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Abstract— Severe convective weather disrupts European aviation, 

causing flight deviations and delays. This study addresses the 

challenge of improving long-term flight predictability, beyond two 

hours, focussing on departure delays. It explores the potential of 

convective indices, derived from atmospheric data, as proxies for 

departure delays. Despite limitations, these indices are appealing 

due to their simplicity and widespread availability in medium-

range weather forecasts. The research collects historical flight 

data from Europe and correlates departure delays with convective 

indices. Deterministic and probabilistic prediction models are 

developed, evaluating their performance against baseline flight 

plan predictions. The results reveal that using convective indices 

significantly enhances the prediction of departure delay, 

particularly in probabilistic models. Lifted, Boyden, and 

Bradbury indices show promise. Future work includes multi-index 

predictors, airport-specific indices, machine learning techniques, 

and the extension of this approach to other flight deviations. 

Keywords- departure delay; thunderstorms; convective indices; 

probabilistic modelling 

I.  INTRODUCTION 

Severe convective weather, mainly during summer in 

Europe [1], is one of the most disruptive events for aviation. 

With a possible extension of hundreds of kilometres, a duration 

of up to several hours, and a dynamic behaviour [2], its 

occurrence is associated with damaging phenomena such as 

turbulence, icing, lightning, hail, and strong winds. Under these 

circumstances, flights are subject to four-dimensional deviations 

with respect to their plans. Additionally, air traffic controllers 

experience an increase in their workload because, in a scenario 

of high demand due to the summer season, the traffic flow 
becomes irregular and difficult to anticipate, radio-

communications become more frequent, and less airspace 

volume is available for conflict resolution. 

The magnitude of the disruption due to convective weather 

(e.g., only in Karlsruhe UAC convective weather caused nearly 

650k delay minutes between May 2022 and July 2022 [3]) 

justifies the need for improving the flight predictability. In 

particular, this study focusses on the prediction of convection-

induced deviations in the long term, beyond two hours. Unlike 

short-term trajectory prediction (up to two hours), based on 

nowcasts that use radar echoes and satellite data to provide very 
detailed information about storm cells, long-term trajectory 

prediction relies on numerical weather forecast, whose 

spatiotemporal resolution is too coarse if compared with the size 

and lifespan of convective storms. Thus, the forecast uncertainty 

to say when a storm initiates, its potential severity, motion, and 

duration, translates into the aircraft trajectory prediction. 

To improve the predictability in the long term, this paper 

examines the use of convective indices as potential proxies for 

deviations. In particular, we focus on delays at departure, 

leaving the door open to include other four-dimensional 

deviations along flights in further studies.  

Based on thermodynamic and kinematic variables of the 

atmosphere, convective indices have historically been 

investigated to predict the occurrence and severity of 
thunderstorms [4]. As environmental proxies, they are 

irremediably burdened with inaccuracy, and their applicability 

is usually limited to some geographical region and season [5]. 

Furthermore, the forecast of a convective area does not imply 

that the whole area has to be circumnavigated but that storm cells 

may exist within it. However, the simplicity and forecasting 

power of these indices, along with the fact that they are the only 

information available in medium-range forecasts (i.e., several 

hours in advance, up to several days), justify their consideration 

for the purpose of this work. 

This paper is structured as follows. Section II reviews related 

work, provides background information on thunderstorms, and 
contains the selection of indices. Section III describes the 

methodology. Section IV defines the case study. Section V 

presents the results and the analysis. Finally, Section VI provides 

a summary of the findings and a proposal for future research. 

II. BACKGROUND 

A. Related Work 

The study of correlations between lateral deviations and 

storm metrics that could be exploited in the short term has been 

widely reported in the United States, mostly within the 
framework of the development of the Convective Weather 

Avoidance Model or CWAM model ([6] and subsequent works). 

