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Abstract—Adverse weather conditions, such as low visibility,
can have a significant impact on airport capacity. When the
capacity reduction is substantial and traffic demand remains
high, air traffic flow management regulations are implemented to
ensure that traffic demand remains below the (reduced) capacity.
Traditionally, regulations are established by human operators
hours in advance, relying on their subjective perception of the
weather forecast and expected traffic demand. This paper intro-
duces a machine learning model explicitly designed to capture the
likelihood of air traffic flow management regulations based on
weather conditions and traffic demand. To address the inherent
noise in the dataset labels, stemming from decisions made
in advance by operators relying on uncertain data, confident
learning techniques are proposed to build a more robust and
reliable model. The robustness of the model against noise is
further enhanced by enforcing monotonic constraints during
the training process. The experiments demonstrate satisfactory
model performance for major European airports that frequently
encounter adverse weather conditions. The main objective of this
model is to assist operators in determining the effectiveness of
implementing regulations and aid airlines in predicting potential
delays or airborne holdings resulting from adverse weather.

Keywords—airport capacity; adverse weather; machine learn-
ing

I. INTRODUCTION

When the expected traffic demand exceeds the capacity of
the airport – which depends on the runway configuration and
the weather conditions –, air traffic flow management (ATFM)
regulations are frequently implemented to prevent overloads.
Flights affected by ATFM regulations are assigned ground
delays with the purpose of smoothing the traffic demand.

ATFM regulations are occasionally implemented at Euro-
pean airports. From the resurgence of air traffic following the
lifting of COVID-19 pandemic restrictions on June 15th, 2021
until May 31st, 2023, a total of 1.3K ATFM regulations were
implemented at airports within the European Civil Aviation
Conference (ECAC) region, generating 430K minutes of delay.
Notably, 13% of these ATFM regulations were caused by
adverse weather. ATFM regulations caused by adverse weather
are typically implemented well in advance, using predictions
of traffic demand and weather forecasts to anticipate potential
negative impacts on airport capacity. Needless to say, precise
and accurate estimation of airport capacity is essential for
ensuring the effective and efficient implementation of ATFM
regulations. Overestimating airport capacity may force flights
to wait in holding stacks, whereas underestimating airport
capacity may result in an excessive ATFM delays.

In recent years, modelling and predicting the impact of
weather on airport capacity has become a prominent area of
research. For example, [1] utilised artificial neural networks
(ANNs) to predict airport capacity considering weather con-
ditions. [2] also utilised ANNs, but to classify airport per-
formance into various categories. [3] quantified the influence
of convective weather on terminal area capacity. Finally, in
a recent study [4], the authors proposed a model to predict
the peak service rate, a reasonable proxy of airport capacity,
conditioned on the weather conditions and runway configura-
tion. Predicting airport capacity can assist human operators in
determining precise entry rates in the event of implementing
ATFM regulations. This paper takes an additional step by
modelling the likelihood of human operators implementing
ATFM regulations due to adverse weather at the airport.

It is important to acknowledge that the likelihood of ATFM
regulations due to weather for en-route airspace sectors has
been addressed in the existing literature. For instance, [5] pro-
posed regression and classification models to predict airspace
performance characteristics, including entry count, the number
of flights impacted by weather regulations, and the activation
of regulations due to weather. Similarly, [6] presented a
machine learning model for capturing the relationship between
traffic demand, weather and the presence of ATFM regulations.
To the best of our knowledge, the first attempt to predict ATFM
regulations at airports was recently proposed by [7]. Their
model, also built on ANNs, learned the presence or absence of
ATFM regulations at the airport from historical observations.

As mentioned earlier, ATFM regulations due to weather
are implemented with a certain look-ahead time, relying on
a weather forecast to determine the expected capacity drop.
In practice, however, the inaccuracies of weather forecasts [8]
may lead to the actual period of capacity reduction differing
from that predicted several hours ahead. To illustrate the im-
pact of this problem when training machine learning models,
let us consider a dataset comprising numerous observations. In
this dataset, each observation corresponds to a specific time
period, such as 1 hour, and includes a wide range of variables
representing weather conditions, traffic demand, and the binary
label indicating the presence (positive) or absence (negative)
of ATFM regulation due to weather. At first glance, this dataset
could be used to train a machine learning model to predict the
likelihood of ATFM regulation due to weather, conditioned on
the weather conditions and the traffic demand.



