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Abstract—Transport infrastructures require continuous and
efficient inspection techniques to ensure their safety. Drones
are one of the latest technologies that can be used to get a
deep picture of the infrastructure. However, inspecting large
infrastructures such as railways and bridges demand smart drone
solutions that operate cooperatively and recharge autonomously
while flying in a controlled framework. In this paper, we present
the concept of the Horizon 2020 project Drones4Safety and its
drone ecosystem for intelligent and autonomous inspection of
linear infrastructures such as railways and bridges and discuss
its integration with the U-Space.
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I. INTRODUCTION

The Drones4Safety (D4S) project is 3-years Horizon 2020
project started in June 2020 and aims to increase the safety of
the European civil transport system by developing a system of
autonomous, self-charging, and cooperative drones to inspect
a big portion of transportation infrastructures in a continu-
ous operation. D4S solutions utilize the existing energized
infrastructures as overhead power or rail lines to charge its
drones to operate for a longer time. It gets information about
the applicable transport infrastructure to be inspected from
open maps and satellite data and forwards that information
to its drones to conduct their autonomous and collaborative
inspection missions.

The D4S conceptual view is depicted in Fig. 1 and shows
a set of drones that have a self-charging capability to har-
vest energy from overhead power line cables (transmission
lines/railway catenary lines). The drones work autonomously
in a swarm and apply sensor fusion and onboard signal
processing techniques to fly, inspect, and recharge. The col-
lected images are checked using advanced AI algorithms that
are trained against faults in the transportation infrastructure
(railways/bridges) data. The drones are connected through
the cloud to the end-user in which inspection services such
as mission control, fault detection reports, and swarm fleet
management are provided.

The D4S project’s main objectives are:
• providing an autonomous drone platform for a coopera-

tive drone operation for inspections and recharging,
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Figure 1. Conceptual view of the Drones4Safety project.

• developing a solution for harvesting energy from AC and
DC overhead lines for continuous drone operations,

• increasing inspection efficiency by using AI algorithms
for fault detection,

• building a cloud system for autonomous navigation and
mission control.

These features will enable drones to inspect linear railway
and bridge infrastructures across the EU member states while
benefiting from the recommendations by the European Union
Aviation Safety Agency (EASA), highlighted in [1], for having
common European rules on drones to ensure safe, secure, and
sustainable operations.

Our analysis predicts that the D4S system can inspect the
whole European electrical railway system and a big portion
of the European bridges that are near the high-voltage and/or
railway cables. Table I shows the number of bridges (also
in %) that can be inspected by the D4S project in the EU
as a whole and in Italy as a target country, chosen due to
the national demand that was raised after the Genova bridge
collapse in August 2018. Considering normal drones can fly
for around 20 km per charge, thus, a drone can reach a part
of an infrastructure, inspect it, and go back to recharge.

Nearest powerlines 1km 3km 7km
Bridges in EU 228,805 (15.2%) 1,070,304 (71.1%) 1,371,241 (91.1%)
Bridges in Italy 14,946 (38.7%) 28,557 (73.9%) 36,498 (94.5%)

TABLE I. NUMBER OF BRIDGES THAT CAN BE INSPECTED

II. HARDWARE/SOFTWARE

The drone system for autonomous recharging from power-
lines is utilizing data from a multitude of sensors, including



mmWave, camera, and magnetometer sensors. The sensory
data is fused onboard to accurately detect and estimate the 3D
pose of the powerline. Fig. 2 shows the full hardware software
architecture of the D4S drones. The following sections explain
in details its sub-components.