These metrics include lightning strikes and radar-based metrics 

such as vertically integrated liquid (VIL) and echo tops, spatially 

filtered over different extensions (from the radar product 

resolution to 60x60 km). The most popular approach consists in 

analysing whether or not individual historical flights deviate 

under specific weather metric values encountered along their 

tracks. With this information, pattern classification algorithms 



are implemented to build deterministic deviation prediction 

models, as is the case of the CWAM model.  

In contrast to this flight-centric approach, there are others 

that, putting the storm at the centre, study its effect on large-scale 

traffic, for example, in terms of airspace occupancy [7]. More 
importantly, they seem to corroborate the findings of the first 

approach on the en-route airspace. In summary, the difference 

between the flight altitude and the echo top proved to be the best 

indicator of pilots’ avoidance strategy in the en-route airspace 

[6], even though such strategy cannot be accurately predicted 

based only on metrics [8][9]. As for the terminal airspace, where 

the problem appears to be more complex due to all the 

constraints inherent to this environment [10], the precipitation 

intensity (i.e. the VIL) is the most explanatory powerful feature 

[11][12]. 

Despite the promising relationships found in the short-term 

context, when the prediction skill is tested with forecasted 
weather information instead of actual weather information, it is 

found that the performance severely depends on the forecasting 

goodness [11][12][13].  

Whereas the previously mentioned works tried to find 

relationships between convective weather and lateral deviations, 

at the same time efforts were put into finding relationships 

between convective weather and delays. The works presented in 

[14][15], and those that followed them, defined indices for the 

impact of weather, based on the number of flights close to radar-

detected storms or lightning strikes, and found significant 

correlations between these indices and delays. One limitation of 
these works is that delays are considered at national or regional 

level, but not for individual flights.  

More recently, researchers have tried to predict the delay of 

individual flights using data science. A complete and thorough 

review of recent efforts can be found in [16]. However, these 

studies usually focus on departure or arrival delays, only a 

fraction of them explicitly include weather information, and this 

information is usually limited to atmospheric conditions at the 

airports. One example is [17], where machine learning 

algorithms are applied.  

Also of interest is the series of works that develop a 

methodology to evaluate the performance of arrival operations 
through multiple key performance indicators such as arrival 

punctuality, additional time in the terminal airspace, extra 

distance, fuel consumption and level-off during descent 

[18][19][20][21][22]. By using regression techniques, the 

performance is assessed against impact factors that include the 

adverse meteorology in the corresponding airport. To be precise, 

the weather factor is partially calculated with different 

convective indices. Nevertheless, the extrapolation of the 

methodology to the en-route problem is not clear; for instance, 

where and when the weather metrics would be calculated, how 

to isolate the weather impact from the traffic impact, or how to 
relate the performance indicators to individual weather 

encounters along the route (because, a priori, one encounter with 

a severe storm could cause a delay similar to the one provoked 

by several encounters with different weaker storms). 

Some convective indices have already been used for optimal 

trajectory planning [23][24] and trajectory prediction [25] in the 

long term. In these works, a combination of two ensemble-

forecasted convective indices, one proxy for convection 

potential (in particular, the total totals index or the lifted index, 
depending on the data availability) and another one for 

convection initiation (i.e., the convective precipitation), is used 

to build an index that estimates the probability of convection. 

However, the ability of the convective indices to predict aircraft 

deviations is taken for granted, hence the need to prove their 

correlations not with actual storms but with historical flight 

deviations (since flights tend to deviate only under specific 

circumstances). 

In view of all the above, it is a challenge to study the 

relationship between convective indices and the four-

dimensional deviations one aircraft may experience along its 

entire route. This paper presents a methodology focused on 
departure delays but applicable to any 4D deviations at any flight 

phase under slight modifications. 

B. Thunderstorms and convective indices 

As a consequence of moist convection (i.e., the ascension of 

a wet air parcel warmer than its environment), a thunderstorm 
needs three conditions for its occurrence [26]: (1) sufficient 

moisture in the boundary layer; (2) a lifting mechanism to trigger 

updrafts (e.g., orography, low-level converging winds, and 

uneven surface temperature); and (3) thermodynamic instability 

(i.e., a strongly decaying temperature profile with height), 

responsible for the buoyancy that accelerates the air parcel 

upwards.  

