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Abstract—Airport ATFM regulations are a source of ineffi-
ciencies in European aviation. Providing a timely and accurate
regulation prediction to the NMOC will contribute to better
situational awareness. It will allow to anticipate collateral issues
and help to coordinate preventive measures that can avoid
ATFM regulations from being implemented. In this paper, a
Deep Convolutional Neural Network that was trained to predict
the probability of an ATFM regulation at the airport level is
presented. The model, which showed promising results, has been
put in operation in trial mode since the summer of 2022 and
has been providing valuable insights during the pre-tactical and
tactical phases on a daily basis.

Keywords—ATFM Regulations - Airport - Convolutional neu-
ral networks - Time series - ATFM Delays

I. INTRODUCTION

Over the years, European aviation has been growing rapidly.
Between 2013 and 2019, air traffic increased, reaching 11.1
million Instrumental Flight Rule (IFR) flights in 2019 in the
European Civil Aviation Conference (ECAC) area, with an
average of 30.4 thousand flights per day [1]. Due to the
COVID-19 outbreak, an enormous reduction of flights was
observed all over Europe in 2020 and 2021 [2]. The European
network is now in the process of recovering to previous levels.
Moreover, forecasts predict that by 2050 the number of IFR
flights will increase to 43.7 thousand flights per day, giving
around 16 million flights in total per year [3].

EUROCONTROL’s Network Manager Operation Centre
(NMOC) is responsible for providing Air Traffic Flow and
Capacity Management (ATFCM) services to the ECAC states.
If the capacity drops below the ATFCM Daily Plan (ADP)
or the traffic demand exceeds the available capacity, the Flow
Management Position (FMP) from the Air Navigation Service
Providers (ANSPs) may coordinate with the NMOC on the
traffic demand tactically (on the day of operations, D) or pre-
tactically (on the day before, D-1). It is done by applying an
Air Traffic Flow Management (ATFM) regulation to a specific
airspace or airport [4]. In the airspace the factors that intervene
in the conciliation of the demand and the capacity are airside
constraints such as traffic flows, flight levels or open sectors.
However, in the airport the maximum available capacity is
constrained by both airside and landside constraints. Moreover,
the AirPort Operations Centers (APOCs), which bring together
all the different actors in the airport, also play a role in the

Collaborative Decision Making (CDM) process of implement-
ing an ATFM regulation. The Airport Function (AF) is a role
in the NMOC responsible for providing the airport view to the
rest of NMOC positions and opening the channel with APOCs
to exchange relevant operational information.

The purpose of ATFM regulations is to limit the demand
over a specific portion of airspace or an aerodrome by reducing
the number of flights that can access it within a certain period
of time [5]. Indeed, this approach allows mitigation of poten-
tial safety risks by capping the Air Traffic Controllers (ATCos)
workload in congested airspaces or Terminal Manoeuvring
Areas (TMAs) or by alleviating constrained resources at air-
ports. However, it also brings operational issues in the form of
ATFM delays. Anticipating where and when a regulation may
happen might provide the room to take proactive measures to
avoid it and thus save minutes of ATFM delay in the network.
ATFM delays have a big economic impact on the network. In
2019, more than 1.4 million flights were delayed due to ATFM
regulations with 40 percent of them for more than 15 minutes
[6]. In addition, they cause additional stand occupancy times
in the origin airports, a lack of predictability throughout
the network, and reactionary delays. It was estimated that
the average cost of one minute of an ATFM delay equals
around 100 C [5], [7]. In addition, it has been estimated that
each impacted flight might generate an extra cost of several
thousand euros. Based on Cook and Tanner’s research [8], in
2010, all ATFM delays might have caused a loss of 1,250
million euros caused by an unplanned increase in the costs
of fuel, maintenance, fleet, crew, passengers and reactionary
delay. Their further research from 2015 [9], shows that the
average cost of ATFM delay can amount to almost 2,000 C per
flight. Considering the expected increase in traffic, the balance
between demand and Air Traffic Control (ATC) capacity will
be a challenge for all aviation partners in the years to come.