Some positive observations may be linked to regulations
that were put into place due to pessimistic weather forecasts
made several hours in advance. However, the actual weather
conditions at the time of the observation might not have been
as severe, rendering the regulation less effective than initially
planned. On the other hand, some negative observations could
be associated with periods where a regulation would have
been beneficial in preventing airborne holdings, but was not
implemented due to an overly optimistic weather forecast. By
the time the actual weather conditions became clear, it was too
late to put the regulation into effect. In essence, the dataset
labels may contain noise, with some positive observations that
should actually be negative, and vice versa. If this noise is not
addressed, it could negatively impact the training of the model,
leading it to learn incorrect or non-intuitive relationships
between weather, traffic demand, and the likelihood regulation.

A similar problem was addressed in [9], where the authors
attempted to learn the probability of flight diversion due to
weather. In that case, some of the diversions observed in the
dataset were attributed to other unpredictable reasons (e.g.,
medical emergencies) and should be considered as belonging
to the negative class when the objective was to learn the map-
ping between adverse weather conditions and the probability
of diversion due to weather. To address the noise in the labels,
confident learning (CL), a method to automatically filter out
likely mislabelled observations from the dataset, was adopted.

In this paper, CL is applied to filter out positive obser-
vations from the dataset that were regulated but likely no
longer effective, as well as negative observations where an
ATFM regulation was not implemented but could have been
beneficial. Subsequently, a machine learning model is trained
on the clean dataset to learn, with confidence, the relationship
between adverse weather conditions, traffic demand, and the
probability of ATFM regulation due to weather.

In the experiment, the potential of the proposed CL method
is demonstrated by showcasing the performance of the model
on a comprehensive two-year dataset comprising historical
traffic and weather data from Europe’s top 46 busiest airports.

II. UNCERTAINTY ESTIMATION IN DATASET LABELS

This section provides a summary of the content presented
in [9] concerning uncertainty estimation in dataset labels
using CL. For more comprehensive details about this method,
readers are encouraged to refer to the original publication.

Let [m] = {0, 1, . . . ,m− 1} denote the set of m class
labels, and X := (x, y)

n ∈
(
ℜd, [m]

)n
the dataset composed

of n observations x ∈ ℜd with associated noisy labels ỹ ∈ [m].
Our goal is to learn the mapping x → y∗ from the noisy
observations in X , being y∗ the true (and unknown) label.
Note that, in a binary classification problem, [m] = {0, 1}.

Whatever model is chosen, it can be abstracted as a paramet-
ric function, which unknown parameters θ are adjusted during
training to minimise the expected value of a loss function L:

argmin
θ

1

|X|
∑

(x,ỹ)∈X

L (ỹ,x,θ) . (1)

For classification tasks, the categorical cross-entropy is
typically used as loss function, which can be computed as:

L (i,x,θ) = − log p̂ (ỹ = i;x,θ) , (2)

where p̂ (ỹ = i;x;θ) is the predicted probability of observa-
tion x belonging to class i, given the model parameters θ.

Training the model on the noisy dataset is likely to yield
a set of parameters θ that, in attempting to learn the unpre-
dictable noise that minimises L, degrades the performance of
the model on the real mapping x → y∗. Intuitively, the noisy
observations should be ignored during the training process,
and this is exactly what CL is designed to do.

CL builds on ideas that have been developed in the literature
about noisy labels [10]–[15]. For a full coverage of theory
and proofs, the reader is referred to [16]. The remainder of
this section only summarises the fundamentals of CL that are
required to judge the results and conclusions of this study.
CL assumes that, before observing ỹ, a class-conditional noise
process (which is also unknown) maps y∗ → ỹ, such that every
label in class j ∈ [m] may be independently mislabelled as
class i ∈ [m] with probability p (ỹ = i | y∗ = j).

The first step in the CL process is to characterise the class-
conditional label noise by estimating the joint distribution of
noisy and true labels. This joint distribution is modelled as a
m×m-dimensional matrix Q that can be computed from:

1) the n×m-dimensional matrix of out-of-sample predicted
probabilities P̂ , which rows correspond to observations
and columns to class labels (e.g., P̂ i,j is the probability
of the ith observation belonging to the class j), and

2) the n-dimensional vector of (observed) noisy labels.

where P̂ can be obtained via K-fold cross-validation (CV).
This process consists of splitting the full dataset into K

disjoint subsets (also known as folds). Then, K independent
copies of the model are trained. For each copy, one of the
folds is held out for validation, and the other K − 1 folds are
used for training. Concatenating the predictions of the trained
copies of the model on the corresponding validation sets yields
the matrix of out-of-sample predicted probabilities P̂ .

