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Abstract—Over the past years, several SESAR funded ex-
ploratory projects focused on bringing speech and language
technologies to the Air Traffic Management (ATM) domain and
demonstrating their added value through successful applications.
Recently ended HAAWAII project developed a generic archi-
tecture and framework, which was validated through several
tasks such as callsign highlighting, pre-filling radar labels, and
readback error detection. The primary goal was to support pilot
and air traffic controller communication by deploying Automatic
Speech Recognition (ASR) engines. Contextual information (if
available) extracted from surveillance data, flight plan data, or
previous communication can be exploited via entity boosting
to further improve the recognition performance. HAAWAII
proposed various design attributes to integrate the ASR engine
into the ATM framework, often depending on concrete technical
specifics of target air navigation service providers (ANSPs). This
paper gives a brief overview and provides an objective assessment
of speech processing components developed and integrated into
the HAAWAII framework. Specifically, the following tasks are
evaluated w.r.t. application domain: (i) speech activity detection,
(ii) speaker segmentation and speaker role classification, as well
as (iii) ASR. To our best knowledge, HAAWAII framework offers
the best performing speech technologies for ATM, reaching high
recognition accuracy (i.e., error-correction done by exploiting
additional contextual data), robustness (i.e., models developed
using large training corpora) and support for rapid domain
transfer (i.e., to new ATM sector with minimum investment). Two
scenarios provided by ANSPs were used for testing, achieving
callsign detection accuracy of about 96% and 95% for NATS
and ISAVIA, respectively.

Keywords—HAAWAII project, Speech activity detection,
Speaker segmentation, Speaker role classification, Automatic
Speech Recognition.

I. INTRODUCTION

During the last decade, many successful applications of
Automatic Speech Recognition and Understanding (ASRU)
for Air Traffic Management (ATM) have been developed.
Supporting Air Traffic Controllers (ATCos) by pre-filling radar
label entries with ASRU has achieved a Technology Readiness
Level (TRL) of 6, which was validated in SESAR 2020 funded
industrial research [1]. Yet, the air-traffic control (ATC) com-
munication remains technologically challenging domain due
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to its high variability (different airports, accents, noise, etc.),
lack of data, and high level of responsibility. Moreover, many
ASRU applications require a real-time processing capability.
Although offline processing of ATC communication can find
many applications (e.g., workload prediction does not require
fast response and thus offline or even optimized batch pro-
cessing can be well integrated), the real-time processing (i.e.,
a response is typically a few tens or hundreds of milliseconds)
cannot be avoided in the case of pre-filling radar labels or
readback error detection applications.

As different ASRU applications developed for ATC can have
different requirements, different architectures and modules
need to be addressed from the early development stages.
Previous research on Automatic Speech Recognition (ASR)
for ATC [2], [3], mainly focused on reduction of ATCo’s
workload [4], improvements of ATM efficiency [5] or machine
learning of models for adaptation to new ATM environments
as in the MALORCA1 project. The need for a flexible and
technologically advanced framework for the ATC domain
in general became the main motivation for the HAAWAII
(Highly Advanced Air traffic controller Working position With
Artificial Intelligence Integration) project2. More precisely,
following crucial questions were addressed by HAAWAII:

• How to automatically and reliably detect in near real-
time the start and the end of communication, especially
in cases when the technological solutions deployed by
air navigation service providers (ANSPs) do not enable
to extract Push-To-Talk (PTT) signal?

• How to develop and integrate advanced real-time ASR
engines offering sufficient recognition accuracies accept-
able for their ATM deployment?

• How to automatically detect who speaks, specifically in
cases where inbound and outbound ATC communication
(i.e., from ATCo or from pilot) channels are combined
to one due to the hardware constraint deployed at ANSP
side?

1https://www.malorca-project.de/
2https://www.haawaii.de/wp/
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Figure 1. HAAWAII framework.

• How do the ASR errors propagate to the downstream
tasks such as Text-to-Concept extraction (recent work for
HAAWAII described in [6])?

• How to accurately detect callsigns, as its importance is
above other mentioned tasks?

• How can the complementary information (e.g., contextual
data available from surveillance data) be exploited to
reduce the search space through ASR decoders?

The rest of the paper is organized as follows. Section II
describes the individual processing blocks of the HAAWAII
framework. The objective assessment of these blocks is pre-
sented in Section III. This is followed by Conclusions in
Section IV.

II. HAAWAII FRAMEWORK

The HAAWAII framework is a system designed to transform
ATC speech communication into conceptual elements that can
be seamlessly integrated into various ATM applications. This
framework takes into account both the transmissions from
ATCos and pilots.

