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Abstract—Air traffic demand has increased at an unprece-
dented rate in the last decade (albeit interrupted by the COVID
pandemic), but capacity has not increased at the same rate.
Higher levels of automation and the implementation of decision-
support tools for air traffic controllers could help increase
capacity and catch up with demand. The air traffic control
problem can be effectively modelled as a Markov game, where
a team of aircraft (the agents) interact in the airspace (the
environment) and cooperatively take resolution actions to achieve
a common goal: safe separation in the most efficient way. As
in any Markov game, the optimal policy for the team could
be learnt through trial and error in a simulated environment
using reinforcement learning algorithms. In this paper, we use
the soft actor-critic algorithm to unravel the optimal air traffic
control policy. Unlike some previous works, we propose a global
(i.e., shared) reward that encourages cooperative behaviour.
Furthermore, we propose a versatile policy model capable of
performing heading, speed, and/or altitude resolution actions.
We also demonstrate that the policy is robust and can maintain
safe separation even in the presence of uncertainty regarding
aircraft position, delays in implementing resolution actions, and
wind. The findings of this paper also suggest that there is still
significant room for improvement when controlling three degrees
of freedom at the same time.

Keywords—Air Traffic Control, Reinforcement Learning, Au-
tomation, Artificial Intelligence

I. INTRODUCTION

The increasing delays and congestion reported in many
areas indicate that the current air traffic control (ATC) system
is rapidly approaching saturation levels [1]. The capacity of
the system is limited by the number of available controllers
and the number of aircraft that each controller can manage.
Consequently, research focus has been redirected to automated
tools and alternative approaches that can automate part of the
ATC process, especially in high traffic scenarios and in the
presence of uncertainties, and thereby increase capacity.

Many deterministic conflict detection and resolution meth-
ods have been developed for aviation [2]. These have shown to
be very successful in situations with a small number of aircraft.
However, as the traffic density increases, these methods are
hindered by the unpredictable behaviour resulting from mul-
tiple aircraft interacting. Knock-on effects of aircraft avoiding
each other may result in unforeseen trajectory changes. In
addition, these methods typically have limited rules that cannot
guarantee safety in all different situations. However, manually
increasing these rules is not trivial; these must be arduously

defined by experts. This has redirected the focus to methods
capable of adapting to the environment autonomously.

The ATC problem can be modelled as a Markov game in
which multiple agents (the aircraft) interact in the airspace
(the environment) with the same goal in mind: to ensure safe
separation as efficiently as possible. Humans may find it dif-
ficult, if not impossible, to analyse and comprehend emergent
behaviour in a multi-agent system. However, reinforcement
learning (RL) techniques are often capable of identifying
emerging patterns through repeated exposure and training in
their environment. Furthermore, RL can adapt to high degrees
of uncertainty regarding the position of other aircraft, delays
in implementing resolution actions, and unpredictability of the
weather, all of which are tested in this work.

Although RL techniques have previously been used in the
ATC domain [3], few studies have focused on providing a
unified approach for aircraft separation assurance and routing.
This paper proposes a soft-actor-critic (SAC) algorithm for
determining the optimal cooperative policy that leads all
aircraft to the target in the most efficient manner, while
maintaining safe separation. The SAC algorithm has been
shown to produce good results when controlling aircraft’s
trajectory, and safekeeping a minimum distance from obstacles
or other aircraft [4], [5]. Additionally, it has been proven that
an RL agent can simultaneously control vertical and lateral
actions [6]. Finally, previous work also suggests that RL agents
can handle uncertainties regarding the position of other air-
craft [7], [8]. However, to the best of the authors’ knowledge,
this is the first work to develop an RL agent responsible
for controlling multiple en-route aircraft simultaneously with
both lateral and vertical actions, under different degrees of
uncertainty.

Section II describes the RL method: algorithm, the observa-
tion, action, and reward formulations. Different formulations
are used depending on whether the RL method performs
(1) heading, and speed variation, or (2) heading, speed, and
altitude variation. The simulation scenario, built on top of the
Gym open-source Python library [9], is detailed in Section III.
The defined hypotheses are presented in Section IV. Section V
describes the results of both training and testing of the RL
method. All the code used to run the results is open-source
and is available at [10]. Finally, Sections VI and VII present
the discussions of the results and conclusion, respectively.



II. METHOD

The RL model developed in this work has the objective of
guiding all aircraft to target, while preventing aircraft from
getting closer to each other than the minimum separation
distance. The latter is equal to 5NM, as defined by ICAO [11].
When two aircraft are closer than this minimum separation
distance, we consider that an intrusion has occurred.