From the out-of-sample predicted probabilities and the noisy
labels, it is possible to count the observations that are likely
to belong to another class. The counts are captured by the
confident joint matrix C ∈ Zm×m

≥0 .The entry at the ith row and
jth column of this matrix counts the number of observations
labelled as class i with large enough p̂ (ỹ = j;x,θ) to likely
belong to the class j according to a per-class threshold tk:

Ci,j =

∣∣∣∣∣
{
(x, ỹ) ∈ Xi : j = argmax

k∈[m′]

p̂ (ỹ = k;x,θ)

}∣∣∣∣∣ ,
(3)

where Xi = {(x, ỹ) ∈ X : ỹ = i} is the subset of observa-
tions labelled as class i, i.e.:

[m′] = {k ∈ [m] : p̂ (ỹ = k;x,θ) ≥ tk} , (4)
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and the per-class threshold tk is the expected (average) self-
confidence of class k:

tk =
1

|Xk|
∑

(x,ỹ)∈Xk

p̂ (ỹ = k;x,θ) . (5)

Then, the confident joint matrix C has to be calibrated so
that row-sums match the observed marginals, i.e:

C̄i,j =
Ci,j∑

j′∈[m] Ci,j′
|Xi|. (6)

Finally, the joint distribution of noisy and true labels can be
estimated by normalising the calibrated confident joint matrix:

Q̂i,j =
C̄i,j∑

i′∈[m]

∑
j′∈[m] C̄i′,j′

. (7)

Following the estimation of Q, the next step is to identify
the noisy observations and remove them from X . Any rank
and prune strategy can be adopted to identify noisy obser-
vations. The reader is referred to [16] for a comprehensive
description of the main rank and prune strategies. In this
paper, all observations counted in the off-diagonals of C have
been considered as noisy. [16] demonstrated that this strategy
(named confident learning) has attractive mathematical prop-
erties and yields excellent results in many applications.

After removing the noisy observations, the last step consists
of training a copy of the model with the clean dataset. During
training, one must account for missing data by weighting
each observation in the loss function Eq. (2) according to the
corresponding per-class weight ωi =

∑
j∈[m] Q̂j,i/Q̂i,i, i ∈ [m]:

L (i,x,θ) = −ωi log p̂ (ỹ = i;x,θ) . (8)

As with any machine learning problem, the train and test
sets must be handled with caution in order to avoid informa-
tion leakage. [16] suggested to clean the train and test sets
independently when using CL. Specifically, the matrix P̂ for
determining the matrix Q̂ of the train set should be computed
by using the K-fold CV method as explained above. For the
test set, P̂ should be generated from the probabilities predicted
by a copy of the classifier trained on the entire noisy train set.

III. EXPERIMENT

In this paper, CL was employed to train a robust machine
learning model for capturing the likelihood of ATFM regu-
lation due to weather. This section outlines the experimental
setup, with Section III-A presenting the various data sources,
Section III-B providing details about the noisy dataset X , and
Section III-C presenting the machine learning model.

A. Data sources

The dataset was created by merging different types of data,
including flight schedules, ATFM regulations, and meteoro-
logical reports. The rest of this subsection will provide further
information about their sources and/or the processing methods.

1) Traffic demand: The EUROCONTROL’s Aviation In-
telligence Unit (AIU) kindly provided airport operator data
flow (APDF) to compute the scheduled traffic demand (i.e.,
the scheduled number of hourly arrivals and departures). The
APDF is established for 90 airports (as of April 2020) and
includes extensive data for every flight, such as the scheduled
and actual time of a movement (take-off time for departures
and landing time for arrivals), the type of movement (arrival
or departure), and the runway used. The APDF is provided
monthly by the airport operators and integrated into a common
database after undergoing data quality checks.

2) ATFM regulations: The start and end times of each
regulation triggered by adverse weather and applied at any of
the airports considered in the experiment during the analysed
time period were extracted from EUROCONTROL’s archive.

3) Meteorological reports: Meteorological aerodrome re-
ports (METARs) from SADIS were used as weather obser-
vations. The METARs were processed using metafora1, an
open-source tool designed to transform textual meteorological
reports into a vector representation including numerical (e.g.,
visibility, ceiling) and categorical (e.g., presence of thunder-
storms or snow) features suitable for many machine learning
models, particularly those based on decision trees.

B. Dataset

The dataset considers the Europe’s top 46 busiest airports
during 2022 and covers the period from June 15th, 2021 to
May 31st, 2023. Each observation in the dataset corresponds
to a 1-hour time window, spanning from 7AM to 10PM local
time. These time windows start 15 minutes after the previous
one. Each observation contains a vector of input features (or
predictors), x, along with the corresponding target value, y.

For the train-test split, the roughly 2M observations were
randomly assigned, with 1.6M (80%) allocated to the train set
and 397K (20%) to the test set. However, to avoid information
leakage from the train set into the test set, a constraint was
implemented to guarantee that all observations pertaining to
the same airport and date (e.g., Zurich airport on June 15th,
2021) are exclusively assigned to either the train or test set.