Figure 2. Hardware/Software architecture of the D4S project drones

A. Onboard Computing

The onboard processing is utilizing the cutting-edge Zynq
UltraScale+ Multiprocessor System on a Chip (MPSoC) series
from Xilinx which combined FPGA fabric with a CPU. This
enables the designer to run non-real-time critical software
on the Application Processing Unit (APU) using an Operat-
ing System (OS) such as Linux; to design real-time critical
software for the Real-time Processing Unit (RPU) to run
bare-metal or on a real-time OS, and finally to design any
application-specific hardware acceleration and a custom logic
circuit for the FPGA chip. Additionally, the MPSoC uses
the AMBA AXI open data communication standard for intra-
chip communication. This enables the designer to build an
FPGA circuit that maps into the memory of the CPU for easy
integration of implemented hardware acceleration cores in the
application AXI.

The onboard computer plans a flight path in real-time to
guide the drone to the desired recharge point. Read more about
the drone onboard computer in [2], [3].

B. Software Layers

The drone software architecture is composed of a network
of modules that support autonomous inspection services in
both practical environments and simulated platforms [4]. The
architecture divides a High-level Controller (HC) and a Low-
level Controller (LC) deployed on separate hardware blocks.
The LC deals with standard flight control by using the
PX4 autopilot flight stack. The HC offers autonomous flight
and inspection services based on the second generation of
the open-source Robot Operating System (ROS) middleware,
ROS 2 [5]. ROS 2 was redesigned from the ground up to
solve many challenges of modern robotics. ROS 2 utilizes

the open standard for communications, Data Distribution Ser-
vice (DDS), to obtain best-in-class security, embedded and
real-time support, multi-robot communication, and operations
in non-ideal networking environments for building reliable
robotics systems.

The drone software architecture integrates ROS 2 nodes into
the drone system making it easier to focus on application-
specific software development.

C. Powerline Detection System

The powerline detection system relies on mmWave radar
measurements and RGB camera images. The sensors are
mounted on the drone such that they look upwards toward the
overhead cables. The mmWave sensor returns a few points
in 3D space that represent the cable’s position relative to
the drone. The mmWave measurements do not inform about
the cable direction, therefore, the camera is used to extract
directional information about the powerlines by applying a
Hough-lines algorithm on its data. The algorithm is accelerated
on the FPGA to speed up the perception system. Fig. 3 shows
a prototype of the D4S drones. The details of the perception
system and data processing are presented in [6].

Figure 3. A prototype of the autonomous drone for cable detection

III. SWARMING

Swarming concerns the coordinated operation of multiple
drones to accomplish large-scale, complex missions. The ben-
efits of swarming include improved fault tolerance, increased
performance, reliability, and simplicity in design. Small and
simple drones will be easier and cheaper to implement than
having only one single powerful drone [7].

A. Drone Communication

Resilient and robust wireless communication is a prerequi-
site for an efficient swarm operation. The system architecture
of the Unmanned Aerial System (UAS) segregates communi-
cation according to three distinct interfaces: Drone-to-Ground
(D2G), Drone-to-Drone (D2D), and Drone-to-Cloud (D2C)
communication [8]. The D2G communication requires robust,
long-range wireless communication to ensure timely telemetry
data from drones. The data rate is traded off with the range
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of the communication and radio standards such as LoRa,
therefore, becoming a suitable technology choice. LoRa can
support communication of up to 20 kbps and maximum
distances up to 11.5 km with LoRa communication operating
in the 868 MHz radio band [9]. Drones operating in swarms
allow shorter-range wireless technology to be chosen for D2D
communication. A higher data rate can be achieved to serve
the coordination protocols, which allows for shorter latency
in communication. Wireless mesh networking with WiFi is a
suitable technology for the D2D communication supports data
rates of several Mbps with a latency of less than 30 ms. D2C
communication offers access to the mission control function
running in a private cloud over the Internet. Drones may be
equipped with 4G/5G mobile communication capabilities and
can exchange information with cloud services through the
terrestrial mobile network including a continuous upload of
inspection images.

B. Algorithms for Swarming

The autonomous inspection process is supported by a set
of algorithms that allow drones of the swarm to interact
cooperatively. In the following, we will address essential
algorithms for efficient drone swarm operation.