Sections II-A and II-B describe the Markov game ab-
stracting the air traffic control problem and the fundamental
principles of the soft actor-critic (SAC) algorithm, respec-
tively. Section II-C describes the steps taken in one round of
simulation. Finally, Sections II-D, II-E, and II-F specify the
information received, the actions performed, and the reward
given to the RL model, respectively.

A. Markov Game Abstraction of the ATC Problem

A Markov game with homogeneous agents can be repre-
sented as a tuple (N,S,A, P,R, ρ0) consisting of the number
of agents, the state of the environment, the set of actions
available to each agent, the transition probability function, the
reward function of each agent, and the initial state distribution,
respectively. Because the ATC is a cooperative Markov game,
all agents share the same reward function. The partially
observable Markov game is a special case in which agents do
not have access to the entire state s ∈ S of the environment
before choosing an action, but only a portion o ∈ Ω of it, as
determined by the observation function O : S × Ω → [0, 1].

B. Soft Actor-Critic Algorithm

For this research, the SAC algorithm is used in combina-
tion with the automatic tuning of entropy, as proposed by
Haarnoja [12]. SAC is an off-policy, model-free algorithm
acting in the continuous action domain. As an actor-critic
algorithm, it employs the best of value and policy-based
methods, learning both a policy and a value function. Addi-
tionally, SAC has been shown to outperform other state-of-the-
art algorithms, including the well-known deep deterministic
policy gradient (DDPG). It is beyond the scope of this paper
to describe the mathematical implementation of SAC. A reader
interested in this algorithm is directed to reference [13].

The general objective of a reinforcement learning agent is
to maximise the discounted cumulative reward (also known
as the return in the RL jargon). With SAC, this objective is
augmented with an entropy term, which means that random-
ness/exploration is promoted in areas where the reward might
still be uncertain. This allows the algorithm to better deal with
local optima by better exploring the available solution space.
The source code of the SAC implementation used in this paper
(including the hyper-parameters) is available in reference [10]
so that any researcher can reproduce the results shown herein.

C. Interaction of the RL Model with the Environment

At each time step, the RL model receives information from
each aircraft (see Section II-D), and outputs an action for each
in response. This action identifies the state that the aircraft will
adopt in the current timestep. The elements of the aircraft’s

state modified by the RL model are specified in Section II-E.
Each aircraft is analysed in parallel; the actions picked for
each aircraft do not influence the decision of the model for
the other aircraft. The value of each action is evaluated at the
end of the time step. The reward given to the RL model is
based on the position and state of each aircraft at the end of
the time step (see Section II-F).

Note that, in this work, the observation and action for-
mulations have different dimensions and content depending
on whether the RL method is also responsible for altitude
variation on top of heading and speed variation. Tables I, II,
and III show the observation function, the action space, and
the reward function, respectively.

D. Observation Function

The observation function per agent consists of two main
parts: (1) the state of the ownship, and (2) its proximity and
direction to the surrounding aircraft. A graphical represen-
tation of the latter is given in Fig. 1. Surrounding aircraft
are represented through their distance to the ownship (both
vertical and horizontally), and relative heading. Additionally,
the RL method has information on the current speed of the
ownship, its desired cruising speed, and the bearing to target.
These allow the RL method to instruct the ownship to follow
its desired speed as much as possible. Note that the desired
cruising speed is a random speed value between the maximum
and minimum speed values of the aircraft. The complete
observation function, including an explanation of the elements
shown in Fig. 1, can be found in Table I. The observation has a
dimension of 4 + 5n when altitude variation is not employed,
and 5 + 6n when it is, with n being the number of surrounding
aircraft included in the observation. The latter must be defined
beforehand.

The number of aircraft represented in the observation is not
a trivial decision. On the one hand, the more information the
RL method has, the better it can defend against intrusions. It
may even be that the RL method cannot prevent a short-term
intrusion, as it does not receive information on this aircraft. On
the other hand, the larger the observation function is, the longer
the method will have to train in order to learn the optimal

TABLE I. OBSERVATION FUNCTION OF THE RL METHOD. NOTE THAT EX-
TRA INFORMATION IS ADDED WHEN THE RL METHOD CAN ALSO PERFORM
ALTITUDE DEVIATION.