Table I provides a basic yet revealing description of the
categorical and numerical features that compose x present in
both the train and test sets. For the categorical features, the
table includes the percentage of missing values, the number
of unique categories, the most frequent (top) category, and the
frequency of the top category. As for numerical features, the
table displays the percentage of missing values along with the
5th, Median, and 95th percentiles. The target value of each
observation, y, represents the presence (positive) or absence
(negative) of ATFM regulation due to weather during the
corresponding time window. The number of positive observa-
tions in the train and test sets is 20.3K and 5K, respectively,
representing a low proportion (1.3%) and, therefore, a highly
imbalanced dataset. This imbalance and its implications for
the model will be discussed in more detail later in the paper.

1https://github.com/ramondalmau/metafora
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TABLE I: DESCRIPTION OF THE CATEGORICAL (TOP) AND NUMERICAL (BOTTOM) FEATURES IN THE TRAIN AND TEST SETS.

Set Train (1.6M observations) Test (397K observations)
Metric Missing Unique Top Top freq. Missing Unique Top Top freq.
Feature

Airport 0.00 46 0.02 0.00 46 0.02
Wind compass 0.00 17 VRB 0.09 0.00 17 VRB 0.09

CAVOK 0.00 Boolean False 0.64 0.00 Boolean False 0.64
Precipitation 0.00 Boolean False 0.91 0.00 Boolean False 0.91
Obscuration 0.00 Boolean False 0.96 0.00 Boolean False 0.96

Other weather 0.00 Boolean False 0.99 0.00 Boolean False 0.99
Thunderstorms 0.00 Boolean False 0.99 0.00 Boolean False 0.99

Freezing 0.00 Boolean False 0.99 0.00 Boolean False 0.99
Snow 0.00 Boolean False 0.99 0.00 Boolean False 0.99

Cumulonimbus 0.00 Boolean False 0.95 0.00 Boolean False 0.95
Day of week 0.00 7 Thursday 0.14 0.00 7 Monday 0.15

Hour 0.00 19 10 0.06 0.00 19 8 0.06
Month 0.00 12 March 0.09 0.00 12 December 0.10

Metric Missing 5th perc. Median 95th perc. Missing 5th perc. Median 95th perc.
Feature

Scheduled # of arrivals 0.00 3 11 32 0.00 3 11 32
Scheduled # of departures 0.00 2 10 34 0.00 2 10 33

Wind speed (m/s) 0.00 1.00 3.60 8.20 0.00 1.00 3.60 8.20
Wind gust (m/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Visibility (m) 0.00 6K 10K 10K 0.00 6K 10K 10K
Ceiling (m) 0.00 244 3K 3K 0.00 244 3K 3K

Sky cover (oktas) 0.41 2⁄8 6⁄8 8⁄8 0.41 2⁄8 6⁄8 8⁄8

C. Model

Many machine learning models can be configured to handle
binary classification tasks, from simple logistic regression to
complex ANNs architectures. The model proposed in this
study is based on ensemble methods, which produce a strong
learner from a group of weak learners. Boosting is a well-
known ensemble method that involves training a series of weak
learners (such as rudimentary decision trees) sequentially. The
training observations for the next learner in traditional adaptive
boosting (AdaBoost) [17] are weighted based on how well the
previous learners performed, i.e., observations that correspond
to wrong predictions are assigned more weight in order to
concentrate the model’s attention on correcting them. Gradient
boosting differs from AdaBoost in that, instead of assigning
weights to observations based on performance, a new learner
is trained at each iteration to fit the residual errors of the
preceding learners. The entire ensemble is known as GBDTs
model when decision trees are used as weak learners.

Gradient-boosted decision trees (GBDTs) can outperform
ANNs in many practical applications, notably on tabular
datasets where each row corresponds to one observation and
each column represents a feature [18]. Furthermore, GBDTs
are easier to interpret than ANNs and have very attractive
properties such as the ability to handle missing data and
categorical features with high cardinality (e.g., the airport).
The decision to adopt the GBDTs model for addressing
the specific problem in this study is underpinned by these
compelling benefits. In this paper, the Microsoft’s lightGBM
implementation of GBDTs has been selected. The reader is
referred to [19] for more information about the distinctive fea-
tures of lightGBM when compared to other implementations
of GBDTs like XGBoost [20] or CatBoost [21].

Fine-tuning the hyper-parameters of a GBDTs model pri-
marily revolves around adjusting the number of decision trees,
along with the maximum depth and number of leaves of each
tree. To identify the optimal hyper-parameter configuration for
the GBDTs model in terms of average precision, a grouping
K-fold CV approach with K = 5 was employed. Akin to the
train-test split, the train set was divided into the 5 folds while
ensuring that all observations belonging to one airport during
one date remained exclusively within a single fold.