A. Machine learning techniques addressing the ATFM prob-
lem

Recently, there has been an increasing amount of research
with regard to ATFM delay prediction and ATFM regulations.
Various studies have achieved increasingly accurate results
applying diverse machine learning algorithms. Dalmau et al.
[10] proposed a Recurrent Neural Network (RNN) model to



predict the evolution of delays for regulated flights. For each
flight impacted by the regulation, the model can foresee the
future delay progress. Their model which has an accuracy
of 75% classifies whether the delay will increase, reduce or
remain stable. Sanaei et al. [11] used a Deep Convolutional
Neural Network (DCNN) to predict the total time of ATFM
delays and the number of involved flights. The researchers
concluded that the DCNN performed 50% better compared to
their Random Forest (RF) baseline model, achieving a mean
absolute percentage error of 22% and 14% for the delay and
delayed traffic respectively. One of the key impacts on network
resiliency is the effect of ATFM regulations caused by weather
conditions. Based on historical air traffic and meteorological
data of the Maastricht Upper Area Control Centre (MUAC),
Jardines et al. [12] developed several machine learning models
(Decision Tree, Linear Regression, Random Forest, and Neural
Network) to predict the number of regulated entry counts and
activation of the weather regulation. Mas-Pujol et al. [13]
proposed a Convolutional Neural Network (CNN) and RNN
models for identifying ATFM Regulations over the MUAC
region. Both models achieved around 80% accuracy. Finally,
in another study [14] they focused on predicting ATFM
Regulations in different traffic volumes of MUAC and Reims
regions. Their RNN-CNN model achieved an average accuracy
of nearly 89%.

B. Background on Convolutional Neural Networks

The idea of CNNs was first introduced by Fukushima &
Kunihiko in 1980 [15]. The presented Neocognitron archi-
tecture is widely regarded as the first predecessor of CNNs.
The research that is further built on the work of Hubel
and Wiesel [16] was originally built for unsupervised pattern
recognition tasks such as handwritten character recognition.
Within their research, they presented the concept of cascading
simple (S-cells) and complex cells (C-cells), which later
formed the basis of convolutional and downsampling layers as
are known today. Both the development of LeNet-5 [17] and
the Shift-Invariant Artificial Neural Network (SIANN) [18]
continued working on these concepts by introducing back-
propagation for several image recognition tasks. These very
basic convolutional neural networks formed the inspiration
for later frameworks such as AlexNet [19], VGGNet [20]
and the current state-of-the-art ResNet architecture [21]. Al-
though CNNs were initially developed within the computer
vision domain, they also found wide adaptation over time
within other fields such as automatic speech recognition,
real-time ElectroCardioGram (ECG) monitoring, or vibration-
based structural damage detection to only name a few [22]. As
opposed to the two-Dimensional (2D) CNNs that are used for
image recognition, one-dimensional CNNs were developed for
those applications. In a one-dimensional CNN, the expected
input is three-dimensional (samples, time steps, features).
Contrary to 2D CNNs, the convolutional operations are only
applied over the time step dimension and the convolutional
layer will output a specified amount of feature maps for every
iteration over the time step dimension. Compared to popular

time-series modeling alternatives such as RNN models, Long-
Short-Term Memory (LSTM) models, and Gated Recurrent
Unit (GRU) models, CNN’s deal with time-series problems
both more efficiently and effectively in a wide variety of
tasks [23], [24]. CNNs require fewer parameters, are less
prone to the vanishing/exploding gradient issue, and are better
at finding local spatial patterns. Another popular approach
is to combine both LSTM and CNN layers into a hybrid
LSTM-CNN model. A study conducted by Rajagukguk et
al. [25] showed that their LSTM-CNN model outperformed
all three RNN, LSTM, and GRU standalone models with
regard to predicting solar energy. Finally, Borovykh et al. [26]
adapted the convolutional autoregressive WaveNet architecture
by stacking layers of increasing dilated convolutions so that
it could be applied successfully to time series prediction, and
act as a strong baseline for time series forecasting.

C. Outline

The studies mentioned in section A focused on the problem
of ATFM Delays and ATFM Regulations from either an
airspace perspective (evaluating the entire network or airspace
regions) or from an aircraft perspective (modeling ATFM
Delays for each flight individually). According to the best of
our knowledge, there are no particular studies targeting the
ATFM Regulations explicitly at the airport level. Since the
models from section A were trained for very specific tasks and
their input features were transformed accordingly, they can not
be easily converted to target the problem at the airport level,
as it would require both architectural changes and additional
transformation of the input features. In this work, we present a
DCNN to predict airport ATFM regulations. In section II, we
discuss the available data, input features, and output targets.
Section III covers the model architecture, preprocessing steps,
and training process. The results and deployment are depicted
in section IV while section V summarizes the conclusion and
the next steps.