1) Task allocation: Task allocation concerns the assignment
of a set of tasks to a set of drones in such a way that it
optimizes the overall system performance subject to a set of
constraints [7]. Our inspection mission is composed of an
aggregate of tasks that can be allocated to drone members of
the swarm. Tasks are constructed to be feasible and attainable
for a single member of the swarm. A task is represented
as a data structure with a start- and end-location, actions to
be taken by the drone, and a specification of sensors and
actuator settings. A drone will execute the allocated tasks
autonomously. Several options for a task allocation algorithm
exist, such as the Fair Division Problem, Optimal Assignment
Problem, and Multiple Traveling Salesman Problem [7]. Our
inspection mission consists of single-robot tasks. This means
that each drone is capable of executing at most one task at a
time and that each task requires exactly one drone.

2) Cooperative motion path planning: Motion path plan-
ning algorithms are used to generate geometric properties of
a path from a start to an end-location, passing through pre-
defined intermediate points. To control a swarm, a multi-drone
motion path planning is required to generate safe trajectories
respecting the constraints of the system such as keeping
distances between a minimum and a maximum value to avoid
collisions and still maintain the coherence of the swarm. We
formulate the multi-drone motion path planning problem as a
cooperative decision-making process modeled by game theory.
To approach efficiency optimization for a swarm, the concept
of the Generalized Nash Equilibrium Problem (GNEP) is
used [10]. The computation of the equilibrium guides each
drone in the swarm to calculate its control inputs subjected
to the dynamic limitations of the drone and obstacles of the
environment. Swarm members share the motion strategies to
achieve coordination between drones. The equilibrium calcu-

lation achieves a strategy that approximates the optimal of the
drone swarm, i.e., the Nash Equilibrium, at the expense of
optimal strategies of individual drones. The proposed method
is based on the continuous exchange of motion paths of the
drones in the swarm.

3) Formation flying: Inspections of linear infrastructures
such as railways and powerlines can benefit from flying the
drone swarm in formations. A formation allows the simultane-
ous observation of a target segment from different viewpoints
or with different sensors. Our approach to formation flying
is based on the leader-follower scheme [11], in which the
leader drone is assigned the set of inspection waypoints for the
entire swarm. The leader drone takes control of disseminating
waypoints to the follower drones over the D2D communication
channel. Inspection tasks are executed by the drone using
onboard position control. The leader drone subscribes to the
position and velocity of its followers offering the opportunity
to adapt the formation to the environment. Due to its simplic-
ity, the approach does not require heavy computation and can
be executed by the drone during mission execution.

4) Coordinated charging: The drone swarm implements a
charging protocol to ensure the continuity of the inspection
mission. Depending on the type of mission, drones charge on
specified locations of overhead powerlines or at designated
charging stations. Our charging schedule protocol aims to
minimize the total execution time of the mission by allocating
charging tasks to the individual drones of the swarm. The
optimization problem is constrained by the batteries of the
drones that cannot fully deplete and the charging station that
can only serve one drone at a time. For each allocated task,
the charging protocol determines if a drone should proceed
directly with the next task, or if it should visit one of
the charging locations. Furthermore, the charging scheduler
decides how much time each drone must wait before charging
and the duration of the charging.

C. Security of Swarms

The long-term commercial viability of autonomous inspec-
tions with drones heavily depends on the level of trust that
can be provided to the end-users. Security threats to drones
are typically targeted at the UAS system level and target
everything employed to allow the drone to function, i.e.,
the hardware/software, the ground control system, and the
communication. The design of the drone swarm must ensure
the protection of information generated, the resources and
services provided, the compatibility with worldwide security
standards, the interoperability with well-proven secure algo-
rithms, protocols, and practices, and the protection of the
system against theft and malicious use.

