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Abstract—Fast-time simulation constitutes a well-known and
long-established technique within the Air Traffic Management
(ATM) community. However, it is often the case that simulation
input and output spaces are underutilized, limiting the full un-
derstandability, transparency, and interpretability of the obtained
results.

In this paper, we propose a methodology that combines simu-
lation metamodeling and SHapley Additive exPlanations (SHAP)
values, aimed at uncovering the intricate hidden relationships
among the input and output variables of a simulated ATM
system in a rather practical way. Whereas metamodeling provides
explicit functional approximations mimicking the behavior of
the simulators, the SHAP-based analysis delivers a systematic
framework for improving their explainability. We illustrate our
approach using a state-of-the-art ATM simulator across two
case studies in which two delay-centered performance metrics
are analyzed. The results show that the proposed methodology
can effectively make simulation and its results more explainable,
facilitating the interpretation of the obtained emergent behavior,
and additionally opening new opportunities towards novel per-
formance assessment processes within the ATM research field.

Keywords—Air Traffic Management Simulation Modeling;
Simulation Metamodeling; XGBoost; Model Explainability;
SHAP values

I. INTRODUCTION

Modern Air Traffic Management systems consist of a
plethora of players, variables, uncertainty, and, ultimately,
human behavior, interacting across both airspace and ground
operation levels. By aiming at encompassing all these essential
elements while ensuring the safety and efficiency of air traffic
flows [1], ATM systems typically become inherently hard
to model [2]. Due to this overwhelming complexity, such
systems can reliably be modeled and studied through fast-
time simulation approaches. Simulations allow researchers
and practitioners to investigate, test, and propose a wide
range of designs and alternative solutions within a virtual
environment, i.e., a simulator1, which would be otherwise
practically infeasible to conduct in the real-world system.

Despite the well-known advantages in modeling complex
and real-world stochastic systems and their evolution over

1Technically, a ‘simulator’ is the computer implementation of a ‘simulation
model.’ We use both terms interchangeably in this text.

time, simulation-based solutions suffer from a major draw-
back: they end up being developed and employed as opaque
tools with often little room for understandability, transparency,
and interpretability with regard to the details of the underlying
simulation model and the obtained results. This is mostly
an immediate consequence of their intrinsic modeling nature
rather than an intentional design of the simulators’ developers.
In fact, whereas it is expected that simulators’ internal individ-
ual components (equations, functions, formulations, theoretical
foundations, etc.) and their logical interactions can be clearly
identified and understood, their external emergent behavior
may fall behind in terms of explainability. Furthermore, the
understanding of this high-level behavior is potentially ag-
gravated for end-user practitioners, policy-makers, and non-
experts, who are typically oblivious to the intricate low-level
implementation details.

The ATM R&D community is familiar with the trade-
offs between benefits and disadvantages posed by fast-time
simulation modeling due to its long experience with such
techniques [1], [3]–[6]. While any simulation model is by
and large a simplified representation of the real system [7],
most may still evolve to be complex software programs with
numerous input/output variables and parameters, requiring vast
amounts of data and workload for calibration. Trivially, this
complexity is an increasing function of the degree of detail,
realism, and purpose of the simulation approach, as well as
of the actual system to be modeled and the problem to be
addressed. Particularly overwhelming dimensional sizes and
value ranges of input spaces can constitute a serious burden in
the exploration of the simulation behavior as a whole. Besides,
the lack of an explicit and manageable closed-form function
that transforms the former into the latter, as opposed to pure
analytical approaches, can lead to difficulties in understanding
the true impact of the input variables and parameters in the
system’s output metrics or Key Performance Indicators (KPIs),
and their interrelationships. Simulation metamodeling [8], [9]
provides a framework to approximate the implicit unknown
relationship transforming the inputs into the outputs by an
explicit known functional form, thereby opening the way to
better understand the simulator’s behavior. To the best of our
knowledge, the use of these techniques in the scope of ATM



research is quite recent [10].
Many ATM simulation-based studies focus on performance

impact assessment of new proposed solutions and concepts
(e.g., single (SESAR) Solutions [11]–[13]2) on a given actual
system or planned one, often relying on a manual exploration
of the underlying simulator’s behavior. Domain knowledge
and expert-driven scenario design, and what-if approaches
are ultimately employed in an effort to reduce and discretize
the input space into a limited set of possible system states
to investigate. Despite the utility of these methodologies,
especially when it comes to the communication of the results
to stakeholders, there is a risk of failing to properly assess the
simulated system’s behavior in its entirety, leaving relevant
simulation input regions unexplored. Hence, by narrowing
down the simulation possibilities to a pre-defined finite set of
input value combinations specified according to the hypoth-
esized situations, the simulation analysis becomes restricted
to particular small regions of the uncertainty space, thereby
curbing the reach of its insights and conclusions.