Based on their size, structure, and organisation, there are four 

types of thunderstorms (ordinary cell, multi-cell cluster, multi-

cell line, and supercell) [2], all of which go through three phases: 

developing phase, mature phase, and dissipation phase. During 

the thunderstorm development, the three conditions mentioned 
in the previous paragraph lead to an ascending flow of water 

vapour that, in the presence of cooler air at high altitude, 

condensates and forms the clouds, with a normal diameter of 5–

10 km [27]. The expansion of these clouds continues during the 

mature phase and determines the intensity of the thunderstorm. 

For the clouds to grow, they need to be fed with the updraft 

driven by the instability. However, this ascending channel is 

interrupted when the water held in the clouds precipitates over 

the same column. Without the inflow of warm moist air, the 

thunderstorm rapidly dissipates. A different scenario would be 

if, in addition to instability, there were enough vertical wind 
shear, that is, a change in the horizontal wind speed or direction 

with height. In this case, the clouds are horizontally displaced in 

such a way that the precipitation occurs over a column different 

from the one supplying moisture, thereby sustaining the 

thunderstorm for longer and leading to more severe events [27]. 

The three necessary (but not sufficient) ingredients for a 

thunderstorm to develop, and the two main factors that 

determine its severity correlate to different moments in the 

thunderstorm lifetime. This is to be remembered when selecting 

the convective indices and defining the methodology because of 
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two reasons: first, an aircraft will rarely deviate around a 

thunderstorm in its premature, and therefore less severe, phase; 

and second, wind shear alone (i.e., without a pre-existing storm) 

is not a cause for detours. 

For this study, only convective indices dealing with stability 
are considered. As an additional condition for the choice, their 

prediction skills for thunderstorm occurrence in Europe have 

been taken into account (e.g., see [4][28][29][30]), and not only 

their appearance in other works. The reason is that the 

convective activity over Europe is not the same as in the United 

States, where the likelihood, intensity, and extension of 

thunderstorms are usually higher [31]. In Europe, the 

atmospheric instability and moisture are limited, and the wind 

shear is weaker. This translates into differences in the 

performance of indices and their thresholds [4]. 

The list of selected indices and some guiding thresholds are 

provided in Table I. Although there are indices with more than 
one threshold, indicating not only the thunderstorm occurrence 

but also the degree of severity, note that Table I only provides 

one per index. In these cases, the threshold indicates severe 

thunderstorm in Europe.  

III. METHODOLOGY 

This section is divided into three parts. Section III.A gives 

the instructions to obtain the convective indices and departure 

delays. Seeking to improve today’s prediction ability, 

section III.B proposes two approaches based on the value of a 

single index, a deterministic one and a probabilistic one. Lastly, 

section III.C contains an evaluation framework of the models 

that will be used later. 

A. Convective indices and departure delays 

To study the relationships between indices and departure 

delays, as a first step, it is necessary to identify the historical 

traffic of interest. In this work, such traffic is formed by the 

flights that, within a considered region and time period, meet the 

following conditions: 

• the flight was not cancelled, 

• the departure took place where planned, and 

• the departure airport was different from the arrival airport. 

 

TABLE I. SUMMARY OF CONVECTIVE INDICES.  

Index Definition Comment 

Convective 

Available 

Potential Energy 

(CAPE) [32] 

∫
Tv,p − Tv

Tv
gdz

EL

LFC

 

In J/kg, it measures the available energy to lift an air parcel from the level of free convection 

(𝐿𝐹𝐶) to the equilibrium level (𝐸𝐿). The higher the value, the more unstable the atmosphere 

is (CAPE > 0 J/kg means instability). Severe events are probable for 500 J/kg [30]. 

Lifted Index 

(LI) [33] 
T500 − TS→500,p 

In ºC or K, it measures the temperature difference only at 500 hPa (mid-troposphere) between 

the environment and an air parcel that is ideally lifted from the surface. The more negative 

the value, the more unstable the atmosphere is (LI<0 ºC means instability). Severe events are 

probable for LI<–3 ºC [28]. 