In some problems, the relationship between certain predic-
tors and the target is known in advance. For instance, it is well-
known that, all else being equal, the lower the visibility, the
higher the probability of regulation. Ideally, the model should
autonomously learn these relationships. In practice, the noise
in the dataset may lead the model to learn relationships that are
not correct. For instance, if regulations were (by coincidence)
never active in a given airport when thunderstorms were
present, the model may interpret that thunderstorms decrease
the probability of regulation. A human can easily identify this
kind of misinterpretations, but a model requires guidance.

A simple and effective approach to address this issue
consists of enforcing monotonic constraints, which ensure that
certain predictors exhibit a monotonic relationship with the
target. Two types of monotonic constraints are possible:

f(x1, x2, . . . , x, . . . , xd) ≤ f(x1, x2, . . . , x
′, . . . , xd) (9)

whenever x ≤ x′ is a positive constraint; or

f(x1, x2, . . . , x, . . . , xd) ≥ f(x1, x2, . . . , x
′, . . . , xd) (10)

whenever x ≤ x′ is a negative constraint.
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TABLE II: BINARY CLASSIFICATION METRICS FOR THE GBDT MODEL TRAINED ON CLEAN DATA, EVALUATED ON BOTH NOISY
AND CLEAN TEST SETS FOR AIRPORTS WITH OVER 1% POSITIVE OBSERVATIONS. PARENTHESES IN THE NOISY TEST SET INDICATE
PERFORMANCE OF A MODEL TRAINED WITHOUT CL OR MONOTONE CONSTRAINTS. RESULTS FOR THE NOISY MODEL ON THE CLEAN
TEST SET ARE OMITTED DUE TO POTENTIAL INFORMATION LEAKAGE, AS A SIMILAR MODEL WAS USED TO FILTER OUT THE NOISY
OBSERVATIONS (SEE LAST PARAGRAPH OF SECTION II FOR FURTHER DETAILS).

Test set Clean (393K observations) Noisy (397K observations)
Metric Proportion of positives AP ROC AUC Precision Recall AP ROC AUC Precision Recall
Airport

EDDF 0.02 0.51 0.96 0.75 0.31 0.37 (0.33) 0.90 (0.86) 0.46 (0.41) 0.25 (0.21)
EGKK 0.02 0.46 0.95 0.74 0.29 0.33 (0.26) 0.91 (0.86) 0.40 (0.36) 0.27 (0.23)
EGLL 0.06 0.68 0.96 0.84 0.39 0.46 (0.43) 0.92 (0.90) 0.52 (0.47) 0.34 (0.29)
EGSS 0.01 0.40 0.94 0.62 0.27 0.15 (0.14) 0.89 (0.88) 0.26 (0.26) 0.20 (0.19)
EHAM 0.07 0.72 0.94 0.82 0.53 0.53 (0.49) 0.89 (0.86) 0.56 (0.47) 0.48 (0.44)
EIDW 0.01 0.88 0.99 0.85 0.74 0.67 (0.59) 0.97 (0.93) 0.68 (0.62) 0.61 (0.60)
LFPG 0.01 0.69 0.99 0.74 0.55 0.45 (0.43) 0.96 (0.94) 0.55 (0.52) 0.41 (0.38)
LFPO 0.03 0.70 0.98 0.80 0.49 0.41 (0.40) 0.88 (0.87) 0.40 (0.42) 0.41 (0.40)
LPPR 0.02 0.78 0.99 0.81 0.65 0.52 (0.46) 0.97 (0.96) 0.42 (0.37) 0.62 (0.54)
LPPT 0.04 0.53 0.91 0.63 0.47 0.25 (0.21) 0.84 (0.83) 0.25 (0.24) 0.43 (0.41)
LSZH 0.04 0.80 0.98 0.88 0.63 0.57 (0.49) 0.95 (0.91) 0.55 (0.49) 0.59 (0.49)
LTFM 0.03 0.82 0.98 0.95 0.64 0.45 (0.43) 0.70 (0.68) 0.81 (0.79) 0.36 (0.35)

Please note that monotonic constraints can only be ap-
plied to numerical and boolean variables. In this experiment,
positive monotonic constraints were applied to all boolean
variables except for CAVOK, for which a negative constraint
was enforced. For the numerical features, positive monotonic
constraints were applied to all variables except for visibility
and ceiling, which were assigned negative constraints.

IV. RESULTS

This section presents the results of the experiment after
training the GBDTs model on the dataset from the preceding
section. Section IV-A discusses the results obtained from the
noisy characterisation process of the labels in the dataset. Sec-
tion IV-B showcases the model’s performance on the noisy and
clean test sets for airports with more than 1% of observations
belonging to the positive class. Finally, Section IV-C employs
feature attribution methods to interpret the model’s decisions.