In [12], we presented an assessment of the security vulner-
abilities of the D4S drone system based on the STRIDE threat
methodology. The STRIDE methodology considers threats
against a system from a balanced set of viewpoints. It concerns
Spoofing, Tampering, Repudiation, Information disclosure,
Denial of Service (DoS), and Elevation of privilege attacks.
The landscape for security threats to the UAS not only embrace
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well-known threats from digital information systems but is
also hampered by drones with limited resources operating in
a hostile environment. The most severe threats to the drone
swarm concern spoofing and DoS attacks. Furthermore, we
find that tamper-evident logging, intrusion detection, and drone
safety protocols are important techniques to ensure trust in the
autonomous operation of drone swarms for inspections.

IV. CLOUD SERVICE

The computational and storage resources available onboard
the autonomous drone are severely limited in at least two
ways. First, requirements regarding the weight and robustness
of the drone imply that the onboard computer is only suitable
for rather light processing and does not scale to the complex
machine learning and other computational models needed for
fault detection, 3D reconstruction, and similar tasks. Second,
any onboard processing affects the battery life and, thereby,
the flight time of the autonomous drone. Furthermore, as the
drone operates autonomously, it is a requirement that the
drone operator can control and monitor the drone remotely.
To this end, the drone needs a constant (or near-constant)
communication link to a control and monitoring system. This
communication link can be exploited to move as much as
possible of the computational and storage requirements to a
cloud system, where practically unlimited resources can be
made available [13].

Figure 4. The architecture of the Cloud Service

Fig. 4 provides an overview of the microservices that
constitute the backend of the architecture of our cloud service.
The drone operator interacts with the system using the web
interface. The web interface communicates with the backend
by sending requests and serving responses to the user. It is
implemented and deployed as a microservice. The operator
selects inspection targets on the web interface, which creates
a request to the Missions service. The request contains target
locations. The mission service has drone locations stored and,
with received target locations, sends the request to the Routing
Solver. The Routing Solver uses the A* Pathfinder service
to determine the order of visiting all the targets. The A*
Pathfinder, in turn, requests the graph created from data stored
in Towers, Railways, Bridges, and No-fly services to determine
the shortest path for each combination of target location and

drone location. The calculated routes are stored in the Missions
service, visualized on the web interface, and sent to the drone
(simulated or real) through the Message Broker.

While the mission is in progress, the Message Broker sends
drone telemetry data to the Drone Log service, where the data
is stored. The Drone Estimator service uses telemetry data to
estimate the drone location in periods when drones are not
reporting to the cloud. Estimation data is stored in the Drone
Log service database for mission simulation after the mission
finishes. The Message Broker updates the Missions service
database with inspection results. Images from the drones are
stored in the Object Storage, with the transfer handled through
the Message Broker. The Satellite Imagery service accesses
satellite data from the Copernicus Open Access Hub. The
Image Uploader uploads images to the Alteia AI platform
where the images are analyzed using deep learning techniques
for fault detection.

V. ENERGY HARVESTING

Overhead power lines and railway catenary lines were
intended to serve as an energy source for the recharge of
the drone’s battery. When the drone reaches a low battery
status during its inspection flight, it approaches the power
line and grasps it to induce current to charge its battery. Due
to the strongly different boundary conditions, such as AC
and DC currents as well as the different voltage levels low
voltage, medium voltage, and high voltage, different concepts
are required. As part of the D4S project, concepts for AC and
DC lines were developed and evaluated with demonstrators.

A. Energy Harvester for AC lines

In [14], [15], the concept of the drone’s recharging at
AC lines was shown by using an inductive harvester. The
harvesting device consists of a soft magnetic transformer core
made of electrical steel. Ideally, it fits as close as possible
to the primary current cable. To harvest energy from the
magnetic field, a secondary winding on the transformer core
is needed to generate the induced voltage. The AC voltage
of the transformer has to be rectified and buffered into a DC
voltage within the first stage of the harvester electronics. A
protection circuit limits the input voltage to a defined level
to protect itself and the following stages from over-voltages.
These happen when the input power is higher than the usable
output power, e.g. in the case of a line short event of several kA
or when the battery is fully charged. In normal operation, the
charging currents can be up to 10 A from overhead powerlines
and up to 5 A for railway applications, depending on the line’s
primary current.