Deep Convective 

Index 

(DCI) [34] 

T850 + Td,850 − LI 

In ºC, it combines the LI with temperature and humidity at 850 hPa (generally above the 

atmospheric boundary layer, which means independence of surface conditions). The higher 

the value, the more likely a thunderstorm will occur. Severe events are probable for 

DCI>30 ºC [28]. 

Total Totals 

(TT) [35] 

T850 + Td,850 − 2T500 
In ºC or K, it is the sum of two components: the vertical temperature gradient and the humidity 

in the lower-level atmosphere. The higher the value (typically when TT>45 ºC), the more 

likely a thunderstorm will occur. Severe thunderstorms are possible for TT>50 ºC [36]. 

K Index 

(KI) [37] 
T850 + Td,850 − T500 − (T700 − Td,700) 

In ºC, it is similar to the TT, but adding the effect of humidity at 700 hPa. The higher the 

value (typically when KI>20 ºC), the more likely a thunderstorm will occur. Severe 

thunderstorms are likely for KI>30 ºC [38]. 

Boyden Index 

(BoydI) [39] 
0.1(z700 − z1000) − T700 − 200 

With each magnitude in its unit, it calculates an amount proportional to the mean vertical 

temperature gradient between 1000 hPa and 700 hPa. The higher the value, the more likely a 

thunderstorm will occur (tied to a frontal passage). Increase in thunderstorm activity for 

BoydI>95 [38]. 

Bradbury Index 

(BradI) [40] 
θw,500 − θw,850 

In ºC or K, it quantifies the instability of the 850–500 hPa layer. This means that the lower 

the difference, the stronger the instability, and the more likely the formation of thunderstorms 

will be. Increase in thunderstorm activity in summertime for BradI<–2 ºC [4]. 

Rackliff Index 

(RackI) [41] 
θw,900 − T500 

In ºC or K, it measures the instability of the 900–500 hPa layer. The higher the value, the 

stronger the instability and the more likely the formation of thunderstorms will be. Increase 

in thunderstorm activity for RackI>30 ºC [4]. 

Modified 

Jefferson Index 

(JeffI) [42] 

1.6θw,850 − T500 − 0.5(T700 − Td,700) − 8 

In ºC, it amends the RackI by using a standard altitude (850 hPa instead of 900 hPa), and by 

adding the contribution of humidity at 700 hPa (which corrects the overforecast of 

thunderstorms over dry areas). Increase in thunderstorm activity for JeffI>28 ºC [28]. 

Notation: T is the temperature in ºC; Tv is the virtual temperature in ºC; Td is the dewpoint temperature in ºC; θw is the wet-bulb potential temperature in ºC; z is 

the geopotential height in m; and g is the gravity in m/s2. 

Subscripts: While the presence of p indicates that the magnitude corresponds to an air parcel, its absence indicates that the magnitude corresponds to the 

environment; a number (e.g. 500) indicates a specific pressure level in hPa; S indicates surface level; and i → j indicates that an air parcel is lifted dry-

adiabatically from i-level to its condensation level, and then moist-adiabatically up to j-level if this is beyond the condensation level. 
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For each flight of the defined dataset, the actual take-off time 

(ATOT) and the estimated take-off time (ETOT) are extracted, 

and their difference is calculated to get the corresponding actual 

departure delay, 𝑎𝑑 = ATOT− ETOT. Furthermore, each flight 
is assigned one index value per considered convective index; this 

is computed at a certain location (where the aircraft took off) and 

at a certain time (at the ETOT). Hence, one ends up with a 

sample of departure delays and associated values of convective 

indices. 

B. Construction of the prediction models 

The main hypothesis of this work is that an improvement in 

the prediction of delays at take-off can be achieved by 

considering convective indices. Therefore, innovative 

prediction models can be developed considering such indices. 

Note that, for the sake of understanding, simplicity is preferred 

to sophistication in this work, so one-index models are chosen. 