II. DATA

The model has been trained on a subset of the 91 largest
aerodromes in Europe. Originally, it had been trained on 2018-
2019 data. Due to the COVID-19 pandemic, there was a huge
shift in the data as traffic disappeared completely at first and
then resumed unevenly. New problems arose caused by staffing
issues, sanitary measures, and other additional processes at
the airports. It was decided to remove the noisy data between
March 2020 and May 2021 and include data starting in June
2021, when traffic resumed consistently. The last month of
data considered in the training dataset for the moment is
June 2022. Since it is a time series problem, the data needs
to be transformed accordingly. In this work, the model was
trained to predict 24 time steps (hours) ahead. To make it
more digestible, most of the logic and pseudo-code in this
section covers operations for a single time step. In practice, it
is extended to 24 time steps.
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A. Output target

Predicting whether or not a regulation is in effect can be
described as a binary classification problem. More specifically,
this work focuses on predicting the probability of a regulation
at a given airport for 24 time steps in the future. In this
research, some assumptions were made prior to the modeling.
First of all, regulations can be classified into various cate-
gories. In this paper, only four categories were considered:
weather regulations, ATC capacity regulations, aerodrome
capacity regulations, and industrial action regulations. Other
categories were too infrequent or unpredictable to be foreseen
by a data-driven predictive model. The second assumption is
that only regulations which apply to ground level and can
be attributed to a single airport are considered of interest.
Additionally, it was decided to discard all regulations which
were canceled prior or lasted shorter than 20% of their original
duration. Finally, all the TMA regulations were removed as
well, since they are more related to airspace regulations and
often affect more than one airport.

The first category of interest is weather regulations. They
are caused by weather phenomena such as low visibility or
wind conditions. The second category is the ATC capacity
regulations, which originate from having to process more
flights than the ATCos can safely handle. Aerodrome capacity
regulations is another category. Construction works in the
apron and terminal or ongoing events at a certain airport
are the main cause of those regulations. The final category
concerns regulations caused by industrial actions. As opposed
to the previous three categories, these regulations are quite
rare but nevertheless have a huge impact on airport operations.
Of course, in reality, it is more ambiguous and there exists a
consistent overlap between all four categories. Nevertheless,
the classification of the predicted regulation category is not of
interest and hence not in the scope of this work.

B. Input features

In order to predict the target variable, a variety of features
were selected to tackle this complex problem. For each airport,
all input features in this section are transformed into 24 time
steps with a one-hour interval. Moreover, all features are
transformed by only taking into account current or forecasted
values for the day of prediction. This implies that no historical
data is considered to predict whether or not a regulation will
be in effect at a certain airport.

1) Flights: The first category of features that is considered
to have a major impact is the number of scheduled flights.
Naturally, the probability of an ATC capacity regulation at
a certain airport is directly impacted by the total number
of scheduled flights, especially if they are above a certain
variable threshold: the airspace/airport nominal capacity. The
data is transformed into a time series by taking the sum of
the incoming flights (determined by either the Initial Off-
Block Time or the Actual Off-Block Time) and the outgoing
flights (determined by either the Actual Time of Arrival or
the Estimated Time of Arrival) for each time step for each
airport. To estimate the scheduled number of flights, the

Consolidated Flight Intentions (CFI) were used in the first
stage. Even though this is considered the best available source,
it also has its limitations. For the non-coordinated airports,
the airport slots are not directly included in the CFIs, but
indirectly derived from airline slots which lead to a severe
underestimation compared to the actual number of flights.
In an effort to mediate this problem, two meta-models were
trained to predict the scheduled number of incoming and
outgoing flights more accurately. More specifically, the models
have been trained to predict the actual number of flights based
on a combination of the CFIs, the historical actual number of
flights (FAC:FLIGHTS), and the cyclical features described
in table I. They expect 24 time steps as input and return 24
time steps as output. To normalize the number of flights, it
was decided to divide the number of flights for each time
step by the maximum historical number of flights for each
airport. The categorical variables were One-Hot encoded, and
to represent the cyclical nature of months, the month variable
was transformed by taking both the sine and the cosine of
the radian transformation. A more in-depth example has been
included in table I for the incoming number of flights. It
follows that the same logic is applied to estimate the outgoing
number of flights.

TABLE I. OUTPUT TARGET AND INPUT FEATURES OF THE INCOMING
FLIGHTS’ PREDICTIONS META-MODEL FOR A SINGLE TIME STEP

Feature Description Transformation
FAC:IN t # Actual incoming flights at t # Max flights
AIRPORT ICAO Code of airport OHE
WEEKDAY Weekday of t OHE
sin(2πMonth/12) Normalized sine of month at t
cos(2πMonth/12) Normalized cosine of month at t
CFI:IN t # Predicted incoming flights at t # Max flights
CFI:IN t-1 # Predicted incoming flights at t-1 # Max flights
CFI:IN t-2 # Predicted incoming flights at t-2 # Max flights
CFI:IN t-3 # Predicted incoming flights at t-3 # Max flights
CFI:IN t-4 # Predicted incoming flights at t-4 # Max flights
CFI:IN t-5 # Predicted incoming flights at t-5 # Max flights
CFI:IN t-6 # Predicted incoming flights at t-6 # Max flights
CFI:IN t-7 # Predicted incoming flights at t-7 # Max flights
FAC:IN t-1 # Actual incoming flights at t-1 # Max flights
FAC:IN t-2 # Actual incoming flights at t-2 # Max flights
FAC:IN t-3 # Actual incoming flights at t-3 # Max flights
FAC:IN t-4 # Actual incoming flights at t-4 # Max flights
FAC:IN t-5 # Actual incoming flights at t-5 # Max flights
FAC:IN t-6 # Actual incoming flights at t-6 # Max flights
FAC:IN t-7 # Actual incoming flights at t-7 # Max flights