B. Energy Harvester for DC lines

Another option is the use of DC railway lines for re-
charging. The principle of harvesting is the direct contact be-
tween the high-voltage DC line and the ground of the railway
catenary system. A challenge here is the handling of the high-
voltage with simultaneous strong voltage variations due to
the changing loads caused by trains. The harvester electronics
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were realized with a high-voltage DC/DC buck converter with
direct down-conversion. In direct down-conversion, the voltage
is transformed into a low-voltage, as in a switched-mode power
supply. It was decided to develop a two-stage converter. The
first stage converts the voltage from 3 kV to 300 V and the
second stage converts from 300 V to the required voltage of
the charge controller of 30 V. This makes it easy to adapt the
solution to the common voltages between 700 V and 3 kV in
the first stage and a readily available component was used as
the second stage.

Figure 5. Block diagram of the harvester electronics

Fig. 5 shows an overview of the stages of the harvester
electronics. For AC and DC harvesting, the harvesting device
and the electronics differ, the lithium-Polymer battery charging
part basically can be the same. For AC and/or DC harvesting,
the harvester currents are expected to differ, thus different part
choices for the highest possible efficiency make sense.

The high-voltage DC/DC converter is designed to deliver
a maximum of 150 W. This value is a trade-off to stay in a
reasonable range for heat dissipation, size, and weight, Fig. 6
shows the PCB board with heat sinks. Therefore, the charging
current has been limited to approx. 6 A. The charger applies
the CC/CV (constant current/constant voltage) mode which is
suitable for LiPo batteries. In this mode, the battery is charged
with a constant voltage up to a certain threshold. After the
battery voltage reaches this threshold, the charger switches
to a constant voltage which accordingly reduces the charging
current.

The test and characterization of high-voltage DC/DC-
converter was conducted in the high-voltage lab of the Fraun-
hofer Institute. The controller of the first stage regulates the
output to 300 V and the second stage starts about ten millisec-
onds after a stable input voltage above 200 V. The dynamic
characteristics was tested by a variable load, presented by
switched resistors.

VI. ARTIFICIAL INTELLIGENCE

Analyzing thousands of pictures collected by a drone is a
challenge for inspectors, especially if the task is carried out
manually. Fortunately, automating asset and anomaly detection
on pictures can be supported by AI-based analytics.

Figure 6. The realisation of the DC circuitry of the harvester electronics

A. Fault Detection techniques

The task of detecting objects of interest from images is
a well-known problem in the computer vision community.
In the last few years, the state of the art of such tasks is
deep neural networks [16]–[18]: the first distinction between
different types of AI tasks is based on how the model will
produce its outputs in terms of bounding boxes, polygons
or segmentation masks. A second distinction is based on the
type of learning approach: Supervised learning is a machine
learning approach that’s defined by its use of labeled data sets.
These data sets are designed to train or “supervise” algorithms
into classifying data or predicting outcomes accurately. Using
labeled inputs and outputs, the model can measure its accuracy
and learn over time. Unsupervised learning uses machine
learning algorithms to analyze and cluster unlabeled data sets.
These algorithms discover hidden patterns in data without the
need for human intervention (hence, they are “unsupervised”).
Unsupervised learning models are used for three main tasks:
clustering, association, and dimensional reductions.

B. Training Data

For supervised learning, public and private data sets were
used both for bridges and railways with hundreds of pictures.
For unsupervised learning, the bridge use case was mainly
investigated with the purpose of detecting with auto encoder
based models the presence of cracks. However, a supervised
learning approach requires more than one thousand examples
for each anomaly class to be effective. This required a boost
for the project’s synthetic data.