A. Noise characterisation

As explained in Section II, the matrix of out-of-sample
predicted probabilities P̂ and the vector of noisy labels ỹ
can be used to characterise the class-conditional label noise.
The negative and positive per-class thresholds calculated with
Eq. (5) to determine which cell of the confident joint matrix
C each observation is assigned to are as follows:

t0 = 0.99; t1 = 0.77,

which suggest that the model was more confident in true nega-
tive observations (i.e., correct prediction about the absence of
regulation) than in true positive observations. The confident
joint matrix, C, for the train and test sets are, respectively:

C train =

[
1.4M 11K
5.3K 6.2K

]
; C test =

[
358K 2.9K
1.2K 1.6K

]
,

The analysis revealed that 5.3K out of 20.3K regulated
1-hour windows and 11K out of the 1.6M non-regulated
windows in the train set were mislabelled.

To prevent the model from learning noise, these observa-
tions were pruned during training, as described in Section II.
In the test set, 1.2K out of 5K regulated 1-hour windows and
2.9K out of the 395K non-regulated windows were identified
as mislabeled and subsequently removed. This resulted in a
clean test set used for the performance evaluation that follows.

B. Performance metrics

Threshold metrics are used to summarise the fraction of
times when a predicted class (positive or negative) does not
match the actual class. Well-known threshold metrics are the
precision and the recall. The precision answers to the question:
what proportion of positive predictions was actually correct?,
whereas the recall answers to the question: what proportion
of actual positives was predicted correctly?.

In a binary classification task, a certain cut-off determines
whether the prediction belongs to the positive or negative class
based on the predicted probability. The default value for the
cut-off is 0.5. This cut-off, however, is not fixed and can be
fine-tuned to adjust the performance of the model: reducing its
value would increase the recall while lowering the precision
and vice versa, and this is exactly what rank metrics capture.

The receiver operating characteristic (ROC) and the
precision-recall (PR) curves are two diagrams widely used to
assess the performance of binary classifiers. Essentially, the
ROC curve captures the trade-off between the true positive rate
and the false positive rate for different cut-offs. Analogously,
the PR curve describes the trade-off between the precision and
the recall. Furthermore, each curve can also be aggregated with
a unique area under the curve (AUC) score.

When dealing with imbalanced datasets, the ROC AUC
score can report an overly optimistic view of performance.
In this situation, the PR AUC score (also known as average
precision, or AP) is often preferred because it focuses on the
minority class. Table II shows the threshold (assuming a cut-
off of 0.5) and rank metrics of the GBDTs model trained on
the clean train set, evaluated on both noisy and clean test sets
for airports with more than 1% of positive observations.
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(a) Precision-recall (b) Receiver operating characteristic

Figure 1: Precision-recall and receiver operating characteristic diagrams in the clean test set.

For airports with a small number of positive observations
(lower than 1%), the classification metrics are not statistically
representative and have been omitted from the table for the
sake of clarity in the interpretation and discussion of results.

Based on the metrics presented in Table II, the performance
on the noisy test set indicates a scope for improvement, except
for LTFM, which demonstrates relatively acceptable precision
and recall. Notably, the performance is particularly modest for
EGSS and LPPT, as both airports exhibit a precision of around
25% and a recall well below 50%. This modest performance
highlights that the periods when an ATFM regulation due
to weather was observed are not always correlated with the
observed weather and scheduled traffic demand. Consequently,
a machine learning model faces challenges in (1) learning the
relationship between input features and the target value and
(2) dealing with the noise of uncertain labels, leading it to
learn patterns that may not be entirely correct.

Table II also demonstrates that the model’s performance,
when trained on the clean train set and evaluated on the
clean test set, is significantly improved. Notably, the precision
remains in the range of 62% to 95%, and the recall ranges from
27% to 74%. Remarkably, the removal of noisy labels from
the dataset with CL yields a more pronounced improvement
in precision compared to recall. Results also show that, even
in the noisy test set, the model trained with CL and monotone
constraints outperforms a model trained on the noisy data
without monotone constraints (i.e., the classical approach).

The results suggest that by removing from the dataset the
observations in which a regulation was active but maybe was
not fully effective, as well as the observations in which a
regulation was not active but could have been beneficial –
based on evidence from the 1.6M observations used for train-
ing –, the model is capable of effectively capturing the actual
relationship between weather conditions, scheduled demand,
and the likelihood of regulation due to adverse weather.

Figure 1 complements Table II by illustrating the PR and
ROC curves on the clean test set. As expected, the ROC
curve appears very close to that of a perfect classifier, but
this outcome is not surprising given the highly imbalanced
dataset, leading to an overly optimistic ROC curve.