First, a deterministic approach is addressed. In other words, 

a model that provides a single prediction of the departure delay 

for an input value of a convective index. In this model, the 

sample of departure delays is disaggregated by the convective 

index value into several sub-samples, according to a set of 

intervals whose definition is given below. Then, the prediction 
of the departure delay is given by the median of each sub-

sample. Hence, a different prediction is defined for each 

convective index interval, in the manner of a look-up table. 

To define the set of intervals for each convective index, the 

following rules have been considered: 

1) The boundaries of the intervals take into account the 

order of magnitude and, more importantly, the different 

thresholds of each index. See Table II. 

TABLE II. THRESHOLDS USED IN THIS WORK. 

Index Values [Ref.] Index Values [Ref.] 

CAPE [J/kg]  250, 500 [30] BoydI [-] 95 [38] 

LI [ºC] −6, −3, 0 [36] BradI [ºC] −2 [4] 

DCI [ºC]  30 [28] RackI [ºC] 30 [4] 

TT [ºC] 45, 50, 55 [36] JeffI [ºC] 28 [28] 

KI [ºC] 20, 25, 30 [38]   

 

2) If there is only one threshold, at least two intervals are 

defined on both sides. 

3) If there is more than one threshold, the width between 

indices is used as a reference for both inner (between 

thresholds) and outer intervals. The number of outer intervals 

is at least one on each side. 

4) The first and last outer intervals coincide with the first 

and last outer intervals that, having the reference width in 3), 

can be populated with a sufficiently large sample of data. After 

their identification, they are extended towards plus/minus 

infinity to include the remaining data. 

5) In case an interval has an insufficient amount of data, it 

is merged with either the previous one or the following one, 

depending on the location of thresholds. 

Afterwards, due to the stochasticity present in the 

atmosphere and in aircraft operations, a probabilistic prediction 

model is developed. In this model, the same intervals that have 

been defined for the deterministic model are considered. The 

difference with the deterministic model is that, instead of using 
the median, the complete empirical probability distribution is 

used as a predictor. 

Although an ensemble approach with a finite number of 

members could be desirable, when comparing the predictive 

skill of probabilistic models by means of scoring functions 

(such as the Continuous Ranked Probability Score, CRPS), the 

discretisation introduced by the ensemble leads to a bias [43]. 

Therefore, in this work, the complete empirical probability 

distribution of the past departure delays is used as predictor and 

the creation of an ensemble predictor that minimises this bias is 

left for future work.  

C. Evaluation framework 

The total amount of data is divided into sets, a training set 

and a test set. The training set gathers two-thirds of the total 

(i.e., of the traffic days) and is used to define the models, 

whereas the test set gathers the remaining one-third of the total 

and serves to evaluate their performance. Because the split 
considers entire traffic days, information leakage from the 

training set into the test set is unlikely. In other words, it is 

unlikely that a flight delay is predicted by a model trained with 

flights affected by the same weather event. 

In this paper, two studies are carried out. First, the 

prediction skills of three deterministic predictors are compared: 

the flight plan, a deterministic prediction model without 

disaggregation by index value, and a deterministic prediction 

model based on the value of a single convective index. Using 

the flight plan as a predictor constitutes the baseline procedure 

and implies predicting no delay. As for the deterministic model 

without considering the convective index, it predicts the 
departure delay as the median of the whole sample of departure 

delays, disregarding the convective index value of the flight 

considered. 

To quantify the performance of each model, the selected 

property to be assessed is the median-unbiasedness; hence, the 

selected score is the median value of the prediction error: 

 MedE = 𝒎𝒆𝒅𝒊𝒂𝒏({𝑝𝑑𝑖 − 𝑎𝑑𝑖}), (1)  

where pdi is the deterministically predicted departure delay for 

flight i, and adi is the actual departure delay for flight i.  