1) Synthetic Datasets: Fig. 7 shows an example of bridges
with segmented assets, Fig. 8 shows a synthetic bridge with
rendering applied and Fig. 9 shows an example of railways
with rendering in a sunny environment [left] and with seg-
mented assets [right] have the advantage of being able to
generate as many training examples as possible if the virtual
environment created is large enough. Many works suggest that
even if the images generated with this approach are not as
photo-realistic as an image on the field, the results can be good
enough to bootstrap an initial model that can work well for
production use. Some successful approaches in [19], [20] have
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been reported in robotics and perception for general perception
tasks. The transport industry has also started to adopt this
method in the context of autonomous driving.

Figure 7. Bridge synthetic model with segmented assets

Figure 8. Bridge synthetic model with rendering

Figure 9. Railways synthetic model

To create the synthetic, a ”simulated environment” approach
was used from [21]. This approach consists in recreating the
geometry of a scene of interest for the problem in 3D engine
software. Different tools like Blender, offer capabilities that
permit the modeling of any complex 3D object like bridges,
railways, etc. and also to apply textures and material properties
to such objects in order to make them as photo-realistic as
possible.

2) Semantic Segmentation: Once the scene has been built,
the user can also choose the luminosity conditions, the mete-
orological conditions, and the camera parameters in order to
extract images from a rendering procedure. The other great
advantage of such an environment is that the user can also
have a semantic segmentation map of the various objects
of the scene without any need for human intervention since
the rendering process can directly output such maps. The
annotations created in such a way have also the advantage
to be pixel-perfect and do not present all the uncertainties and
artifacts that a human annotation process usually has. Different
types of scenes were produced for bridges, starting from the
three most common bridge structures, namely Girder, Arch,
and Suspension bridges.

In addition, three different types of scenes were produced
covering the common 2 types of railways; namely, standard
and high-speed rails.

C. AI Model

The chosen AI model is based on an instance segmentation
task, in which the model will output the polygon that describes
the object contours for each of the elements and anomalies in
the images. The choice produced 2 main benefits:

1) avoiding problems of superposing bounding boxes. In
this case detection of objects that have a lot of super-
position can be eliminated by the model itself due to a
step called “non max suppression” which is ubiquitous
in all the various detection networks.

2) being able to view multiple defects in the same zone.
In this scenario, the end user is interested in having the
information on the presence and the position of all the
various anomalies.

The deep learning model used to solve the defect detection
problem is called “Mask R-CNN”, a Convolutional Neural
Network (CNN). Mask R-CNN was developed on top of
Faster R-CNN, a Region-Based CNN. This architecture is
considered the state of the art in this kind of task and it is
especially well known for its robustness to various data sets
and hyperparameters.

Results can be summarized as follows:
1) the developed algorithm (for both use cases) is better

performing when applied on mixed data sets (rather than
on pure real data sets) as a consequence of the input
quality of pure real data sets.

2) the recall is much higher than precision, showing a ten-
dency to detect more defects than reality (false positives
proposed by the algorithm).

This is not an issue as a filter can be later applied to remove
the false positives.

Within the context of the D4S project, Alteia has proposed
a detailed recipe to use an open source software to create
artificial data sets for supervised anomaly detection problems.
Even starting from a common baseline, a CNN can perform
well enough on real data to be considered useful in the context
of infrastructure inspections. Worth noting, the problem related
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to the drop in performance when switching from synthetic data
to real data should be further investigated.

VII. USE CASES

The D4S functionalities are validated in a cluster of different
Use Cases (UCs) including real railway/bridge scenarios and
controlled environments (indoor/outdoor test facility). Safety,
operative limitations and regulatory restrictions are some of
the main reasons preventing the testing of the D4S system as
a whole in a single real UC scenario.