Variable Size

Current relative distance to aircraft [dt] #aircraft
Expected relative dist. future time step to aircraft [dt+4] #aircraft

Distance to aircraft in the x axis [dx] #aircraft
Distance to aircraft in the y axis [dy] #aircraft

Relative heading to aircraft [dhdg] #aircraft
Ownship airspeed 1

Ownship optimal airspeed 1
Bearing to target (sin component) 1
Bearing to target (cos component) 1

Only with altitude deviation:
Ownship current altitude 1

Altitude difference to aircraft #aircraft
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Figure 1. Graphical overview of the representation of surrounding aircraft in
the function observation of the RL method. The variables are identified in
Table I.

actions from a larger set of observation-action combinations.
Moreover, it is not certain that depicting more aircraft directly
correlates to a more efficient intrusion prevention. Often with
geometric intrusion prevention algorithms, the look-ahead time
for intrusions is limited to favour actions that prevent short-
term intrusions as efficiently and as fast as possible [14].
Additionally, uncertainties regarding the relative future states
of the aircraft increase with far-away aircraft.

In this work, we test different numbers of surrounding
aircraft in the observation function to identify the ideal number
of surrounding aircraft. However, this number is directly asso-
ciated with the simulation environment tested. For different en-
vironments, a different number of aircraft, and, consequently,
a different observation function may be preferable.

E. Action Space

The RL method controls the state of all aircraft with the
objective of leading them towards their target point without
intrusions. Two different degrees of freedom are tested for
the action space: (1) the RL method controls the heading and
speed variation of each aircraft, (2) the RL method controls
the heading, speed, and altitude variation of each aircraft.

All actions are computed using a tanh activation function;
this maps the output values of the RL agent between -1 and +1.
These values are then translated into a variation of the state of
the ownship, as identified in Table II. For heading, negative and
positive values correspond to counter-clockwise and clockwise
heading variations, respectively. With respect to speed, with
each action the ownship may reduce or increase its speed up to
a third of the speed performance range. Note that the speed of
an aircraft is always restricted to the performance limits. The
altitude variation is the only element that is not linear. We use

TABLE II. ACTION FORMULATION OF THE RL METHOD. ∆v REPRESENTS
THE DIFFERENCE BETWEEN THE MAXIMUM AND MINIMUM CRUISING
SPEED OF AN AIRCRAFT.

Property Value by the RL method

Heading [-1,+1] transforms to [-22.5◦,+22.5◦]
Speed [-1,+1] transforms to [-∆v/3,+∆v/3]

Only with altitude deviation:
Altitude Secondary altitude if > 0, else primary altitude

two altitude levels to limit the number of altitude deviations
performed by the RL method, which is often not preferred due
to increased fuel consumption and passenger comfort.

F. Reward Function

The reward formulation of the RL method is represented in
Table III. The most important value is the number of intrusions
(i.e., agents must give priority to safety), and thus receives the
biggest penalty (-10 per intrusion). After intrusions, minimis-
ing drift angle to ensure flying towards the target is prioritised.
This is done by a drift penalty with respect to the ideal track
angle. Thus, aircraft are motivated to travel in a straight line
towards their target. In this case, the drift reward is equal to
+1. Moving away from the target is penalised with negative
values, up to a maximum of −0.5. Moving at a speed different
from the preferred cruising is also penalised. However, this is
a small penalisation as speed variation should be preferred
over moving away from target to prevent intrusions. Finally,
moving to the secondary altitude level (versus the main travel
altitude) is heavily penalised. We consider that the RL method
should only resort to this second flight level when heading and
speed variation alone are not sufficient to prevent the intrusion.

This work uses global rewards, which has previously been
used in research to prevent selfish policies [15], [16]. This
is the summed value of the rewards observed by all aircraft
currently acting within the environment. However, often it is
not apparent which aircraft/action is to blame for the intrusion.
A global reward ensures that actions by third parties, which
are not directly involved in the intrusion but have a negative
influence, can also be penalised. However, there are also
disadvantages to a global reward. It often leads to a ‘credit
assignment’ problem: it is difficult for an agent to correctly
understand the effect of its own actions when the reward
received is the aggregation of the actions of all agents. When it
is not clear how its own actions contribute to the global reward,
an agent may incorrectly change its policy to poorer actions,
slowing down (or even hampering) its learning process.

TABLE III. REWARD FORMULATION OF THE RL METHOD. NOTE THAT
THE ALTITUDE LEVEL IS ONLY ADDED WHEN THE RL METHOD CAN ALSO
PERFORM ALTITUDE DEVIATION.

Variable Weight

Number of intrusions -10
Drift penalty (0.5-abs(drift))*0.2

Speed difference from optimal -0.001* ∆v
Only with altitude deviation:

If aircraft in secondary altitude level -9
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III. EXPERIMENT: EN-ROUTE AIRCRAFT CONTROL WITH
REINFORCEMENT LEARNING

A. Simulation Scenario

Each traffic simulation scenario has an area shape and
flight routes which are randomly generated. An example is
given in Fig. 2; the airspace takes the shape of a polygon
with an area between 125NM2 to 250NM2. The spawn
and target points of each aircraft are generated randomly
within this area. However, it should be noted that aircraft are
allowed to travel outside of the area when necessary to avoid
intrusions. Moreover, spawn points are generated at least at
a minimum separation distance from each other, in order to
avoid intrusions when aircraft spawn too close to each other.