The second study consists in comparing the prediction skill 

of the probabilistic model based on the value of a convective 
index to the deterministic one. Now, to quantify the 

performance of each model, two skill scores are used: the mean 

absolute error (MAE) for deterministic models and the mean 

CRPS (MCRPS) for probabilistic models. In symbols: 
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 MAE =
1

N
∑|pd

i
− adi|

N

i=1

, (2)  

 MCRPS =
1

N
∑∫ [Fi(y) −H(y ≥ adi)]

𝟐dy

+∞

−∞

N

i=1

, (3)  

where N is the number of flights in the test set, Fi(y) is the 

empirical cumulative distribution function for flight i according 

to its corresponding index value and evaluated at the delay y, 

and H(∙) is the Heaviside function. Note that when the sample 

space of Fi(𝑦) is a single value, the CRPS coincides with the 

absolute error. 

IV. CASE STUDY 

The selected case study corresponds to the departures over 

Europe in June and September 2019, months with high traffic 

levels and affected by thunderstorms [44]. More precisely, the 

area of interest is the intersection between the area of the 

European Civil Aviation Conference (ECAC) Member States 

and the area from 10ºW to 30ºE and 35ºN to 70ºN. 

As for the historical traffic data, around 1.55 million flights 

are considered (see Figure 1). Their corresponding ETOTs and 

ATOTs are obtained from their planned and actual trajectories, 

respectively, stored in the Eurocontrol’s R&D Data 

Archive [45]. Notice that the flight plan information provided 
by this archive corresponds to the last filed flight plan; 

therefore, the delay considered in this analysis correspond to 

delays that took place between this last filing and the actual 

take-off. 

 
Figure 1. Density plot of the considered departures. 

As for the historical weather data, the convective indices at 

a certain time instant and location are calculated by 
interpolating the hourly 3D weather information available at the 

ECMWF Reanalysis v5 [46]. In particular, the CAPE, TT, and 

KI are directly obtained from the weather dataset whereas the 

rest of indices are computed from the variables that appear in 

their definitions. 

V. RESULTS 

The results of the case study are presented and discussed in 

the following three subsections. First, the analysis of the inputs 

is carried out in section V.A. Secondly, the results of the 

deterministic approach are presented in section V.B. Lastly, the 

results of the probabilistic approach are presented in 

section V.C.  

A. Analysis of the inputs 

Firstly, for each index, the histograms of the training and 

test sets are inspected, looking rather similar. This was expected 

because the division of the sets was made at random. However, 

there are differences in the shape of the curves among indices. 

The curves for the TT, KI, RackI and JeffI are left-skewed, 

whereas the curves for the BoydI and DCI are bell-shaped, and 

the curves for the CAPE, LI and BradI are right-skewed. 

Another observation is that the peak of the curves falls on the 

non-thunderstorm occurrence side in most cases (except for the 

TT and BoydI). See the example shown in Figure 2 for the LI. 

 

Figure 2. Histograms of the training (left) and test (right) sets for the LI. 

Secondly, Table III shows, for each convective index, the 

percentage of flights that are under possible thunderstorm 

occurrence. For those indices that can determine the severity of 
the storm, severe events are considered. For clarity, the 

threshold considered for each index is included in the table. 

Results are shown for both the training set and the test set. On 

the one hand, it can be observed that, for each index, the figures 

are similar in both sets, training and test. On the other hand, the 

figures among indices are dissimilar, ranging approximately 

from 5% (DCI, BradI, and TT) to 45% (BoydI).  

TABLE III. FLIGHTS UNDER POSSIBLE THUNDERSTORM OCCURRENCE. 

Index Training set Test set 

CAPE (>500 J/kg) 10.9% 11.0% 

LI (<−3 ºC) 15.0% 16.8% 

DCI (>30 ºC) 5.9% 4.6% 

TT (>50 ºC) 6.9% 8.4% 

KI (>30 ºC) 8.6% 9.4% 

BoydI (>95) 45.8% 48.0% 

BradI (<−2 ºC) 6.5% 6.4% 

RackI (>30 ºC) 26.3% 31.2% 

JeffI (>28 ºC) 22.2% 25.6% 
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Thirdly, the median delay of the flight plan in the training 

set is 3.37 minutes; this positive value means that the flights 

tend to depart later than planned. If arranged by index intervals, 

one can analyse the behaviour of the flight plan for different 

atmospheric situations. For example, see Figure 3, which shows 
the flight plan’s median delay as a function of the LI, which 

grows towards the side of likely (severe) thunderstorm 

occurrence, from 1 min (stability side) to 8 min (instability 

side). 