As seen in Figure 1, the HAAWAII framework is composed
of two sets of blocks, namely related to speech recognition
(blue) and understanding (orange). Figure 1 illustrates differ-
ent modalities, i.e., speech communication and surveillance,
are utilized across various blocks. This paper primarily ad-
dresses speech technologies developed in HAAWAII, while
the comprehensive overview of speech understanding block
(i.e., semantics) is given in [6]. These speech processing
blocks encompass Speech Activity Detection (SAD), Speaker
Segmentation, Speaker Role Detection, ASR and its enhance-
ment by applying contextual information (boosting), and ASR
adaptation.

A. Speech Activity Detection

Speech Activity Detection (SAD) serves as a critical compo-
nent integrated to the conventional speech-processing systems,
Goal of SAD is to reliably detect the beginning and end of
the speech in the input signal. In case of real-time processing,
the detection can trigger subsequent processing blocks such as
ASR. In case of offline processing, detected boundaries can
be used to segment input stream into a sequence of ”speech

utterances” (in case of ATC communication typically a few
seconds long). Good quality SAD is indispensable for both
offline and online streaming recognition applications.

More specifically, in case of offline processing, SAD is
used to segment large amounts of ATC communication data
(typically provided by ANSPs) further used for training and
evaluating the developed technologies. Conversely, in real-
time online scenarios, SAD triggers subsequent processing
tasks if the speech is detected in the communication between
ATCos and pilots. The task becomes more challenging in
case of detecting the pilot speech which is often obscured
by background noise. High-quality SAD becomes especially
crucial when the Push-To-Talk (PTT) signal is not available
due to technical constraints.

a) Evaluated SAD technologies: Various SAD technolo-
gies were explored and tested as part of HAAWAII project to
reliably segment ATC speech. The inspiration came from the
work by S. Sarfjoo et al. [7]. Namely, following models were
tested for ATC: (1) BUT’s phoneme recognizer-based SAD
(so called Phn Rec), (2) Google WebRTC, (3) Generic neural
model trained using multi-lingual ASR, (4) Bi-directional
LSTM (BLSTM) neural model developed by Pyannote, and
(5) Kaldi energy-based SAD:

• ”Phn Rec” was developed on top of a Hungarian phoneme
recognizer where all the non-silent classes are linked to
the final ”speech” class [8]. Hungarian speech data which
was collected in SpeechDat-E project3, was found as
the best for generic phoneme recognition working across
many languages [9].

• Google WebRTC is an open framework for the web
that enables real-time communications capabilities in the
browser. SAD module can be used separately for the
speech/non-speech detection4.

• SAD built on top of neural model trained from multi-
lingual speech: To investigate the generalization abilities
of SAD across noisy speech and for more languages,
a multi-lingual solution was developed. Specifically, a
multi-lingual acoustic model [10] was trained with lattice-

3http://www.fee.vutbr.cz/SPEECHDAT-E
4https://webrtc.org
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free maximum mutual information criterion [11] using 18
BABEL languages5. The pseudo log-likelihoods obtained
from this model are used for speech/non-speech detec-
tion. To obtain a single decision, the following fusion
approaches were considered:

– The best score across all languages is used (ASR
SingleBest).

– The outputs from all languages are fused using
logistic regression (ASR Mul LR).

– The outputs are fused using a majority voting ap-
proach (ASR Mul MV).

• The production pyannote SAD exploiting LSTM based
neural architecture was trained by using the same 18
BABEL languages.

• The energy based SAD exploits energy extracted from
each individual frame of the input signal to make a
speech/non-speech decision.

B. Speaker Segmentation

Speaker segmentation, also known as speaker diarization,
segments the input speech signal into clusters based on speaker
occurrence.

The need for speaker segmentation in HAAWAII is to pre-
process large amounts of data provided by ANSPs. Machine
learning models require large amounts of data for training. In
case of HAAWAII project, this data is delivered by ANSPs
in a raw format, i.e., not segmented to speech utterances
by SAD and often combining both speaker channels (ATCo
and pilots) in the same file. To prepare good training data,
typically the speech utterances (few seconds long) obtained by
the SAD module are then segmented according to speaker by
the speaker segmentation. As hitherto mentioned, the speaker
segmentation is required as an offline module to substitute the
PTT which is often not available by ANSPs.

a) Evaluated speaker segmentation technologies: We ap-
plied a speaker diarization system as described by Landini et
al. [12]. It is based on the clustering of speaker embeddings
— “x-vectors”. The x-vectors are obtained from a neural
network trained to discriminate speakers so the embeddings
capture relevant information that allows comparing them and
deciding when two of them correspond to the same person.
For clustering, a Bayesian hidden Markov model is used where
each state represents one speaker. When finding the state that
most likely is produced by a given x-vector, the x-vector is
assigned one speaker. Eventually, defining the final assignment
of x-vectors to speakers denotes the diarization output.