To verify the accuracy of the meta-models, the mean
squared error (MSE) was calculated on a holdout set. For the
incoming number of flights, the MSE improved from 10.06 to
3.01. Similarly, the MSE improved from 8.04 to 2.20 for the
outgoing number of flights. These results indicated significant
improvements over the original CFIs. Naturally, the effect
is the largest for the non-coordinated airports but also the
estimations for the coordinated airports slightly improved.

2) Capacity: A second important source is the capacity
of an airport. Intuitively, it is understood as the maximum
number of flights that ATCos providing service to a position,
an airspace sector, or an airport can handle. Unfortunately,
that information is often not disclosed or accurate. Therefore,
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this work proposes an estimation based on historical data for
2018-2022. In this paper, maximum capacity at a given airport
is calculated as the 99 percentile of the actual total flights
on days when there has not been a regulation. Since it is
assumed that capacity varies throughout the day, the process is
repeated for each hour. This results in 24 capacity estimations
for each airport instead of one static number. This logic has
been applied to the incoming number of flights (featured as
the maximum arrival capacity CAP:A), the outgoing num-
ber of flights (featured as the maximum departure capacity
CAP:D), and the aggregated number of flights (featured as
the maximum global capacity CAP:G). To not lose the general
view of the day, the number of flights is also normalized over
the maximum capacity of an entire day, which is just the
maximum value of the 24-hourly estimations. These capacity
estimations are then merged with the output of the meta-
models described in the flights’ section. The meta-models first
output an improved estimation of the number of scheduled
incoming and outgoing flights for each airport, and those
estimations are then normalized over the capacity estimations
for each airport obtained from the procedures discussed in
this section. Figure 1 visualizes the entire process to produce
the final six flight features that serve as input to the final
model. Finally, the table shows an extensive example of the
normalization technique for the incoming number of flights.
Naturally, it follows that the same logic is applied to obtain
the features for the outgoing and global number of flights.

Figure 1. Illustrative example of how flight features are created

3) Airport events: Closely related to the capacity from the
previous section are the most relevant events taking place at a
given airport. A majority of the events can be associated with
construction works, but also industrial actions and major sports
events, for example, can have a big impact on the demand
or the capacity of an airport. This information (filled in by
airports) was extracted from the Airport Corner managed by
EUROCONTROL. Airport Corner is an airport-focused web

application where airports share relevant information with all
stakeholders, the Network Manager, and Airlines. It contains
a repository of the historically reported events with an impact
on capacity or demand. Since it is not mandatory and the
information often follows a free text format, the information
is unfortunately often incomplete or even returned empty.
Nevertheless, it still provides valuable information since the
event’s impact is analyzed and reported by the airport itself.

Generally, a registered event has a specified schedule for
which it will have an impact on the capacity of an airport.
Only events that were specified to have an impact are treated.
From these events, both the category of the event and the
anticipated impact (expressed in either a percentage reduction
or as a maximum number of flights) are considered. If the
event information contains a specified impact, the capacity
estimations from the previous section are replaced with the
capacity specified in the event by the airport. As a result,
three additional boolean features are created. They indicate
whether there is an impact on capacity at a certain time step
for the arrival flow, the departure flow, or the global number
of movements respectively. Any changes to the capacity are
first applied before the normalization process described in the
previous section.

4) Weather: Another major factor of impact is the weather.
Depending on the meteorological conditions, the number of
flights that can be safely managed by the ATC system varies.
As a proxy for the forecasted weather, the Terminal Aero-
drome Forecast (TAF) messages are being used. That data
is managed and issued by The Satellite Distribution System
(SADIS). A TAF message generally includes a forecast of
the weather at an airport and/or its vicinity for the upcoming
24/30 hours [27]. The messages are generally rolled out every
6 hours, and can also be amended or corrected during that
time span. A TAF message consists of maximum 2 blocks, for
which the first is mandatory and the second one is optional.
The first part of a message is a general forecast applicable
to the entire interval. The second block of a message can
indicate multiple specific intervals for which the weather could
be different from the general forecasted weather. As the second
part is more uncertain, probabilities are assigned to those
forecasts. Figure 2 breaks down an example of how a TAF
message is constructed.