 

Figure 3. Flight plan’s median delay as a function of LI (training set). 

Finally, the whole distribution of the flight plan’s delay is 

shown in Figure 4 as a function of the LI. The box represents 

25th, 50th, and 75th percentiles, and the whiskers represent 5th 

and 95th percentiles. It can be seen that not only the median but 
also the dispersion grows towards the side of likely (severe) 

thunderstorm occurrence. Measured as the difference between 

the 95th and 5th percentiles, it goes from 33 min (stability side) 

to 47 min (instability side). 

 

Figure 4. Flight plan’s delay distribution as a function of LI (training set). 

B. Deterministic approach 

First, the median deviation is checked for the deterministic 

predictions of the flight plan (abbreviated as FP), the 

deterministic predictor without disaggregation by convective 

index value (abbreviated as DP_0), and deterministic predictors 

based on convective index values (abbreviated as DP_CI). 

The prediction values of each predictor are as follows: the 

FP prediction is 0 minutes of delay; the DP_0 prediction is the 

median delay of the flight plan in the training set, i.e., 

3.37 minutes; the DP_CI prediction is the median delay of the 

flight plan in the training set for each one of the convective 

index intervals. For example, for the LI, this corresponds to the 

values presented in Figure 3, ranging from 1 min to 8 min. 

In the test set, the results are as follows. The median value 

of the prediction errors is 4.00 minutes for the FP, the DP_0 
error is 0.63 minutes, and the DP_CI errors are given in Table 

IV for each convective index. Notice that the results of the 

DP_CI can be provided for each convective index interval; 

however, for the sake of comparison, results are separated just 

into two categories: whether the index states that the occurrence 

of a (severe) thunderstorm is possible or not (using the same 

thresholds presented in Table III). For comparison, the median 

errors of FP and DP_0 in these two categories (occurrence/non-

occurrence) are also given in the table for each index. 

The following results can be highlighted from Table IV: 

• For all indices, the FP errors are larger when thunderstorms 

are possible. 

• In all cases, the DP_0 errors are smaller than the 

corresponding FP errors, and these errors are larger when 

thunderstorms are possible.  

• All DP_CI predictors outperform the FP, and the 

differences are larger when thunderstorms are possible. 

• Most of the DP_CI predictors outperform the DP_0 

predictor, except for CAPE and RackI, and the 

improvements are larger when thunderstorms are possible, 

especially for LI, BoydI and BradI. 

• The DP_CI predictors based on LI, BoydI, and BradI 

completely cancel the median bias in both cases, when 

thunderstorms are possible and when they are not. 

TABLE IV. MEDIAN ERRORS OF THE DETERMINISTIC PREDICTIONS (IN 

MINUTES). 

Index 

Possible thunderstorm 

occurrence 
Non-occurrence 

FP DP_0 DP_CI FP DP_0 DP_CI 

CAPE 5 1.633 0.075 3 −0.367 0.583 

LI 5 1.633 0 3 −0.367 0 

DCI 5 1.633 −1 3 −0.367 0 

TT 5 1.633 1 3 −0.367 0 

KI 5 1.633 −0.217 3 −0.367 0 

BoydI 4 0.633 0 3 -0.367 0 

BradI 5 1.633 0 3 −0.367 0 

RackI 4 0.633 0.767 3 −0.367 −0.233 

JeffI 4 0.633 0.133 3 −0.367 −0.300 

C. Probabilistic approach 

After the deterministic models, the probabilistic predictors 

based on convective index values (abbreviated as PP_CI) have 

been developed. Recall that, for each convective index interval, 

the complete empirical probability distribution is used as a 

predictor. For instance, for the LI, this corresponds to the 
distributions presented in Figure 4. As a reference, for the 

6



interval [−6, −3) ºC, the 5th, 25th, 50th, 75th, and 95th 

percentiles are −11, −2, 5, 13, and 32 min, respectively. 