The assignment of x-vectors to speakers thus defines a
part of the recording where the given speaker is speaking.
Generally, in each recording, many speakers can be identified
as there appear several pilots and supposedly one ATCo.
According to this prior assumption, the speaker with the
most speech parts in a recording is marked as a controller
(ATCo), and all other speakers are marked as pilots. Note
that this system was used to pre-process the audio files for

5https://catalog.ldc.upenn.edu/LDC2019S22

TABLE I. EXAMPLE OF ATC COMMUNICATION FOR EACH SPEAKER ROLE
I.E., ATCO AND PILOT

Speaker Label Transcript

ATCo < s > two echo golf taxi to holding point
delta runway two five < /s >
< s > skytravel two seven eight six pro-
ceed to rudap < /s >

Pilot < s > heading three six zero degrees speed
bird four seven five < /s >
< s > london hello speed bird four one
three flight level one three zero < /s >

annotators whose task is to further verify/improve the audio
pre-segmentation and possibly manually correct the speaker
identity.

In HAAWAII, two approaches were analyzed and are de-
scribed in this paper, both functioning on very different data
types: acoustic and text-based. Further in this paper, the
speaker diarization task will be referred to as the speaker role
detection task, for small segments of audio which are more
briefly described below.

C. Speaker Role Detection

For a given speech or text segment, the aim of this module
is to reliably detect the role of the speaker – ATCo or pilot.
This module is necessary when no PTT signal is available
and the inbound and outbound communication is merged into
a channel. Speaker role detector is applied on top of SAD
and speaker segmentation (i.e., these modules are able to
segment the input speech into short utterances and cluster them
to 2 speaker classes, but we cannot directly predict which
class corresponds to ATCo or pilot. To accomplish this, we
experimented with acoustic based and text-based approaches
in HAAWAII.

a) Acoustic based approach: In speaker recognition, I-
vectors [13], and more recently x-vectors [14], are among
the most commonly employed representations. Current hybrid
ASR systems use online i-vectors as input features to make
the acoustic model robust to the speaker variability [15],
[16]. The i-vectors are computed frequently (e.g., every 10
seconds), which especially helps to reduce the latency in online
decoders. However, in speaker recognition systems, as shown
in [14], the x-vector significantly outperforms standard i-vector
systems as it exploits the modeling power of deep neural
networks. HAAWAII investigated the integration of i-vector
and x-vector speaker models at the speech utterance level to
detect the role of the speaker in each utterance provided by
SAD.

Similar to [14], the i-vector and x-vector systems trained
on SRE16 data are used and the corresponding Probabilistic
Linear Discriminant Analysis (PLDA) [17] classifier is then
adapted with publicly available ATC communication data
(LDC-ATCC [18] and UWB-ATCC6). These datasets span

6https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/
00-097C-0000-0001-CCA1-0
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Figure 2. BERT-based speaker role identification module.

∼40 h of speech data related to both phraseology and structure
seen in ATCo-Pilot communication out of which 33 h (18 h
and 15 h for ATCo and piot respectively) is used for training.
This data is additionally augmented by adding noise using the
open-source Musan [19].

A text-based processing method can be seen as a way
to correct wrongly assigned speaker identities by the acous-
tic method. It takes advantage of the availability of ASR
transcripts and is able to achieve relatively high accuracy.
On the other hand, the module operates on top of already
generated segments (i.e., speech utterances) and is not capable
of changing the segment boundary or splitting the segment if
there are two (or more) speakers present.

b) Text-based approaches: The following two text-based
processing approaches were studied and implemented in
HAAWAII: Rule based - ATC communication provides rich

source of information that follows explicit grammar and
ontology. Additionally, ATC communication (see examples
in Table I) exploits a well-defined lexicon and dictionary,
even though sometimes disrupted by speakers’ errors. One
example is the order in which named entities (e.g., callsign)
are uttered during the communication; ATCos utter callsigns
at the beginning, while pilots constantly at the end.

ICAO defines a phraseology to be followed by ATCos and
pilots to enable clear communication. Phraseology elements
used by pilots obviously distinguish from ATCo elements.
For instance, there are certain phrases that an ATCo should
use in a specific order. This knowledge can therefore be
used to extract/identify potential words/phrases that further
indicate a specific role of the speaker as shown in [20].

Data-driven - A substantial effort in the rule-based ap-
proach is creating a so called ”bag of words” for both
classes. The words have to be carefully extracted, and feedback
from an expert is required, which demands costly manual
involvement. In order to improve this approach, various rules

have to be incorporated (e.g., using all variants of a callsign,
or using the words before the callsign is uttered), which leads
to the complex system impossible to be deployed in real-time.
As an alternative, a data-driven approach can be used, which
learns the information from data to assign a class to each
phrase. The following two approaches were developed:

1. Convolution Neural Network (CNN)-based [21] detector:
Each sentence is represented by 96-dimensional word em-
beddings, which are passed through 64 x 4 convolution filters,
each of width 1, 2, 3, and 4. Max pooling on the resulting
feature maps was used, which resulted in a fixed dimensional
sentence representation. This is passed through a two-layer
feed-forward network with ReLU activations and finally a
softmax output function for controller/pilot class-probabilities.
All the model parameters (including word embeddings) are
updated together. In total, the model has about 430K trainable
parameters.