The concern for explainability does not only involve tradi-
tional simulation techniques but has also recently reemerged
along with the advent and proliferation of Artificial Intelli-
gence (AI) and Machine Learning (ML) technologies, most
of them likewise developed in a ’black-box’ fashion [14].
Accounting for explainability has been increasingly regarded
as the solution to improve model transparency, trust, and
reliance, especially those integrated within decision-making
frameworks [15]. In this context, SHapley Additive exPlana-
tions (SHAP) values have been used to mitigate the lack of
model explanation within AI/ML systems [16]–[18]. Origi-
nally proposed within the cooperative game theory field, the
SHAP value method provides a systematic framework for
quantifying the individual contribution or impact that each
input variable has on the output(s), thereby enhancing the
understanding of the associated interactions and, ultimately,
the overall explainability of a given arbitrary model.

In this paper, we propose to combine simulation metamod-
eling and SHAP values analysis to address the issue frequently
posed by black-box ATM simulators. Whereas metamodeling
provides explicit functional approximations mimicking the
behavior of the simulators, the SHAP-based analysis delivers
a systematic framework for improving their explainability,
thereby enhancing the overall understanding of the interactions
among the variables of interest. We illustrate the methodology
using a state-of-the-art ATM simulator across two case studies
in which two delay-centered performance metrics are analyzed
w.r.t. seven input variables. The results show that the proposed
methodology can effectively make simulation and its results
more explainable, facilitating the interpretation of obtained
associated emergent behavior and additionally opening new
opportunities for novel performance assessment processes in
ATM.

2A SESAR Solution represents a change in the way air traffic management
is performed. Solutions are new operational concepts, procedures, and relevant
technologies.

Figure 1. Relationship between the real-world system under study, the
simulator, and the metamodel.

II. BACKGROUND

A. Metamodeling

By definition, a metamodel is a model of a model. Although
the term itself is relatively vague, having different meanings
and interpretations across fields, in this paper, we focus on
fast-time simulation metamodels [8], [9], that is to say, models
specially designed to reproduce the behavior of simulation
models. If a simulation model corresponds to an abstraction
of a particular real-world system or phenomena, a metamodel3

can be regarded as an abstraction of the simulation model
itself, as depicted in Figure 1.

Simulation metamodels are any type of model that can be
used to deduce the unknown input-output mapping inherently
defined by the simulation model. Whereas the functional
structures of the former are generally known and analytically
defined, the same does not hold true for most simulators.
Remember that although the average arbitrary simulator is
oftentimes comprised of a plethora of internal analytic ex-
pressions and logic models, it can be externally treated as
a single ‘black-box’ function with no concrete mathematical
formula. Nevertheless, the ‘emergent behavior,’ resulting from
its inner interactions and dynamics that evolve over time, can
be directly observed. Metamodels aim at mimicking precisely
this output behavior as an explicit function of the simulation
inputs, therefore contributing to a better explainability of the
underlying simulator and, consequently, the problem under
study.

Within the related literature, it is common to use Lin-
ear Regression and Gaussian Processes as the underlying
frameworks for metamodeling [10], [19], but we create our
metamodel using a Gradient Boosting Machine (GBM) [20],
as it is computationally more efficient and achieves high
accuracy. A GBM is an ensemble of weak predictors, in our
case, decision trees, used for regression and classifications in
machine learning with great success [21]. The model is built
in a stage-wise fashion similar to other ensemble methods,
e.g, AdaBoost or Random Forest. Let hm(x; am) denote the
small regression tree with hyperparameters am, then the GBM
is given as

3For simplicity, we use the terms ‘simulation metamodel’ and ‘metamodel’
interchangeably.
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F
(
x; {βm, am}Mm=1

)
=

M∑
m=1

βmhm (x; am) ,

where x is the input variable, βm is the learning rate, and
M is the number of boosting steps. The optimal solution is
then given by the function minimizing the expected loss of all
samples (x, y) as

F ∗ = argmin
F

Ex,y[L(y, F (x; {βm, am}Mm=1)],

where L(y, F (x; {βm, am}Mm=1)) is the loss function, e.g.,
Root Mean Square Error (RMSE), and y is the target to x.