During the preprocessing, the TAF messages are first sorted
for each airport by their time of issuance. They are processed
in a rolling-forward manner from the following hour to their
issuance. Within this research, the TAF messages were parsed
with pytaf [28]. This creates a dictionary with all parsed
values and their corresponding probabilities. In the next step,
a distinction is made between the general message and the op-
tional temporary messages. The temporary part is then merged
with the general part by the most logical aggregation method.
While the minimum and maximum are self-explanatory, taking
the set is equal to creating a list of unique elements of the
merged values. For the wind direction variables finally, the
temporary wind direction value was used if specified in the
TAF message. Table II highlights all TAF features with their
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Figure 2. Illustrative example of a TAF message [27]

corresponding aggregation method. Next to these features, this
paper also includes the corresponding probabilities for each of
the weather phenomena. If the probability is not specified, it
is assumed to be occurring at 100%. To reduce overfitting, the
probabilities are binned into 5 categories instead of using the
actual values.

TABLE II. OVERVIEW OF TAF FEATURES

Feature Description Agg

CLOUDS LAYER Cloud coverage Set
CLOUDS TYPE Type of clouds Set
CLOUDS CEILING Clouds ceiling expressed in feet Min
VERTICAL VISIBILITY Vertical visibility expressed in feet Min
VISIBILITY RANGE Visibility range expressed in feet Min
WIND:DIR:X X component of wind angle (cos) Temp
WIND:DIR:Y Y component of wind angle (sin) Temp
WIND:DIR:VRB Variable wind direction Max
WIND SPEED Wind speed expressed in knots Max
WIND GUST Wind gust expressed in knots Max
WEATHER INTENSITY Weather intensity Set
WEATHER MODIFIER Weather modifier Set
WEATHER PHENOMENON Weather phenomenon Set

5) NOTAM messages: To gather more information about
ongoing operational procedures, Notice To Air Missions (NO-
TAM) messages are being used. According to the Federal
Aviation Administration (FAA) [29], ”a NOTAM is a notice
containing information essential to personnel concerned with
flight operations but not known far enough in advance to be
publicized by other means. It states the abnormal status of a
component of the National Airspace System (NAS) – not the
normal status”. The messages can contain valuable information
about many different aspects such as, for example, a runway
that is closed, equipment failure, degrading runway/taxiway
surface conditions but also more harmless information about,
for example, the grass that will be cut. Since NOTAMs always
follow a fixed structure, they are relatively easy to parse. In
this paper, the PyNotam [30] package was used to accomplish

that. Table III shows which fields were of interest for this
problem. The Q code contains 5 letters, for which the first one
always is a Q. The second and third letter point to the subject
of the NOTAM, while the fourth and fifth letters specify the
status of the operation. The schedule field is an optional field
that follows a certain grammar language, for which a custom
parser was written. It refines the initial time interval for which
a NOTAM is valid. If it is provided, the schedule is parsed
and overwrites the initial interval.

TABLE III. OVERVIEW OF INITIAL NOTAM FIELDS

Field Business logic

Aerodrome Airport (ICAO)
ID Unique NOTAM ID
Reference ID Refers to the unique NOTAM ID
Type Type of the NOTAM
Q code NOTAM Q code
Received time Indicates when a NOTAM was initially received
Active from Indicates when a NOTAM becomes active
Active to Indicates when a NOTAM is no longer valid
Schedule Specifies periods of time for which a NOTAM is active

There exists 3 types of NOTAMs: New NOTAMs (NO-
TAMN), Replace NOTAMs (NOTAMR) and Cancelled NO-
TAMs (NOTAMC). During the preprocessing, each NOTAM
is first grouped and sorted. In case of any replacement or
canceled NOTAMs, the previous NOTAM expires and is either
replaced as of the start time or canceled as of that time. After
the initial preprocessing, a NOTAM matrix based on the Q-
code is created for each airport. The matrix of dimension time
steps*number of different Q codes is initialized with zeros. By
looping over all NOTAMs, the matrix is filled with ones if a
NOTAM with a Q code is active at a time step.

6) Miscellaneous: Finally, there are two more isolated
features that were included. First of all, the ICAO code of
an aerodrome is passed. This was done because it is assumed
that airports have different critical values. These differences
can be based on, for example, the size of the usual aircraft
arriving, the procedures in place, or the size of the terminal,
for instance. In line with it, the number of runways is also
passed as a feature to the model. This was done to provide
the model with a sense of the magnitude of each airport.