2. Bidirectional Encoder Representations from Transformers
(BERT)-based detector [22]: Sequence Labeling (SL) assigns
labels to words that share a specific role and meaning within
the grammatical structure of a sentence. In [23], these groups
of words/sentences have similar grammatical properties. Their
work focuses on two sub-tasks of SL: Named Entity Recogni-
tion (NER) [24], [25] and Sequence Classification (SC) [23],
[26]. Early work on NER and SC was based on handcrafted
ontology, dictionaries, and lexicons, making them prone to
human errors. Since the past decade, deep learning based
systems have been cataloged as state-of-the-art on NER [27]
and SC. These models are mostly based on convolutional
neural networks [21], recurrent neural networks [23], and
transformers [22].

Following the aforementioned pros and cons, we believe
the state-of-the-art NER and SC can be leveraged to identify
speaker roles. For instance, one can apply NER to identify
ATC-related named entities such as callsigns, commands, or
units. Similarly, the structure and the type of these ‘entities’
used in a given communication can be leveraged to identify
speaker roles. Our previous research on identifying speaker
roles [20] was mainly directed as a grammar-based bag of
words system that was capable of performing speaker role
identification. In [28], the authors mention that even manually
annotating pilot recordings is twice as hard compared to ATCo
recordings due to their quality, rate of speech, speaker accent,
etc. This is one of the reasons why speech processing systems
(ASR, diarization, and speaker role identification) perform
considerably worse on pilots than ATCos’ recordings.

We implemented a BERT-based speaker role identification
module (see figure 3) that allows to attribute a speaker role
(i.e., ATCo or pilot) to a given ATC speech utterance. We
fetched a BERT [22] from Huggingface [29]. We then use
ground truth transcripts to fine-tune the model on the sequence
classification task with HAAWAII data, which is defined in
Table II. Around 15K sentences of both ATCo and pilot class
were used for fine-tuning. The transformer (BERT) model is
fine-tuned for 5 epochs (weight decay set to 0.01, and 500
warm-up steps). After the fine-tuning, we perform inference

4
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on either manually transcribed or automatically generated ATC
speech utterances.

D. Automatic Speech Recognition

Automatic speech recognition (ASR) or speech-to-text sys-
tems convert speech to text – the system receives the input
signal S (usually segmented by SAD to short speech utter-
ances) and transforms it into a sequence of words W :

Ŵ = argmax
W∈V∗

p(W |S),

where V is the vocabulary of all possible words; we use V∗

to represent the collection of all word sequences formed by
words in V .

Two main blocks of an ASR system are the Acoustic
Model (AM) and the Language Model (LM). The AM rep-
resents the relationship between the speech signal and the
phonemes/linguistic units that make up speech and is trained
using speech recordings along with their corresponding text
transcripts. The LM provides a probability distribution over
a sequence of words, provides context to distinguish between
words and phrases that sound similar, and is trained using a
large corpus of text data. The AM and the LM are eventually
combined in the following way:

Ŵ = argmax
W∈V∗

p(W |S) (1)

= argmax
W∈V∗

p(S|W )p(W ) (2)

= argmax
W∈V∗

∑
P

p(S|P )p(P |W )p(W ), (3)

where p(S|P ) represents the AM, p(P |W ) is a pronunciation

model, and p(W ) is the LM. Specifically in HAAWAII, a
hybrid ASR engine is deployed. The AM is represented by
a neural network while the LM is n-gram model.

Once the ASR engine is built (both AM and LM are
sufficiently trained), the recognition is performed by decoding
the input speech. To do so, a decoding graph is typically used,
which combines different ASR building blocks together and is

represented as a weighted finite state transducer (WFST) [?],
[30], [31]. Given an input speech utterance, word recognition
‘lattices’ can be generated during the decoding, which contain
the most likely hypothesised word sequences.

E. Boosting of important word entities for ASR

To enhance the accuracy of hypothesised ASR output, ad-
ditional contextual information can be incorporated alongside
the spoken input. To use the contextual information with
the hybrid ASR, a technique, known as lattice rescoring
with WFST, was previously proposed to bias the system
towards users’ playlists [32], contact names [33], and named
entities [34].

In the context of HAAWAII, the additional information
is presented by data obtained from radar systems. Radar
continuously tracks aircraft within a given airspace, providing
unique identifiers known as ‘callsigns’ for each aircraft. A
callsign typically comprises a sequence consisting of an ICAO
airline identifier, letters, and digits, which are spoken as a
sequence of words. Utilizing this radar data allows to identify
the callsigns that are most likely to be mentioned in the
conversation. This knowledge enables us to adjust the ASR
system’s predictions in favor of these registered callsigns,
increasing the likelihood of their correct recognition.