Figure 2. Example of a simulated scenario randomly generated.

B. Simulation Traffic

A fixed number of aircraft are created at the beginning
of the simulation. Each scenario runs until each of these
aircraft reaches its target or when the simulation reaches 300
time steps. A step represents 5 seconds of simulation time.
Aircraft are homogeneous in performance, with a minimum
and maximum speed of 400 and 500 kt, respectively. However,
each aircraft has a preferred cruising speed, which is randomly
selected at the beginning of the simulation.

Additionally, we assume instantaneous changes in heading,
speed, and altitude by each aircraft as indicated by the RL
method. Although such a portrait of aircraft dynamics is not
realistic, it maximises the performance of the RL method. The
final reward is thus a direct result of the new state of the
aircraft, and not of an intermediate state between the previous
and the new state due to acceleration limitations. As this work
mainly aims at identifying the maximum potential of RL for
separation assurance, this approach was preferred. However,
future efforts should focus on repeating this work with realistic
aircraft dynamics, e.g., using the base of aircraft data (BADA)
or open-source simulators such as Bluesky [17].

C. Intrusions and Minimum Separation

A horizontal separation of 5NM is used, as defined by
ICAO [18]. An intrusion occurs every time the distance
between two aircraft is less than this separation distance.
When the RL method also varies altitude, a vertical separation
is implemented. However, no vertical distance is defined, as
aircraft perform an immediate climb. Thus, we consider that
aircraft in different vertical layers are safely separated.

D. Independent Variables

Different independent variables were tested over the course
of 3 sub-experiments. These are described below:

1) No Uncertainties
The RL method is trained without uncertainties. We analyse

whether the method can understand reaching the target, and
prevent intrusions through heading and speed variation while
doing so. Only one altitude level is considered, as at this
phase the RL method does not control the flight level of
aircraft. Moreover, the RL method is trained with a different
number of surrounding aircraft, two and four, represented
in the observation function. The objective is to find which
function leads to stronger prevention of intrusions.

2) With Uncertainties
The RL method is trained with 50% and 100% probability

per time step of position uncertainties and action delays. Wind
is also added to the testing environment in an attempt to make
the operational environment more realistic. These elements are
implemented as follows:

• Position uncertainty: in every simulation step, there is a
probability that the position of a surrounding aircraft, as
received by the ownship, suffers a random offset between
0m to 500m in any direction.

• Wind: for each episode, a uniform wind field is initialised
with a random direction and magnitude between 0 ◦ to
360 ◦ and 0m/s to 30m/s, respectively.

• Action execution delay: for every action (once per simu-
lation step), there is a chance that a delay is experienced.
The delay is set between 0 s to 3 s. In practise, this means
that an aircraft does not immediately adopt the new state
output by the RL method but, instead, continues with the
previous state for the duration of the delay. The aircraft
adopts the new state after this delay.

3) Effect of Altitude
The method is trained and tested with two altitude levels.

A second level is added to the environment, meant to be used
as a last resort to prevent intrusions when heading and speed
variation are not sufficient. Here, the RL method can vary the
altitude on top of heading and speed variation. We consider
an aircraft to have reached its target point when it is in the
main altitude layer. Moreover, the RL is trained twice, one
time with 10 and a second time with 20 aircraft. The traffic
density is doubled with the objective of creating multi-actor
situations where intrusions may only be prevented with vertical
deviation.
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E. Dependent Measures

The performance of the RL method is evaluated in terms of
both safety and flight efficiency. Safety-wise, the total number
of intrusions is considered. The method is also evaluated in
terms of how efficiently it prevents intrusions, namely the total
number of steps necessary for all aircraft to reach the target,
as well as the speed variation necessary to prevent intrusions.

IV. EXPERIMENT: HYPOTHESES

It is hypothesised that the RL method can reduce the
number of intrusions compared to a baseline situation in
which aircraft move in a straight line towards their target.
Furthermore, it is hypothesised that the efficacy of the method
in preventing intrusions decreases as uncertainty increases. We
also anticipate a greater increase in the number of intrusions
when the action delay is implemented, as this will limit the
efficacy of the method in preventing short-term intrusions.

Regarding the number of surrounding aircraft in the obser-
vation function, it is hypothesised that knowing about more
aircraft will help the method to be more effective in its
intrusion prevention. A larger observation function is also
expected to result in longer training times, so the RL method
will need to run more episodes to determine the best policy.