III. MODEL

After the data has been processed and transformed, it can
be passed to the eventual model. In this section, the model
architecture and the preprocessing methods are first discussed.
The final part of this section elaborates on the training process.

A. Preprocessing

Since machine learning models expect only numerical input,
it is important to first transform all non-numerical variables.
Secondly, it is also good practice to normalize all numerical
variables between the same boundaries. This has several ad-
vantages, of which quicker convergence is considered the most
important one. Table IV shows how the data is normalized and
encoded for the different categories.
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TABLE IV. BREAKDOWN OF PREPROCESSING METHODS BASED ON VARI-
ABLE CATEGORY

5 Category Type Preprocessing method

Regulation in effect Numeric[Bool] /
Flights Numeric[Int] MinMaxScaler
Airport events Categorical[List] MultiLabelBinarizer
Airport events Numeric[Bool] /
Weather Numeric[Float] MinMaxScaler
Weather Categorical[String] OneHotEncoder
Weather Categorical[List] MultiLabelBinarizer
NOTAMs Numeric[Bool] /
Runways Numeric[Int] MinMaxScaler
Airport Categorical[String] OneHotEncoder

B. Architecture

During this research, a variety of architectures were tried
out. First, a basic LSTM with 128 units was tried. This
served as an initial baseline. Next, a WaveNet architecture was
examined. Although this already showed significant improve-
ments over the LSTM architecture, its autoregressive nature
constrained the learning possibilities for this specific problem
too much. The model specifically had trouble with learning
longer-range patterns. Due to these limitations, it was opted
to switch to a hybrid LSTM-CNN model next. As this model
was not autoregressive anymore, a lot of dropout (up to 80%)
had to be added to avoid it from overfitting. With the addition
of these regularization techniques, both the training loss and
validation loss dropped significantly again. There were two
main drawbacks to the model, however. First, the hybrid
LSTM-CNN model was quite expensive to train due to its large
amount of parameters. Secondly, one of the final layers was a
concatenation layer that merged all information from previous
layers, losing its sense of time at that point. Although each
discussed model outperformed the previous one, a DCNN was
found to be the best architecture for this problem, overcoming
all of the previously discussed drawbacks. Figure 3 visualizes
the final model architecture from this paper. For the input
layers, the NOTAM features are separated from the other input
features. This was decided because the NOTAM features were
found to be prone to overfitting. Therefore, a dropout layer
of 30% is first applied before all features are concatenated.
The main building block of the model is the convolutional
block which is repeated 7 times. This block consists of a one-
dimensional convolutional layer with 64 filters, a kernel size
of 3, a stride of 1, minor L2 regularization, and is padded
with zeros to preserve the dimensionality of the 24 time steps.
The convolutional layer is followed by a Batchnormalization
layer, a dropout layer of 10%, and finally a ReLU activation
layer. As with other artificial neural networks, the model tends
to first learn more general features within the first layers (or
blocks) and gradually learns more specific patterns as it moves
deeper through the network. Right before the output layer, a
final one-dimensional convolutional layer with kernel size 1
and a single filter is added, resulting in a final dimension of
24x1. Since the initial goal of this research was to predict
whether or not there is going to be a regulation at a given

airport on a certain day, it was also decided to output a single
value representing the probability of a regulation for the entire
day. As this should be a function of the hourly predictions, this
was done by applying a one-dimensional GlobalMaxPooling
layer over the hourly predictions.

Figure 3. Model architecture

C. Training process

To evaluate the model independently, a holdout set of 5000
instances (200 dates for a selection of 25 airports) was first
created. After removing those instances from the dataset, the
model was trained in a 5-fold cross-fold validation. This
has the advantage that all available data can be used during
training while still preserving a strong estimation of the overall
performance of the model. With this procedure, five different
models are created, each of which may have learned different
patterns. To benefit from this, these five models are stacked
and the average of the predictions is the final estimation.

During training, the models were optimized for two different
loss functions simultaneously. Since the target variable is
binary, the Binary Cross Entropy (BCE) loss function (Eq.
1) is a very common choice. Additionally, it was opted to
also include the Dice Loss (Eq. 2), which is primarily very
popular in the computer vision domain. In both equations, y
is defined as the ground-truth value and ŷ as the predicted
value. As opposed to the BCE, the choice for the Dice Loss
is perhaps less evident. The loss was originally designed to
calculate the similarity between images and is a very popular
choice for class-imbalanced datasets. Given that some airports
in the dataset have very few regulations, and some airports
have many, it was decided to use the Dice Loss as an additional
loss function to tackle this imbalance. Additionally, minor
label smoothing of 0.01 was applied to both loss functions.
Finally, the loss functions were slightly modified by adding
an exponential increase once a prediction was above 0.8. This
was done with the hypothesis that the model would then focus
less on optimizing the final few percentages, but rather focus
on examples that are harder to learn.