During the ASR decoding, the desired word sequences
(to be boosted) can be given more importance by utilizing
WFST and adjusting weights within the prediction graphs,
i.e. ‘lattices.’ Recently, a similar biasing approach has shown
promise in improving callsign recognition [35]–[37]. Biasing
the lattices with context-related callsigns has consistently
shown significant improvements in their recognition within
the final output. Therefore, lattice rescoring was applied to
enhance the callsign recognition in the HAAWAII framework.

F. Adaptation of ASR to New Environment

The goal of adaptation is to re-use a (seed) model trained
with well-resourced ATC communication data, and further
fine-tune it with the under-resourced (i.e., target) domain scuh
as new airport/airspace). In HAAWAII, as seed model, we
use model trained on all ATC available (manually transcribed)
speech data and adapt it to the target airport. (i.e., NATS). To
better understand the model adaptation capabilities, the amount
of data from the target airport vary. We consider both models
to be adapted:

• AM adaptation: This entails fine-tuning the neural acous-
tic model trained using mixed data to the under-
resourced target domain. The goal here is to fine-tune
the model parameters to the acoustic conditions and
speaker/pronunciation variations common in the target
airport/airspace.

• LM adaptation: This approach updates the n-gram LM
probabilities pre-computed with the available ATC data
towards the target domain.
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TABLE II. HAAWAII TRAIN AND TEST SET CHARACTERISTICS. † -
SPEAKER ROLE DETECTION WAS APPLIED TO SPLIT THE DATA ACCORDING
TO SPEAKER ROLES, ATCO / PILOT.

Dataset Nb. utts [x 103]† Dur [h]†

Train set

Isavia 7.2 / 8.4 9 / 10
NATS 11.5 / 12.6 11.8 / 12.3

Test set

Isavia 0.5 / 0.6 0.5 / 0.6
NATS 0.4 / 0.5 0.4 / 0.4

TABLE III. COMPARISON OF SAD RESULTS ON EXTERNAL LIVEATC
EVALUATION SET DESCRIBED IN SECTION III-A.

SAD model DetER(%) FA(%) Miss (%)

ASR SingleBest 10.1 4.9 5.2
ASR Mul LR 9.7 6.1 3.6
ASR Mul MV 11.1 4.3 6.8

Phn Rec 20.1 4.6 15.5
WebRTC 16.5 9.4 7.1
Pyannote 13.8 10.1 3.7

Energy-based 13.3 7.1 6.2

III. PERFORMED EXPERIMENTS

This section describes experiments and presents objectively
obtained performance analyses for the modules introduced in
previous section II. The individual speech processing modules
are evaluated on the following datasets: (i) London TMA data
collected from NATS ANSP (referred to as NATS) and (ii)
Iceland enroute set collected by Isavia ANSP (referred to as
Isavia). These data were collected and manually transcribed
and annotated as part of HAAWAII project. The distribution
of training and evaluation subsets of NATS and Isavia is
presented in Table II.

A. SAD

Different SAD approached, introduced above, are evaluated
using the following metrics: False Alarm (FA) rate, Miss
detection (Miss) rate, and Detection Error Rate (DetER). FA
presents the number of non-speech utterances being falsely
detected as speech, while Miss detection rate presented the
number of speech utterances mis-detected by SAD. Specifi-
cally for DetER, it is defined as:

DetER =
FA (s) +Miss (s)

Total duration of speech (s)
,

where s means the length of speech utterance in seconds.

Motivated by [7], we compared the following SAD ap-
proaches on external LiveATC data. LiveATC are ATC com-
munication data collected in an automatic manner from VHF
channels as part of ATCO2 project7. The total duration of the
data is 6.8 h, consisting in total 1000 speech utterances.

7https://www.atco2.org

TABLE IV. SUMMARY OF SPEAKER SEGMENTATION PROCESS ON ISAVIA
AND NATS DATA (PRESENTED IN (%)).

Dataset # utterances Insertion Deletion Splits Speaker change

Isavia 3225 0.00 9.4 0.3 5.9
NATS 6235 0.01 2.4 0.05 1.1

A comparison of SAD results on the LiveATC evaluation
set is presented in Table III. It needs to be mentioned that
the neural based approaches such as ’ASR SingleBest’, ’ASR
Mul MV’ and ’ASR Mul LR’ do not use any ATC data for
training respective models. All ASR based models (the ASR
Mul LR model, ASR SingleBest and ASR Mul MV models)
significantly outperformed the baseline production models
such as WebRTC or Pyannote. Interestingly Energy-based
SAD (also applied for real-time processing in HAAWAII)
yields good performance.