A. Bridge Use Case

Different sites, located in Italy, have been analyzed, to find
possible suitable locations as the best option from multiple
points of view (safety, number of testable functionalities,
authorization processes, access to the area, presence of obsta-
cles, etc.). Unused reinforced concrete (RC) bridges/viaducts
overpassing no trafficked roads (e.g., river or valley) in easy-
to-access areas without strong regulatory restrictions have
been the preferred options. The bridge UCs are focused on
the workflow of inspection activities supposed to be repeated
several times on the same structure (according to a defined rou-
tine maintenance plan) and for which having an autonomous
process is an important benefit. In this context, the 3D model
reconstruction is an input available data coming from an
activity carried out once per structure. In Fig. 10 the main
steps of the “ideal” process are shown: once the structure is
known, inspection paths are planned and executed thanks to
the Drone Inspection as a Service (DIaaS) platform, eventually
recharging batteries or safe landing if needed. Once collected,
images are sent to the Alteia platform which processes all
the acquired images by means of a supervised algorithm and
reports damages (type and location) as input to the structural
assessment performed by the EUCentre toolbox, whose output
is intended to be a support to decisions for the infrastructure
owner, in the case damages are found to possibly jeopardize
the structural performance of the bridge.

Figure 10. Inspection workflow on bridges

The main designed bridge UCs are basically two: the former
consists of a real in-situ deployment of the swarm system,
in which steps 1 to 3 are carried out, while the latter will

consist of steps 1-2 carried out within a simulated environment
(due to safety reasons) and steps 3-4 actually carried out.
The latter case has been necessary because the former bridge
does not show any significant visible damage. The first UC is
conducted on a long RC viaduct belonging to an occasionally
used railway route. The viaduct is a reinforced concrete wall
piers structure with 144 bays for a total length of about 3.7 km
and a maximum high of about 20 m. The missions are focused
on a portion consisting of four 25 m bays, for a total length
of about 100 m, a maximum height of about 10 m (with a
pier height of about 7 m), and a transversal dimension of the
deck of about 6 m. This portion of the viaduct is inserted in
an easy-to-access, sparsely populated area.

The drone swarm system used during this mission consists
of two multirotors with Maximum Take-Off Mass (MTOM)
under 2 kg, with one front camera, one downward camera, one
front stereo-camera, one depth camera and onboard Inertial
Measurement Unit (IMU). Each platform features a number
of risk mitigation measures such as geofencing, recovery
functions, fight terminator, and obstacle avoidance sensors. For
the purpose of the case study, particular safety arrangements
are taken in order to keep the risk of the operation basically
equivalent to the one of the A2 open category, according to
the current National Aviation Authority (NAA) regulation [22].
Such arrangements, which are schematically shown in Fig. 11,
do not impair the testing of the system functionality. The
swarm is controlled by the solely “swarm pilot”, driving the
operation by means of a Ground Control Station (GCS), and
two safety “Backup pilots” able to take over the control of
each drone, in case of need. The flight mode of the swarm
system can be considered an “automatic operation” according
to the European Regulation definitions [23]. In particular, two
different flight modes can be run: “Standard automatic” (the
drone follows the path plan input by the “Swarm Pilot”) and
“Position control” (the drone hovers in the air, this mode can
be activated at any time by any of the backup pilots). Accord-

Figure 11. Asti Bridge UC: Mission scheme
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ing to the safety analyses, all the flights planned are carried
out in compliance with daytime, Visual Line Of Sight (VLOS)
conditions, 15 m above ground maximum flight height, within
a controlled area, in a sparsely populated region, without
traffic overpassing the viaduct, and in uncontrolled airspace.
In order to guarantee a proper horizontal separation, the two
drone operation volumes do not interfere one each other, as
shown in Fig. 11. Concerning the duration of the operations,
4 to 6 flights of about 15 minutes are planned. During the
mission, the following main functionalities are supposed to
be validated: simultaneous swarm inspection flights (planned
from the previously acquired 3D point cloud model), Artificial
Intelligence (AI) detection algorithm especially of elements,
simulation of a flight to/from recharge point and/or of battery
recharge by at least one of the drone of the swarm.