As the Dice Loss is essentially optimizing for a metric, it
will heavily try to push the predictions towards 1. The BCE
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Loss on the other hand generally has smoother gradients and
will output more evenly distributed values. Translating this
to the output variables, the Dice Loss is an excellent choice
for the daily probability predictions, while the BCE makes
more sense for the hourly predictions, as small offsets in the
hourly predictions are not really troublesome and sometimes
even welcome. The actual loss function is a concatenation of
the both adapted LBCE

∗ and the LDice
∗ (Eq. 3), for which

slightly more weight was given to the hourly predictions.

LBCE(y, ŷ) = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)

(1)

LDice(y, ŷ) = 1−
2
∑N

i=1 yi · ŷi∑N
i=1 yi +

∑N
i=1 ŷi

(2)

Lconcat(y, ŷ) = 0.6LBCE∗(y, ŷ) + 0.4LDice∗(ymax, ŷmax)
(3)

The loss functions have been optimized using Adam with
a learning rate of 0.0007 and a decay of 0.0003. The models
have been trained with a batch size of 1024 for 100 epochs
with early stopping of 20 epochs. To mediate the class imbal-
ance, the positive samples were oversampled during training.
With this approach, new synthetic samples were created by
slightly modifying the original data. More specifically, a
randomly sampled percentage (ranging from 0 to 10%) of
the input values was swapped with its nearest neighbors (on
an airport level) based on the concept of Dynamic Time
Warping (DTW). DTW was first introduced by Sakoe &
Chiba in 1978 [31]. It has become a prominent similarity
algorithm between two temporal sequences as it considers
similarity irrespective of the absolute time. Prior to training,
the DTW matrix between all positive instances was calculated
for each airport individually. During training, the DTW matrix
was searched to select one of its randomly sampled nearest
neighbors. As the implementation generates new synthetic
positive samples every epoch, this helped to overcome the
imbalanced nature of the data due to the scarcity of regulations
and eliminated the need to introduce class or sample weights.

IV. RESULTS

In this section, results are first evaluated on the holdout set
of 5000 instances, consisting of 200 days for 25 airports. The
second part of this section shows an illustrative example of
the output and focuses on the explainability of the models.

A. Performance metrics

To evaluate the performance of the model, the metrics
are compared against two baselines. The first baseline is the
random guess baseline, for which the predictions are randomly
sampled from a uniform distribution between 0 and 1. The
second baseline is the naive persistence baseline, which is the

equivalent of the majority class baseline in the case of a non-
time series classification. This baseline uses the value at the
previous time step (t-1) as the prediction for the next time
step (t). Transforming this to a daily prediction, this algorithm
takes the daily prediction from the day before (t-1) as the
prediction for the day itself (t). This baseline is usually very
competitive, as the values from subsequent time steps tend to
be closely related to each other. Translating this to regulations,
it is quite likely that if there was a regulation the previous
day due to bad weather, an overload of traffic, or construction
works, this will still apply for the next day as well. For the
hourly predictions, the hourly values from the day before are
used. Table V compares the model performance (evaluated as
the average prediction of the 5 models) against the baseline
models. The metrics from the table show the macro average
across all 25 airports considering that an airport is expected
to have a regulation if the probability of occurrence is above
0.5. The binary accuracy is simply the accuracy of the positive
and negative labels combined. A precision of 0.76 implies that
of all the predictions regulations, 76% of them were correctly
predicted. The recall of 0.76 means that all of the existing
regulations, 76% were correctly recognized as a regulation.
The F1-score finally is the harmonic mean of the precision
and the recall.

TABLE V. COMPARISON OF THE MODEL PERFORMANCE AGAINST BASE-
LINE MODELS

Model Type Bin. Acc. Precision Recall F1

Random guess model Daily 0.51 0.24 0.52 0.33
Naive persistence model Daily 0.82 0.61 0.60 0.61
Stacked Conv1D model Daily 0.89 0.76 0.76 0.76
Random guess model Hourly 0.50 0.04 0.50 0.08
Naive persistence model Hourly 0.95 0.33 0.33 0.33
Stacked Conv1D model Hourly 0.96 0.48 0.49 0.49