B. Speaker Segmentation

Performance of speaker segmentation on ATC data is pre-
sented in Table IV. Specifically we show how many times
the speaker segmented output was modified by annotators.
Following numbers are presented:

• Insertions - the number of speech utterances newly added
by annotators,

• Deletions – deleted speech utterances are mostly concate-
nated with preceding/following ones,

• Splits - an utterance was divided into two, and
• Speaker change - the number of times the speaker was

incorrectly classified, and the speaker label was corrected.

It can be observed that the deletion rate for Isavia is
significantly higher. One of possible explanation is that the
automatically created segments are very short and thus were
concatenated with previous/following segments.

C. Speaker Role Detection

The different text-based speaker role detection systems are
evaluated using the accuracy metric defined as:

Accuracy =
TP + TN

TP + FN + FP + TN
,

where TP is the number of times the system correctly

recognizes the ATCo, TN is the number of times the system
correctly recognizes the Pilot, FN is the number of times the
system incorrectly recognizes ATCo as Pilot and FP is the
number of times the system incorrectly recognizes Pilot as
ATCo.

Table V shows the performance of the proposed models on
the ISAVIA and NATS test sets. The results reveal that the
text-based approach outperforms the acoustic based x-vector
system. Among the text-based systems, the BERT-based model
outperformed all other systems across different test sets.
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TABLE V. ACCURACY (%) OF ACOUSTIC AND TEXT-BASED SPEAKER
ROLE DETECTION SYSTEMS FOR ISAVIA AND NATS TEST SETS (SEE TA-
BLE II) FOR DATA DESCRIPTION.

Model Isavia NATS

x-vector plda 76.5 83.8
Rule-based 82.0 85.0
CNN 91.0 93.0
BERT 93.0 96.0

D. ASR

Throughout ASR development and tests, Kaldi frame-
work [38] was applied. The developed ASR is built around
standard Kaldi recipe which uses MFCC and i-vectors features.
The standard AM training is based on Lattice-free MMI (LF-
MMI) [11], which includes 3-fold speed perturbation and one-
third frame sub-sampling.

The AM uses a conventional biphone convolutional neural
network (CNN) [21] + Factorized Time Delay Neural Network
(TDNN-F) [39] model while the LM is a statistical 3-gram
trained on the same data as the acoustic model with additional
textual data collected from public resources such as airline
names, airports, the ICAO alphabet, and way-points in Europe.
Specifically for training,

• Baseline ASR: trained with 100 h of transcribed ATC
data (further augmented with speed perturbation, obtain-
ing 300 h) which does not include any HAAWAII data.
Specifically LDC-ATCC, UWB-ATCC, ATCOSIM, and
MALORCA sets described in [40] are used.

• HAAWAII ASR: trained with approximately 195 hours of
ATC manually transcribed data [40] (further augmented
using the speed perturbation, obtaining almost 575 hours
of training data).

The performance of an ASR system is presented in terms of
Word Error Rate (WER). It is based on the Levenshtein dis-
tance at the word level and it can be viewed as a string match-
ing problem where two sequences of symbols are matched
through the dynamic programming. The symbols in this case
are the words of a language. WER finds the distance between
the word sequence hypothesised by the ASR and the reference
word sequence using dynamic string alignment i.e., it finds the
number of edits (substitutions, deletions, insertions) required
to go from the hypothesised word sequence to the reference
word sequence. In other words, given the hypothesised and
reference sequences of words, WER is computed as:

WER =
S +D + I

N
, (4)

where S is the number of words that are substituted, D is
the number of deletions, I is the number of insertions, N =
S +D+C is the total number of words in the reference and
C is the number of correctly recognized words. A lower WER
implies higher accuracy for the ASR system.

Table VI shows the WER of the final hybrid LF-MMI
based ASR developed using HAAWAII data. The results yield

TABLE VI. WER (%) ASR RESULTS FOR NATS AND ISAVIA TEST SETS.

ASR system WER(%)
Isavia NATS

Baseline ASR - 28.3
HAAWAII ASR 12.4 7.5

TABLE VII. RESULTS FOR BOOSTING CALLSIGNS ON ISAVIA AND NATS
TEST SETS. ¶WORD ERROR RATES (ENTWER) ESTIMATED ONLY FOR THE
CALLSIGN UTTERANCE.

Boosting Isavia NATS

WER EntWER¶ ACC WER EntWER¶ ACC

HAAWAII ASR 12.4 5.0 87.9 7.5 4.1 86.7
Unigrams 12.3 3.7 90.7 7.4 3.6 88.0
N-grams 12.1 4.1 90.5 6.7 2.0 93.3
GT boosted 11.6 2.5 94.7 6.4 1.3 96.1

WER of 7.5% and 12.4% for NATS and Isavia respectively
(i.e., 28.3% WER obtained for the baseline ASR trained on
other ATC data). We observe an absolute difference of 5% in
WER between Isavia and NATS due to the different acoustic
conditions, and accents in the former.