Then, the prediction skill of each model has been tested by 

the CRPS. Figure 5 shows the case of the LI again. In this case, 

the mean CRPS steadily increases from 3.6 min (stability side) 
to 7.9 min (instability side). Therefore, the probability 

distribution is harder to capture when storms are possible. A 

similar pattern is found for the rest of indices. 

 
Figure 5. Performance of the probabilistic model for the LI (test set). 

To compare the prediction skill of the probabilistic model 

to the deterministic one, the mean CRPS (MCRPS) is checked 

against the mean absolute error (MAE). As in the deterministic 

analysis, this comparison is made for each convective index and 

two categories: whether the index states that the occurrence of 

a (severe) thunderstorm is possible or not. The results are 

presented in Table V. It can be highlighted that: 

• For all indices and both predictors, the errors are larger 

when thunderstorms are possible.  

• All PP_CI predictors outperform the corresponding DP_CI 
predictors. 

• The PP_CI predictor based on BoydI performs better than 

the other predictors, although by a small margin. 

VI. CONCLUSIONS AND FUTURE WORK 

The general framework of this research is to improve the 

flight predictability several hours in advance, when the only 

available information about the occurrence of storms is 

convective indices. In this paper, the relationships between 

departure delays and several convective indices have been 

explored by way of a historical dataset over Europe. The 

inspection of the historical data has allowed us to observe and 

quantify the evolution of the departure delays as the likelihood 
of (severe) thunderstorm occurrence increases: they grow and 

become more dispersed. 

Several simple prediction models have been developed and 

assessed, based on different convective indices and with 

deterministic and probabilistic approaches. It has been shown 

that it is possible to correct the median delay of the flight plans, 

and that the probabilistic approach significantly reduces the 

error of the prediction. In particular, Lifted, Boyden, and 

Bradbury indices look like the most promising ones.  

TABLE V. COMPARISON OF THE PREDICTION SKILL OF THE PROBABILISTIC 

PREDICTORS VERSUS THE DETERMINISTIC PREDICTORS (IN MINUTES). 

Index 

Possible thunderstorm 

occurrence 
Non-occurrence 

DP_CI 

(MAE) 

PP_CI 

(MCRPS) 

DP_CI 

(MAE) 

PP_CI 

(MCRPS) 

CAPE 9.999 7.376 8.789 6.445 

LI 9.830 7.230 8.700 6.370 

DCI 9.973 7.357 8.846 6.459 

TT 9.701 7.173 8.846 6.484 

KI 9.962 7.350 8.812 6.463 

BoydI 9.300 6.808 8.544 6.234 

BradI 9.505 7.013 8.870 6.487 

RackI 9.480 6.960 8.691 6.360 

JeffI 9.474 6.985 8.758 6.405 

 

As future work, it is of interest the development of predictors 

that make use of several convective indices simultaneously, the 

identification of the better indices for each airport, and the 
refinement of the index thresholds to exploit the full potential 

of this weather information. All these advances can be 

achieved, for example, by applying machine learning 

techniques.  

It is worth noting that the flight plans can be modified by the 

aircraft operators before departure because of, among other 

reasons, the weather at the airport. Because of these 

modifications, the errors and dispersions grow as a function of 

how far in advance the prediction is made. In this work, we have 

used the only openly accessible information, which is the last 

filed flight plan, but it would be very interesting to analyse the 
prediction as a function of time if the different flight plan 

versions are available. 

Finally, the findings of this piece of research encourage us 

to extend this approach to other flight deviations. The 

immediate next step is to determine the probability of deviation 

to an alternative airport depending on the values of the 

convective indices at the destination airport. And then, to 

determine the spatial and temporal deviations along the route as 

a function of the values of the convective indices encountered 

along the flight. 
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