The efficacy of the RL method in preventing intrusions
depends on the degrees of freedom controlled by the method.
Although more degrees of freedom lead to a higher number
of actions that the method may resort to in order to prevent
an intrusion, it is hypothesised that a larger action space (e.g.,
with vertical actions) will make it harder for the method to
identify optimal actions for each observation function.

Finally, it is hypothesised that the self-separation concept
learnt by the method is independent of the traffic density.
However, higher traffic densities lead to more complex multi-
actor situations. Therefore, it is likely that the RL method
requires more information on the surrounding aircraft in the
observation function than at a lower traffic density. Thus, it is
also hypothesised that the method will not be as efficient in
preventing intrusions at higher traffic densities.

V. EXPERIMENT: RESULTS

1) No Uncertainties
Figs. 3-5 show the evolution in performance during training

without uncertainties with just 2 degrees of freedom: heading
and speed. The progression over time is shown for both 2 and
4 surrounding aircraft included in the observation function.
In the figures, ‘MA100’ represents the moving average of the
last 100 episodes. Fig. 3 shows the evolution of the number of
intrusions during training. Here, it is shown that the number of
intrusions is effectively minimised after 200 and 350 episodes
with 2 and 4 aircraft in the observation function, respectively.
Throughout the training, only including 2 surrounding aircraft
in the observation function was more stable, obtaining fewer
than 1 intrusion per episode on average.

Fig. 4 shows the evolution of the number of total time steps
per episode. Naturally, moving aircraft out of their straight
path towards the target to prevent intrusions will result in

Figure 3. Evolution of the number of intrusions during training.

Figure 4. Evolution of the number of steps during an episode during training.

longer episodes. However, the increase in the number of steps
is relatively small. For example, with 2 surrounding aircraft,
it takes, on average, 10 more time steps to lead all aircraft
towards their target point. This indicates that small heading
and speed variations are executed to prevent intrusions.

Fig. 5 shows the absolute difference between the preferred
cruising speed of the aircraft and the speed output by the
RL method. An average 15m/s speed difference from the
preferred cruising speed (for 2 surrounding aircraft), is roughly
35% of the total speed range. This difference is expected,
as speed variation was given a smaller penalty than heading
variation.

Fig. 6 shows the actual routes controlled by the RL method
for the traffic scenario in which the planned routes were shown
in Fig. 2. Regarding the planned scenario (Fig. 2), most of the
routes in Fig. 6 take the aircraft on a direct path to the target.
The only significant heading changes occur when two aircraft
approach each other. Even so, once the ownship is no longer
at risk, it quickly redirects to the target, as shown in the red
circle. Both aircraft in the orange circle deviated from their
intended path to avoid a collision. As a result, it appears that
the method can determine the required heading deviation.

Figure 5. Evolution of the difference between the current and preferred
cruising speed during training.
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Figure 6. Final routes defined by the RL method in the example scenario.

Fig. 7 shows the distance between aircraft through 500
testing episodes. The boxplot on the left shows the distance
between aircraft when an intrusion has occurred. These values
can also be used to quantify the intrusion severity. Given the
results, most intrusions have a low severity: the minimum
distance between aircraft is between 4 and 5 NM.

Figure 7. Distance between aircraft throughout an episode.

Table IV compares the testing results obtained when the
method trained with 10 aircraft is tested with 10 and 20 air-
craft. In this case, we used the observation function including
the 2 closest surrounding aircraft, as its performance proved
to be more stable. With 20 aircraft, separation assurance
is required at double the training traffic density. Still, all
aircraft are successfully guided to their final target. However,
preventing intrusions proves to be more difficult with higher
traffic densities. This indicates that training probably has to
be done at least at the same traffic densities expected during
testing. Additionally, the current observation function might
not contain enough information to prevent intrusions with a
higher number of aircraft, as the observation only contains
information on the closest 2 aircraft.
TABLE IV. TOTAL INTRUSIONS AND STEPS WHEN THE RL METHOD IS
TESTED WITH THE SAME (10 AIRCRAFT), AND WITH HIGHER TRAFFIC
DENSITIES (20 AIRCRAFT).

Number of Intrusions (MA100) Number of Steps (MA100)

10 aircraft 0.52 248.07
20 aircraft 7.22 272.96

To better understand the actions selected, Figs. 8 and 9 show
the average selected heading and speed change with respect
to the position of the surrounding aircraft, respectively. It is
important to note the strong preference to rotate counterclock-
wise to resolve imminent intrusions, as indicated by the red
area in Fig. 8. The same policy is shared between all agents
in the environment, ensuring implicit coordination in pairwise
intrusions.