B. Railway Use Case

As for the bridges, several test sites for railway UCs have
been selected to cover the different types of missions, i.e.:

• damages to the electric traction overhead contact lines,
• tracks and roadbed deformation,
• obstacles on tracks,
• 3D map generation,
• target objects inventory creation.
After a proper analysis, which took also into account the

electrification type (AC/DC), the restrictions to flying, the
accessibility of the area, the safety implications (both from the
railway and the aviation point of view), coverage of the UC,
regulatory and authorization processes, presence of damages,
etc., several flight missions have been conducted on both
conventional (see Fig. 12) and high-speed lines (see Fig. 13)
using standard drones in order to create maps and to acquire
sample datasets of images and, possibly, damages, to feed the
AI algorithms. The multirotor drones used for these missions
had an MTOM under 2 kg, and were equipped with an RGB
camera for front and downward acquisitions.

Figure 12. Conventional railway use case

The flight operations have been conducted under the specific
category, as defined by the current NAA regulation [22], and,
in particular, under the prescriptions of the Italian Standard
Scenario (IT-STS) for Critical Operations IT-STS-02 [24].

Figure 13. High-speed railway use cse

VIII. INTEGRATION WITH THE U-SPACE SERVICES

In recent years, the need for traffic management focused on
UAS emerged in many parts of the world. This UAS traffic
management system (UTM) would ensure the safe operations
of a large number of drones at low-altitude (especially in
urban areas). As traditional air traffic management (ATM)
ensures the safety of aircraft operations at high-altitude, so
does UTM at a lower altitude. The Commission mandated
the SESAR JU to lead the development of a UTM concept
for Europe, called U-Space. The concept of operations for U-
Space has been initiated and is currently maintained by the
Projects CORUS and CORUS-XUAM [25]. It consists of a
set of services enabling complex drone operations in all types
of operational environments. The progressive deployment of
U-space is linked to the increasing availability of blocks of ser-
vices and enabling technologies. Over time, U-space services
will evolve as the level of automation of the drone increases,
and advanced forms of interaction with the environment are
enabled (including manned and unmanned aircraft) mainly
through digital information and data exchange. The U-space
services defined so far are here listed in Fig. 14.

• U1: U-space foundation services covering e-registration,
e-identification, and geofencing.

• U2: U-space initial services for drone operations man-
agement, including flight planning, flight approval, track-
ing, and interfacing with conventional air traffic control.

• U3: U-space advanced services supporting more com-
plex operations in dense areas such as assistance for
conflict detection, and automated detect and avoid func-
tionalities.

• U4: U-space full services, offering very high levels of
automation, connectivity and digitization for both the
drone and the U-space system.

The D4S project has two main streams of connection with
the U-Space roadmap: on one side, the project takes the U-
Space services as an input for the development of the D4S
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Figure 14. U-Space services from U1 to U4

concept of operations and use cases (e.g. e-registration, e-
identification, and geofencing are considered both prerequi-
sites and enablers for the execution of the use cases); on the
other side, the project is collecting and putting together best
practices and recommendations that may feed the development
of the most advanced levels of services for the U-Space (e.g.
the drone communication, the algorithms for swarming and the
security aspects depicted in section III of this paper can offer
recommendations to the U4 services). The final reports of the
project will contain a structured and detailed collection of the
evidences produced by Drones4Safety that will be shared with
other projects, working groups, and initiatives dealing with the
development and deployment of U-Space services.

CONCLUSION

The paper has presented the concept of the H2020
Drones4Safety project for transport infrastructure inspection
using autonomous drones. The developed technologies in
drone design, energy harvesting, AI, and drone swarms have
been presented and discussed.

Finally, the paper briefly introduces the railway and bridge
use cases design for the validation of the main D4S function-
alities (according to the current level of definition) and the
integration with U-Space services.
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