On the other hand, the PR curve provides a more equitable
illustration of the model’s performance. Notably, the PR
curve reveals a region with precision close to 100%, where
decreasing the cut-off increases the recall to approximately
25% without significantly penalising precision. For the default
cut-off of 0.5, the overall precision and recall in the clean
test set, considering the 393K observations from 46 airports
after removing potential noise, are 77% and 44%, respectively.
These metrics in the noisy test set (i.e., considering the 397K
observations), are much worse: 42% and 33%, respectively.

C. Model interpretation

The preceding section suggested that the model effectively
learned the relationship between weather conditions, scheduled
traffic demand, and the likelihood of ATFM regulation due
to weather from the observations in the clean train set. This
section takes it a step further by interpreting the predictions
of the model for all observations in the clean test set.

Principles from game theory can be used to interpret the pre-
diction of a machine model for a given observation, assuming
that each feature is a player of a game and the output of the
model (i.e., the prediction) is the payout. Let us consider the
following scenario: all players participate in the game, and
they join the game in a random order. The attribution of a
player is the average change in the payout received by players
in the game when he or she joins them. More formally, the
Shapley value ϕi(x,θ) of the feature i for a given input vector
x and model parameters θ is defined as the expected marginal
contribution of i to the prediction across all possible feature
permutations [18]. In other words, the Shapley value quantifies
how much each feature contributes to the model output on
average when considering all possible subsets of features that
include i. At present, Shapley values are very popular.

In practical applications, computing Shapley values pre-
cisely is a computationally intensive task. To address this
issue, a new explanation method called TreeExplainer
has been developed for tree-based models, such as GBDTs.
The TreeExplainer can approximate Shapley values in
polynomial time and was used in the paper referenced. Further
details about the TreeExplainer can be found in [18].
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Figure 2 shows the Shapley values distribution for the
features related to weather of the GBDTs model, considering
all observations in the clean test set. The y-axis indicates the
name of the features, in order of mean absolute Shapley value
from the top to the bottom. Each dot in the x-axis shows
the Shapley value of the associated feature on the prediction
for one observation, and the colour indicates the magnitude
of that feature: red indicates high, while blue indicates low.
For categorical features, the colour has no meaning. Note that
the Shapley values are expressed in logit, not in terms of
probability. In any case, a positive Shapley value indicates that
the feature contributes to the prediction for the observation by
increasing the probability relative to the expected value in the
train set, while a negative value indicates the opposite.

Figure 2: Distribution of Shapley values in the clean test set.

According to Fig. 2, the GBDTs model, trained on the clean
train set and subject to monotone constraints, has learned pat-
terns that are intuitive and evident from a human point of view.
For instance, when the ceiling and visibility are considered
okay (i.e., CAVOK status is true – red), the probability of
ATFM regulation due to weather decreases significantly. The
impact of wind speed is negative when its value is low but
becomes very positive (up to +8) in the presence of strong
winds. The opposite reasoning applies to visibility and ceiling.
As expected, high visibility and ceiling have a negative, if not
null, impact on the model’s prediction.

Regarding other boolean features, such as the presence of
cumulonimbus or snow, all tend to increase the probability
of ATFM regulation due to weather when their status is
true, albeit with very different magnitudes. For instance, the
presence of precipitation has a marginal impact on the model’s
output, whereas snow could increase the logit up to 5 for some
specific predictions. Notably, the Shapley value of a feature in
an observation also depends on the values of the other features.

Figure 2 also demonstrates the effect of the monotone
constraints, which guarantee a consistent attribution of features
and result in a model that is robust to noise in the train set.

D. Illustrative example

This section illustrates the usability of the model with a
specific example, showcasing the predictions at Zurich airport
on 14th February 2023. It is important to note that this specific
combination of airport and date belongs to the test set.

Figure 3 shows the predicted probability of ATFM regu-
lation due to weather (red) and actual ATFM regulation due
to weather activation status (blue) during that day. On this
specific day, the morning and evening were impacted by severe
obscuration caused by freezing fog. This is supported by the
meteorological reports displayed in Table III.

Figure 3: Predicted probability of ATFM regulation due to weather (red)
and actual ATFM regulation activation status (blue) at Zurich airport on 14th

February, 2023.

TABLE III: METEOROLOGICAL REPORTS AT ZURICH AIRPORT ON
14TH FEBRUARY, 2023. THE METEOROLOGICAL REPORTS WHERE
THE VISIBILITY WAS LOWER THAN 800 M (I.E., CAT II/IIIA/IIIB
PRECISION APPROACH CONDITIONS) ARE HIGHLIGHTED IN BOLD.