Fig. 9 shows a tendency to accelerate or decelerate de-
pending on the position of the nearby aircraft. At very small
absolute distance values, the RL method produces the strongest
speed variation actions. However, Fig. 9 shows a very strong
acceleration value directly next to a strong deceleration value
(see points near (0, 0)). Strong acceleration values can be un-
derstood as the method attempting to move the ownship away
from the surrounding aircraft as fast as possible. However, the
strong deceleration is not as clear. Future work will increase
the training complexity of the RL method to further clarify
this behaviour.

Figure 8. Heading deviation in relation to the average distance to surrounding
aircraft.

Figure 9. Speed deviation in relation to the average distance to surrounding
aircraft.
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Figs. 10 and 11 show the same policy for filtered head-
on intrusions (defined by a relative heading between 160 ◦ to
200 ◦). The agent realises the danger, indicated by the higher
magnitude of the selected actions. Furthermore, there is a clear
acceleration present just before intrusion (see Fig. 11) that,
combined with the strong heading change shown in Fig. 10,
results in a final attempt to prevent an intrusion.

Figure 10. Heading deviation in relation to the average distance to surrounding
aircraft in the case of (near-)head-on intrusions.

Figure 11. Speed deviation in relation to the average distance to surrounding
aircraft in the case of (near-)head-on intrusions.

2) With Uncertainties
Table V shows the average number of intrusions and steps

for different RL methods trained in the operational environ-
ment with the level of uncertainty defined in the first column.
Here, training is done with 2 surrounding aircraft in the
observation function. As hypothesised, adding any kind of
position uncertainty, wind conditions, or action delays with
a probability of 100%, results in an increase in intrusions.

Surprisingly, the average number of intrusions decreases
slightly when position uncertainty and wind are added to
the environment with a probability of 50%. Naturally, 50%

TABLE V. RESULTS AFTER TRAINING CONVERGENCE WHEN UNCERTAIN-
TIES ARE ADDED TO THE ENVIRONMENT.

#Intrusions
(MA100)

#Steps
(MA100)

No uncertainties 0.52 248.07
50% prob. position uncertainty + wind 0.48 248.85
100% prob. position uncertainty + wind 0.79 250.76

50% prob. action delay 0.78 248.39
100% prob. action delay 0.83 243.86

probability may not be sufficient to influence the performance.
However, it could also be that position uncertainty results
in the method defending in advance due to the incorrect
perception that other aircraft are closer than they really are.
Uncertainties could also lead to ‘better’ geometries. For exam-
ple, head-on pairwise intrusions are practically impossible to
prevent without a coordinated manoeuvre from both aircraft. In
this case, uncertainties may lead to each aircraft thinking that
the other is not directly head-on but more to one side, which
facilitates the decision to which side the ownship should turn
to in order to prevent the intrusion.

Finally, the average number of intrusions increases when
there is a delay in aircraft adopting the provided action. This
is expected as: (1) aircraft may not adopt the new state fast
enough to prevent short-term intrusions, (2) the longer aircraft
take to adopt the new state, the more likely it is that this state
will no longer be effective against the intrusion. The previous
action was calculated by the RL method assuming that the
ownship would act immediately. With less time to prevent
intrusions, stronger heading or speed variation is needed to
prevent the more imminent intrusion. The number of steps
decreases when the probability of a delay is at 100%. As the
ownship takes longer to adopt the new intrusion prevention
heading, it spends more time on its ‘default’ trajectory, which
is directed towards the target. However, aircraft reach the target
faster at the expense of a higher number of intrusions.

3) With Vertical Deviation
Table VI shows the evolution of the RL method trained

with altitude variation, on top of heading and speed variations.
With 10 aircraft, the method achieved 0.88 intrusions per
episode, compared to 0.52 intrusions with only heading and
speed variation (see Table V). This increase was not expected.
The RL method did not learn to use the altitude level for
intrusion prevention as desired. A possible reason is that, with
only 10 aircraft, most intrusion situations can be solved with
heading and speed variation alone. Thus, there are not enough
situations where the method is motivated to learn to use the
additional altitude layer.

TABLE VI. RESULTS AFTER TRAINING CONVERGENCE WHEN VERTICAL
MANOEUVRES ARE ADDED TO THE ACTION SPACE.