Evaluating the results shows that the model is confidently
beating both baseline models. It is important to note that it
does so by not considering the previous day’s state as an input
feature. As opposed to the naive persistence model, the model
just evaluates the forecasted values using the inputs for the
day itself. Compared to the most competitive naive persistence
baseline, the results for the daily predictions improved for all
metrics. The binary accuracy increased from 0.82 to 0.89, the
precision increased from 0.61 to 0.76, the recall increased
from 0.60 to 0.76, and the F1-score improved from 0.61 to
0.76. The enhancements for the hourly predictions are very
similar, for which the F1-score, for example, improved from
0.33 to 0.49. Considering that we are primarily interested in a
rough estimation of when a regulation will be issued, a small
offset in the hourly predictions is negligible (e.g. predicting
a regulation from 08:00 until 10:00 for a regulation that
took place from 09:00 until 11:00 is still considered a strong
prediction). Therefore, the accuracy of the hourly predictions
is of less importance compared to the daily predictions.
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B. Explainability

The work from this paper has been implemented as a trial
version in the NMOC through the Airport Function Dashboard
(AFD). As artificial neural networks are often considered black
boxes, explainable AI has become increasingly important.
Within the dashboard, there is the possibility to break down
the feature importance for each airport individually. The ability
to explain the decision process of neural networks not only
makes the models more interpretable but also builds trust and
increases the adaptation of machine learning models. Although
many frameworks have been developed in recent years, a
custom implementation had to be developed due to the model
being a multi-output time series model. This implementation
is based on the SHapley Additive exPlanations (SHAP) val-
ues [32], which is a concept originally from cooperative game
theory. It was initially designed to assign payouts to players
depending on their contribution to the total payout. This logic
was later extended to the machine learning domain, where the
features represent the players and the total payout is the overall
prediction value. The marginal contribution of each feature is
calculated by predicting once including the feature and once
excluding (masking) the feature for various subsets of features.
The average difference between the prediction including the
feature and excluding the feature is considered the marginal
contribution for that feature.

C. Deployment

The predictions in the AFD are currently updated every
3 hours with the latest information available. The main
view (Figure 4) shows an interactive map of Europe with
aerodromes as dots representing the daily probability of a
regulation for a given target date. The various colors high-
light different categories of probabilities, ranging from green
(<10%), yellow (>=10% and <50%), orange (>=50% and
<80%) to red (>=80%). Translating the model performance
on the holdout set, on average 83% of the airports highlighted
in red will be correctly labeled as a regulation. Similarly,
86% of all existing regulations will be identified among
all the yellow, orange, and red-marked airports. Hovering
over the dots shows the exact daily probability expressed in
percentages. Double-clicking on a dot forwards the user to
an aerodrome-specific page, visualized in figure 5. This page
breaks down the hourly predictions for the target date and
also shows the feature importance based on the SHAP values.
Both the average feature importance (over the entire day) and
the feature importance over time are visualized along with
the hourly predictions. Figure 5 is an illustrative example
of Brussels National (EBBR) with target date September 21
2022. Based on the information from the visualization, there
is a very high chance of a regulation in the early morning.
According to the hourly feature importance extraction for
the most likely regulation at 06:00, the biggest contributor
is related to visibility issues (smoke), but also the amount of
traffic (emphasized by the flight features), the wind direction,
and taxiway maintenance were recognized as other potential
problematic factors. Comparing it against the ground truth,

figure 6 shows that there was indeed a regulation activated
from 05:00 until 08:00. Evaluating the cause of the regulation,
low visibility (’LOW VIS’) was identified as the predominant
factor. As opposed to only being provided a single probability
value, the NMOC users can start filtering out known issues,
identifying potential regulations, and agreeing with airports on
the most appropriate and efficient measures to be taken.

Figure 4. AFD main view

Figure 5. Illustrative Example for EBBR

Figure 6. Ground truth values for illustrative example for EBBR

V. CONCLUSION

In this paper, a Convolutional Neural Network designed
to predict the probability of an airport ATFM regulation
occurrence during the pre-tactical and tactical phases is pre-
sented. To the best of our knowledge, this is the first research
that focuses on predicting ATFM regulations from an airport
perspective. Evaluating the model on the holdout test set
shows promising performance assessment, while SHAP values
for each regulation appearance support the decision with the
adequate explainability. The model has been integrated into
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the EUROCONTROL AFD since the summer of 2022 in trial
mode. Improved airport situational awareness in the NMOC
increases operational performance and brings an overall miti-
gation of ATFM delay economic impact. Airports and airlines
that are aware of potential network bottlenecks could better
prepare themselves and anticipate adequate actions. Accord-
ingly, sharing the Regulation Outlook tool with the rest of
aviation stakeholders is envisaged in the future. To improve the
model, future research will consider longer-term predictions
(D-6), provided that accurate forecasting sources for weather
and traffic are available. In addition, a categorization of the
predicted regulations in terms of severity (expected minutes
of ATFM delay) or causes will be explored.
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