E. Boosting of important word entities for ASR

Table VII shows the results on boosting experiments report-
ing the WER of the whole speech utterance, WER estimated
on the callsigns only (EntWER), and the accuracy of correctly
recognizing callsign (corrent/incorrect) for Isavia and NATS
test sets. The baseline is represented by the HAAWAII ASR
not applying any boosting (biasing). Other three types of
experiments apply callsign boosting and differ from each other
by how and which callsigns are specifically boosted in final
ASR lattices. Unigrams boosting means biasing towards only
single words which are taken from the callsigns registered
in the surveillance data. N-grams boosting means that all
callsigns in the surveillance data from a current time stamp
are boosted as word sequences. In order to present an ‘oracle’
performance for the biasing method, the ASR lattice is biased
only toward a single ground truth (GT) callsign, and the
boosting is done as for a word sequence.

Biasing the lattice toward the context callsigns usually
allows us to considerably improve their recognition in the
final outputs. Various experiments conducted on ATC data
have consistently shown that employing lattice rescoring on
top of ASR predictions results in higher accuracy for automatic
transcriptions, particularly for callsigns [41].

F. ASR adaptation to new environment

Table VIII yields the ASR performance when developed
ASR is adapted to the target airport. We use the baseline ASR
described in Section III-D as seed model to be adapted to the
target airport – NATS. Experiments are conducted for different
amounts of transcribed data obtained from NATS. The baseline
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ASR system when adapted to the target NATS airport with 14h
of transcribed data provides a WER of 13.9%.

TABLE VIII. WER (%) FOR NATS TEST FOR VARIOUS ADAPTATION
SETTINGS USING A GENERIC ATC ASR MODEL

Target Type of adaptation WER(%)

data (h) Baseline ASR AM LM AM+LM

0 28.3 - - -
1 - 23.3 23.3 23.0
2 - 22.3 21.2 22.5
4 - 19.7 19.2 18.4

10 - 17.6 17.3 15.6
13 - 16.1 17.3 13.9

IV. CONCLUSION

The HAAWAII project presents an innovative framework to
recognize and understand the air-traffic communication. This
paper described different components of the whole framework,
focusing on employed speech technologies. The paper presents
approaches for both offline and real-time speech processing.
Specifically speech activity detection, speaker segmentation
and role detection, and automatic speech recognition modules
integrated in the HAAWAII framework were described. Even-
tually a technique for rapid adaptation of ASR engine to the
target environment (in this case presented by NATS airport)
was presented.
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O. Ohneiser, L. Klamert, P. Motlicek, A. Prasad, J. Zuluaga-Gomez
et al., “Automatic speech recognition and understanding for radar label
maintenance support increases safety and reduces air traffic controllers’
workload,” in Fifteenth USA/Europe Air Traffic Management Research
and Development Seminar (ATM2023), 2023.

[2] A. Srinivasamurthy, P. Motlicek, I. Himawan, G. Szaszak, Y. Oualil,
and H. Helmke, “Semi-supervised learning with semantic knowledge
extraction for improved speech recognition in air traffic control,” in
Proc. of the 18th Annual Conference of the International Speech
Communication Association, 2017.

[3] M. Kleinert, H. Helmke et al., “Semi-supervised adaptation of assistant
based speech recognition models for different approach areas,” in 37th
Digital Avionics Systems Conference (DASC). IEEE, 2018, pp. 1–10.

[4] H. Helmke, O. Ohneiser, T. Mühlhausen, and M. Wies, “Reducing con-
troller workload with automatic speech recognition,” in 2016 IEEE/AIAA
35th Digital Avionics Systems Conference (DASC). IEEE, 2016, pp.
1–10.

[5] H. Helmke, O. Ohneiser, J. Buxbaum, and C. Kern, “Increasing ATM
efficiency with assistant based speech recognition,” in Proc. of the
13th USA/Europe Air Traffic Management Research and Development
Seminar, Seattle, USA, 2017.

[6] H. Helmke, M. Kleinert et al., “The HAAWAII Framework for Auto-
matic Speech Understanding of Air Traffic Communication,” in submit-
ted to 13th SESAR Innovation Days, Seville, Spain, November 2023.

[7] S. S. Sarfjoo, S. Madikeri, and P. Motlicek, “Speech Activity Detection
Based on Multilingual Speech Recognition System,” in Proc. Interspeech
2021, 2021, pp. 4369–4373.

[8] P. Schwarz, P. Matejka, and J. Cernocky, “Hierarchical structures of
neural networks for phoneme recognition,” in 2006 IEEE International
Conference on Acoustics Speech and Signal Processing Proceedings,
vol. 1. IEEE, 2006, pp. I–I.

