (OSD) = 1.22mins reduction (2.5%), compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): 3.71mins reduction (7.57%) compared to ICAO without OSD tool support, with a Barcelona traffic mix; 0.92 mins reduction (1.87%), compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. AO-0304 (WDS-D) in the context of PWS-D (AO- 0323) = 0.91 mins reduction (1.85%), compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	The results show an improvement in predictability due to reduce ground delays as a result of improved departure throughput. There is low confidence in the results.
CEF2: ATCO Productivity – Flights per ATCO -Hour on duty	Yes, TWR TMA Controller productivity Medium (Impact level 2) 0.35-0.98%	0.00-0.85% benefit Arrival (50%) flights into very large (30%) and large (8%) airports = 19% of all ECAC flights impacted	N/A

Table 21: Gap analysis Summary

¹⁰ In Validation Targets [18] the unit for PRD1 is % Reduction in variance of block-to-block flight time.

5 References

This PAR complies with the requirements set out in the following documents:

- [1] 08.01.03 D47: AIRM v4.1.0
- [2] B05 Performance Assessment Methodology for Step 1 PJ19.04.01 Methodology for Performance Assessment Results Consolidation (2020)
- [3] SESAR Performance Framework (2019), Edition 01.00.01, Dec 2019

https://stellar.sesarju.eu/?link=true&domainName=saas&redirectUrl=%2Fjsp%2Fproject%2F project.jsp%3Fobjld%3Dxrn%3Adatabase%3Aondb%2Frecord%2F16414675

- [4] Performance Assessment and Gap Analysis Report (2019), Edition 00.01.02, Dec 2019
- [5] Methodology for the Performance Planning and Master Plan Maintenance, Edition 0.13, Dec 2017

Content Integration

[6] SESAR ATM Lexicon

Performance Management

[7] PJ19.04 D4.1 Validation Targets - Wave 2 (2020)

Validation

[8] European Operational Concept Validation Methodology (E-OCVM) - 3.0 [February 2010]

Safety

[9] SESAR, Safety Reference Material, Edition 4.0, April 2016

https://stellar.sesarju.eu/jsp/project/qproject.jsp?objld=1795089.13&resetHistory=true&sta tInfo=Ogp&domainName=saas

[10]SESAR, Guidance to Apply the Safety Reference Material, Edition 3.0, April 2016

https://stellar.sesarju.eu/jsp/project/qproject.jsp?objld=1795102.13&resetHistory=true&sta tInfo=Ogp&domainName=saas

- [11]SESAR, Final Guidance Material to Execute Proof of Concept, Ed00.04.00, August 2015
- [12]Accident Incident Models AIM, release 2017

https://stellar.sesarju.eu/servlet/dl/ShowDocumentContent?doc_id=3658775.13&att=attach ment&statEvent=Download

Human Performance

[13]16.06.05 D 27 HP Reference Material D27

[14]16.04.02 D04 e-HP Repository - Release note

Environment Assessment

[15]SESAR, Environment Assessment Process (2019), PJ19.4.2, Deliverable D4.0.080, Sep 2019.

https://stellar.sesarju.eu/servlet/dl/DownloadServlet?downloadKey=xrn%3Adatabase%3Aon db%2Frecord%2F14665451&resuming=true&zip=true&disposition=attachment&domainNam e=saas&domainName=saas

[16]ICAO CAEP – "Guidance on Environmental Assessment of Proposed Air Traffic Management Operational Changes" document, Doc 10031.

https://www.icao.int/publications/pages/publication.aspx?docnum=10031

Security

[17]16.06.02 D103 SESAR Security Ref Material Level

[18]16.06.02 D137 Minimum Set of Security Controls (MSSCs).

[19]16.06.02 D131 Security Database Application (CTRL_S)

Other Reference Documents

The following documents were used to provide input / guidance / further information / other:

[20]ED-78A GUIDELINES FOR APPROVAL OF THE PROVISION AND USE OF AIR TRAFFIC SERVICES SUPPORTED BY DATA COMMUNICATIONS.¹¹

[21]D4.16.002 – PJ.02-01-06 OSED-SPR-INTEROP (Final) Part I – 00.01.00

[22]D4.16.002 – PJ.02-01-06 OSED-SPR-INTEROP (Final) Part II – 00.03.00

[23]D4.16.002 - PJ.02-01-06 OSED-SPR-INTEROP (Final) Part IV - 00.01.00

[24]D4.16.008 – PJ.02-01-06 TS/IRS (Final) – 00.01.00

[25]D4.16.004 - PJ.02-01-06 VALR (Final) - 00.02.00

[26]CREDOS Final Concept of Operations Description D4-11, Version 1.0, 10/11/2009

[27]PJ.02-01-06 London Heathrow Capacity Benefits Analysis, Version 1.0, November 2019, Huw Murray

Appendix A Detailed Description and Issues of the OI Steps (PJ.02-01-06)

OI Step ID	Title	Consistency with latest Dataset
AO-0329	Optimised Separation Delivery for Departure	Full (DS20)
	Wake Turbulence Separations (for Departures) based on static Aircraft Characteristics	Full (DS20)
AO-0304	Weather-Dependant Reductions of Wake Turbulence Separations for Departures	Full (DS20)

Table 22: OI Steps allocated to the Solution