#Intrusions
(MA100)

#Steps
(MA100)

Vertical deviation (with 10 aircraft) 0.88 249.97
Vertical deviation (with 20 aircraft) 1.48 281.31
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The method was also trained with twice the traffic density,
20 aircraft, to force more danger situations involving multiple
aircraft. With deterministic intrusion prevention methods, hav-
ing twice the traffic density more than doubles the number of
intrusions [19]. However, this is not observed in this case. With
10 and 20 aircraft, the average number of intrusions is 0.88
and 1.48, respectively. This indicates that the RL method can
adapt to higher traffic densities when trained in it. However, it
should be noted that the higher the traffic density, the longer
it takes the method to identify optimal solutions.

With 20 aircraft, the RL method still predominantly chose
to use heading and deviation alone to prevent intrusions. With
1.48 average intrusions, there are still not enough intrusions
for the RL method to learn to use altitude deviation correctly.
We consider that, with three degrees of freedom combined,
the method requires a larger set of training intrusions directed
at understanding the advantage of varying each degree.

VI. DISCUSSION

This work explored whether RL methods can successfully
control the trajectory of all aircraft in a multi-agent, en-route
sector. The results show that an RL method is capable of
guiding aircraft to the target point, while preventing each
aircraft from getting closer than the minimum separation dis-
tance. Moreover, this behaviour was tested under uncertainties
regarding the position of the surrounding aircraft, as well as
delays in adoption of the method’s produced state. Although
these hindered the ability of the method to defend against
intrusions, the RL method was still able to guide aircraft to
target with limited intrusions.

The amount of information to add to the observation func-
tion is an important factor. On the one hand, a larger observa-
tion array provides more information about the environment in
which it operates. On the other hand, more information could
be redundant and slow down the learning process. This can be
seen in Fig. 3, where considering 4 surrounding aircraft was
not as stable as considering only 2. For these experiments, the
traffic density may have been low enough so that information
about more surrounding aircraft was unnecessary. Aircraft,
other than the 2 closest ones, did not pose an imminent threat
to the safety of the ownship. However, for larger densities, it
could be that information about 2 surrounding aircraft is not
enough, as other nearby aircraft may cause future intrusions.
This can be seen in Table IV: doubling the number of aircraft
to 20 created, on average, more than 7 intrusions per episode.

In addition, this work explored the effect of the number of
degrees of freedom on the ability to prevent intrusions. With
heading and speed variation, the method was able to choose
the necessary variation to prevent intrusions in a continuous
space. Table VI shows that, without uncertainties, the method
for the 10 aircraft scenario averaged fewer than 1 intrusion
per episode. A larger action space, with altitude variations
on top of heading and speed, decreased the efficacy. The
method never learnt to use altitude variation as an intrusion
prevention tool, possibly as a consequence of the implemen-
tation characteristics of this work. First, altitude was given

as a discrete action. This inconsistency with the two other
degrees of freedom may have contributed to the decline in
performance. Second, the number of multi-actor situations
might not have been sufficient to successfully learn to use
altitude deviation as the last resource to prevent intrusions.

A. Future Work

There is still ample work to be done on the development
and testing of reinforcement learning methods for ATC before
these can be implemented in a real-world scenario. First,
the effect of different observation functions must be further
investigated. Future studies should focus on analysing the
essential information that is required in order to be able to
prevent multi-actor intrusions. Furthermore, it should be taken
into account that not all surrounding aircraft pose the same
threat. For example, an aircraft travelling near the ownship, but
in the same direction, is not as risky as one further away but
heading towards the ownship. Prioritisation of certain aircraft
can help limit the size of the observation function while still
guaranteeing that sufficient information is provided in order
to prevent intrusions.

Additionally, this work assumes the immediate adoption of
the provided actions. This is far from a real-world scenario,
where performance limits dictate how fast an aircraft can
modify its state. In a worst-case scenario, an aircraft may not
be able to adopt an intrusion prevention state fast enough to
prevent a short term intrusion. Furthermore, this affects the
predictability of the state transition function. The change to the
environment may not be a direct result of the action output,
but instead of the maximum state change that the ownship
managed to achieve in a limited amount of time.

Finally, uncertainties regarding the positions of the sur-
rounding aircraft affect the ability of the RL method to defend
against intrusions. However, teaching the method to defend in
advance against these uncertainties may result in the agent
adopting a more defensive state, considering larger distances
of minimum separation. These lead to greater state deviations,
which are not desirable as they increase flight time, and
consequently, fuel consumption. An alternative is to consider
other machine learning methods that analyse environmental
conditions and provide the RL method with an accurate
estimate of the position of other aircraft [20].