METAR LSZH 142150Z VRB02KT 0400 FZFG VV002 M01/M01 Q1032
METAR LSZH 142120Z VRB02KT 0250 FZFG VV001 M01/M01 Q1032
METAR LSZH 142050Z VRB02KT 0200 FZFG VV001 M01/M01 Q1032
METAR LSZH 142020Z 31003KT 0300 BCFG VV002 M02/M02 Q1033
METAR LSZH 141950Z 31003KT 4500 BR FEW002 M02/M02 Q1033
METAR LSZH 141920Z 29002KT 5000 BR NSC M02/M03 Q1033
METAR LSZH 141850Z VRB01KT 6000 NSC M00/M01 Q1033
METAR LSZH 141820Z 31005KT 7000 NSC M00/M01 Q1033
METAR LSZH 141750Z 32003KT 8000 NSC M00/M01 Q1033
METAR LSZH 141720Z 32004KT 9000 NSC 00/M02 Q1033
METAR LSZH 141650Z 33004KT 9000 NSC 01/M01 Q1033
METAR LSZH 141620Z 35004KT 9000 NSC 04/00 Q1033
METAR LSZH 141550Z 32004KT 9000 NSC 05/01 Q1033
METAR LSZH 141520Z 31004KT 9000 NSC 05/01 Q1033
METAR LSZH 141450Z 30004KT 270V340 9000 NSC 05/01 Q1033
METAR LSZH 141420Z 30004KT 270V330 8000 NSC 04/01 Q1033
METAR LSZH 141350Z 29005KT 260V330 8000 NSC 04/01 Q1033
METAR LSZH 141320Z 30005KT 260V320 8000 NSC 04/00 Q1034
METAR LSZH 141250Z 28005KT 250V320 8000 FEW007 03/01 Q1034
METAR LSZH 141220Z VRB03KT 6000 SCT005 SCT008 02/00 Q1034
METAR LSZH 141150Z VRB02KT 5000 BR FEW004 BKN006 02/M00 Q1035
METAR LSZH 141120Z VRB02KT 4000 BR FEW003 BKN005 01/M01 Q1035
METAR LSZH 141050Z VRB03KT 2500 BR BKN003 OVC005 01/M00 Q1036
METAR LSZH 141020Z VRB02KT 2500 BR BKN003 OVC004 00/M01 Q1036
METAR LSZH 140950Z VRB01KT 1800 PRFG OVC003 M00/M01 Q1036
METAR LSZH 140920Z VRB03KT 1200 PRFG VV003 M00/M01 Q1036
METAR LSZH 140850Z VRB01KT 0900 FZFG VV002 M00/M01 Q1036
METAR LSZH 140820Z VRB01KT 0600 FZFG VV002 M01/M01 Q1037
METAR LSZH 140750Z VRB02KT 0600 FZFG VV002 M01/M01 Q1037
METAR LSZH 140720Z VRB03KT 0600 FZFG VV002 M01/M01 Q1037
METAR LSZH 140650Z VRB02KT 0600 FZFG VV002 M01/M01 Q1037
METAR LSZH 140620Z VRB02KT 0700 FZFG VV003 M01/M01 Q1036

According to Fig. 3, the model effectively captured the
ATFM regulation due to weather active from 6AM to 11AM.
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It is interesting to observe how the predicted probability
decreases from 9AM to 11AM as the visibility conditions
slowly improve. The model also predicted a small probability
of ATFM regulation due to weather from 8PM to 9PM,
approximately, driven by a significant drop in visibility. Even
though the weather conditions were similar, if not worse, than
during the morning period, the probability of ATFM regulation
due to weather was much lower due to the low traffic demand.
The model learned from historical data that when the demand
is low, no ATFM regulation is required even with bad weather.

V. CONCLUSIONS

This paper presents a machine learning model explicitly
designed to capture the likelihood of air traffic flow manage-
ment (ATFM) regulations due to weather based on weather
conditions and traffic demand. To address the inherent noise in
the dataset labels, arising from decisions made in advance by
operators using uncertain information, confident learning tech-
niques are proposed. The experiments demonstrate satisfactory
model performance for major European airports that frequently
encounter adverse weather conditions. The model effectively
captures the relationship between weather conditions, traffic
demand, and the likelihood of ATFM regulations.

The main objective of this model is to assist operators in de-
termining the effectiveness of implementing regulations and to
aid airlines in predicting potential delays or airborne holdings
resulting from adverse weather. By enhancing the estimation of
ATFM regulation likelihood, the model offers a valuable tool
for operators to make more informed decisions and optimise
airport operations during adverse weather conditions.

The integration of machine learning techniques, confident
learning, and monotonic constraints results in a robust and re-
liable machine learning model capable of accurately estimating
the probability of ATFM regulations due to weather. Confident
learning and monotone constraints, however, are not restricted
to this particular application, and the authors encourage ma-
chine learning practitioners in air traffic management (ATM)
to implement these methods whenever facing noise in the data.
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