[9] P. Matejka, L. Burget, O. Glembek, P. Schwarz, V. Hubeika, M. Fapso,
T. Mikolov, and O. Plchot, “BUT system description for NIST LRE
2007,” in Proc. 2007 NIST Language Recognition Evaluation Workshop,
2007, pp. 1–5.

[10] S. Madikeri, B. K. Khonglah, S. Tong, P. Motlicek, H. Bourlard,
and D. Povey, “Lattice-free maximum mutual information training of
multilingual speech recognition systems,” in Proc. of Interspeech, vol.
2020, 2020.

[11] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na,
Y. Wang, and S. Khudanpur, “Purely sequence-trained neural networks
for asr based on lattice-free mmi.” in Interspeech, 2016, pp. 2751–2755.

[12] F. Landini, J. Profant, M. Diez, and L. Burget, “Bayesian hmm clustering
of x-vector sequences (vbx) in speaker diarization: theory, implemen-
tation and analysis on standard tasks,” Computer Speech & Language,
vol. 71, p. 101254, 2022.

[13] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 788–798,
2010.

[14] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-
vectors: Robust dnn embeddings for speaker recognition,” in 2018 IEEE
international conference on acoustics, speech and signal processing
(ICASSP). IEEE, 2018, pp. 5329–5333.

[15] Y. Miao, H. Zhang, and F. Metze, “Speaker adaptive training of deep
neural network acoustic models using i-vectors,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 23, no. 11, pp.
1938–1949, 2015.

[16] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adaptation
of neural network acoustic models using i-vectors,” in 2013 IEEE
Workshop on Automatic Speech Recognition and Understanding. IEEE,
2013, pp. 55–59.

[17] S. Ioffe, “Probabilistic linear discriminant analysis,” in European Con-
ference on Computer Vision. Springer, 2006, pp. 531–542.

[18] J. Godfrey, “The Air Traffic Control Corpus (ATC0) - LDC94S14A,”
1994. [Online]. Available: https://catalog.ldc.upenn.edu/LDC94S14A

[19] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and noise
corpus,” arXiv preprint arXiv:1510.08484, 2015.

[20] A. Prasad, Z.-G. Juan, P. Motlicek et al., “Grammar Based Speaker
Role Identification for Air Traffic Control Speech Recognition,” in 12th
SESAR Innovation Days, 2022.

[21] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[23] Z. He, Z. Wang et al., “A Survey on Recent Advances in Sequence La-
beling from Deep Learning Models,” arXiv preprint arXiv:2011.06727,
2020.

[24] R. Grishman and B. M. Sundheim, “Message understanding conference-
6: A brief history,” in COLING 1996 Volume 1: The 16th International
Conference on Computational Linguistics, 1996.

[25] V. Yadav and S. Bethard, “A Survey on Recent Advances in Named
Entity Recognition from Deep Learning models,” in Proceedings of the
27th International Conference on Computational Linguistics, 2018, pp.
2145–2158.

[26] C. Zhou, B. Cule, and B. Goethals, “Pattern based sequence classifica-
tion,” IEEE Transactions on knowledge and Data Engineering, vol. 28,
no. 5, pp. 1285–1298, 2015.

[27] V. Yadav and S. Bethard, “A survey on recent advances in
named entity recognition from deep learning models,” arXiv preprint
arXiv:1910.11470, 2019.

[28] T. Pellegrini, J. Farinas, E. Delpech, and F. Lancelot, “The Air-
bus Air Traffic Control speech recognition 2018 challenge: towards
ATC automatic transcription and call sign detection,” arXiv preprint
arXiv:1810.12614, 2018.

[29] T. Wolf et al., “Transformers: State-of-the-Art Natural Language Pro-
cessing,” in Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations. Association
for Computational Linguistics, 2020, pp. 38–45.

8



[30] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers
in speech recognition,” Computer Speech & Language, vol. 16, no. 1,
pp. 69–88, 2002.

[31] M. Riley, C. Allauzen, and M. Jansche, “OpenFST: An open-source,
weighted finite-state transducer library and its applications to speech and
language,” in Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the Association
for Computational Linguistics, Companion Volume: Tutorial Abstracts,
2009, pp. 9–10.

[32] K. Hall, E. Cho, C. Allauzen, F. Beaufays, N. Coccaro, K. Nakajima,
M. Riley, B. Roark, D. Rybach, and L. Zhang, “Composition-based on-
the-fly rescoring for salient n-gram biasing,” 2015.

[33] P. Aleksic, M. Ghodsi, A. Michaely, C. Allauzen, K. Hall, B. Roark,
D. Rybach, and P. Moreno, “Bringing contextual information to google
speech recognition,” 2015.

[34] J. Serrino, L. Velikovich, P. S. Aleksic, and C. Allauzen, “Contextual re-
covery of out-of-lattice named entities in automatic speech recognition.”
in Interspeech, 2019, pp. 3830–3834.
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