VII. CONCLUSION

This paper is exploratory work to identify whether reinforce-
ment learning (RL) can be used as a complete ATC tool. This
work introduced an RL method responsible for leading the
aircraft to the target as fast as possible, while keeping all the
aircraft at a safe separation distance. The method receives only
the information available to each aircraft, namely their current
state and the relative position of the surrounding aircraft.
Under nominal conditions, the RL method is capable of safely
guiding 10 aircraft to their target point with minimum heading
and speed deviation. Even in the presence of uncertainties
regarding the position of other aircraft, action delay, and wind,
the average number of intrusions is fewer than 1.
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Future work should focus on extending these results to
environments with more realistic aircraft dynamics, such as
horizontal and vertical accelerations. Additionally, specific
training scenarios should be developed towards reducing the
effect of uncertainties on the efficacy of the method. A possible
solution may include the creation of additional machine learn-
ing methods that provide an accurate estimate of the position
of nearby aircraft.

ACKNOWLEDGEMENTS

The authors would like to thank the EUROCONTROL
Innovation Hub for creating and coordinating the Master Class
challenge ‘Conflict Resolution with Reinforcement Learning’,
which led to the creation of this work. Furthermore, we
would like to congratulate the other teams that participated in
this challenge, especially Cranfield University, with whom we
had interesting and fruitful conversations regarding different
approaches to this problem.

REFERENCES

[1] “Performance review report covering the calendar year 2018,” EURO-
CONTROL, Tech. Rep., 2018.

[2] M. Ribeiro, J. Ellerbroek, and J. Hoekstra, “Review of conflict resolution
methods for manned and unmanned aviation,” Aerospace, vol. 7, no. 6,
2020.

[3] Z. Wang, W. Pan, H. Li, X. Wang, and Q. Zuo, “Review of deep
reinforcement learning approaches for conflict resolution in air traffic
control,” Aerospace, vol. 9, no. 6, 2022.

[4] M. H. Lee and J. Moon, “Deep reinforcement learning-based uav
navigation and control: A soft actor-critic with hindsight experience
replay approach,” 2021.

[5] J. Groot, M. Ribeiro, J. Ellerbroek, and J. Hoekstra, “Improving Safety
of Vertical Manoeuvres in a Layered Airspace with Deep Reinforcement
Learning,” 10th International Conference for Research in Air Trans-
portation (ICRAT), 2022.

[16] M. W. Brittain, X. Yang, and P. Wei, “Autonomous separation assurance
with deep multi-agent reinforcement learning,” Journal of Aerospace
Information Systems, vol. 18, no. 12, pp. 890–905, 2021.

[6] J. Mollinga and H. van Hoof, “An autonomous free airspace en-route
controller using deep reinforcement learning techniques,” 2020.

[7] D.-T. Pham, P. N. Tran, S. Alam, V. Duong, and D. Delahaye, “Deep
reinforcement learning based path stretch vector resolution in dense
traffic with uncertainties,” Transportation Research Part C: Emerging
Technologies, vol. 135, p. 103463, 2022.

[8] M. Brittain, X. Yang, and P. Wei, “A deep multi-agent reinforcement
learning approach to autonomous separation assurance,” 2020.

[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[10] A. Badea, R. Dalmau, D. Groot, A. M. Veytia, and M. Ribeiro, “Air
Traffic Control RL Environment,” DOI: 10.4121/20455296, 2022.

[11] ICAO, “Doc 4444 - pans-atm, procedures for navigation services – air
traffic management,” 2016.

[12] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[13] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft actor-
critic algorithms and applications,” 2018.

[14] J. Hoekstra, R. van Gent, and R. Ruigrok, “Designing for safety: the
‘free flight’ air traffic management concept,” Reliability Engineering &
System Safety, vol. 75, no. 2, pp. 215–232, feb 2002.

[15] R. Isufaj, D. Aranega Sebastia, and M. Angel Piera, “Towards Conflict
Resolution with Deep Multi-Agent Reinforcement Learning,” in ATM
seminar 2021, 14th USA/EUROPE Air Traffic Management R&D Sem-
inar, 2021.

[17] J. Hoekstra and J. Ellerbroek, “Bluesky ATC simulator project: an
open data and open source approach,” in International Conference for
Research on Air Transportation, 2016.

[18] I. C. A. Organization, Doc 4444: Procedures for air navigation. Air
Traffic Management, sixteenth ed., 2016.

[19] E. Sunil, J. Ellerbroek, J. Hoekstra, and J. Maas, “Three-dimensional
conflict count models for unstructured and layered airspace designs,”
Transportation Research Part C Emerging Technologies, vol. 95, pp.
295–319, 10 2018.

[20] Z. Wang, M. Liang, and D. Delahaye, “Data-driven Conflict Detection
Enhancement in 3D Airspace with Machine Learning,” in 2020 Interna-
tional Conference on Artificial Intelligence and Data Analytics for Air
Transportation (AIDA-AT), 2020, pp. 1–9.

9