We use the framework XGBoost [22], which efficiently
implements a GBM with decision trees. XGBoost uses a
depth-wise tree growth strategy and builds trees until a certain
depth. It leverages the speed of GBM by implementing the
algorithm such that it can compute the splits of the regression
trees in parallel. XGBoost also uses several tricks to avoid
overfitting, e.g., with L2-regularization [23] or the learning
rate as a shrinkage parameter.

B. SHAP Values

SHapley Additive exPlanations (SHAP) is a unified frame-
work for interpreting model predictions [16]. To explain a
complex predictive model, SHAP constructs a simpler expla-
nation model with N simplified input variables. SHAP builds
upon additive variables attribution methods, which have an
explanation model g that is a linear combination of binary
variables, i.e.,

g(x) = ϕ0 +
N∑
i=1

ϕixi,

where xi ∈ {0, 1}N and ϕi ∈ R. The method gives a unique
solution and has the two following properties:

• Consistency and local accuracy: The output of the ex-
planation model is equal to the output of the predictive
model, and if a variable has a positive impact on the
prediction in the explainable model, it will not have a
smaller impact in the predictive model.

• Additivity of explanations: The sum of all the variable
attributions gives the output of the predictive model.
This enables aggregating variable contributions, e.g., if
a categorical variable is one-hot encoded4, each class’
contribution can afterward be summed together while still
being consistent with the predictive model.

C. Simulation setup

Mercury [6] is a simulator developed over several years,
able to produce detailed network-wide performance assess-
ments, in particular regarding passenger mobility in Europe.
Mercury is implemented as an event-driven simulator. The
underlying model can be seen as a Monte Carlo simulation,
sampling distributions (delays, missed connections, etc.) based

4One-hot encoding is a process by which categorical variables are converted
to binary ones

on causal rules representing actual processes of the air trans-
portation system (e.g. if passenger delay is bigger than a
given threshold, an airline incurs costs for compensation and
assistance to the passenger). It is also an agent-based model,
modeling different stakeholders and components of the system
as agents. The agents’ memories are private, i.e., they have
attributes that cannot be accessed by other agents.

The simulator models the movements of individual aircraft
throughout one day of operation, including turnaround pro-
cesses, tracking the passengers on board, as well as passenger
connections. The passengers in Mercury are modeled through
passenger processes, simulating, for instance, connecting times
for individual passengers, connecting options, etc. The flight
is described in terms of the time it takes to complete dif-
ferent processes (turn-around, taxi, take-off, cruise, etc.). The
simulation of the en-route phase is approximated using sets
of historical flight plans and delay distributions. As already
mentioned, different types of agents are present in the system,
sometimes instantiated multiple times (e.g. airline operating
center or flight), sometimes once (e.g. Network Manager).
The most important agents are: Airline Operating Centers
(AOC), Flights, Airports, DMANs and AMANs, and Network
Manager. Passengers are not modeled explicitly (i.e. as agents),
but are bundled in groups that share common itineraries, and
these groups are handled by the other agents, specifically
AOC and the airport. These groups are dynamic, i.e., in case
of missed connections they can be split if their respective
passengers need to board different planes. Mercury does not
model the airspace explicitly and as such does not track sectors
a flight is traversing. Furthermore, no tactical air traffic control
takes place. Instead, the distribution of “delays” is used to
modify the flight times between navigation points, extracted
from historical data, as an approximation of ATM actions.

1) Assessing SESAR Solutions using Mercury: Here, we
explore the impact of two particular SESAR Solutions on the
small-scale ATM system. These Solutions are used as case
studies in the paper: 1) User Driven Prioritization Process
(UDPP), and 2) Extended - Arrival Manager (E-AMAN).

UDPP The areas of the European air traffic network that
are (likely to be) stressed due to high levels of traffic can
receive an ATFM regulation, i.e., a restriction on the number
of flights that can enter a given volume of airspace, or airport
in a given time. The flights that were supposed to cross
this zone during the regulation duration are then explicitly
assigned ATFM slots, which imply departure delay. The way
flights are currently assigned to ATFM slots is using the so-
called “First-Planned First served” CASA algorithm (FPFS)
[24]. The UDPP lets the airlines swap their own slots. Whilst
swapping is efficient in some cases, it lacks the capacity to
find good solutions when airlines have a small number of
flights in the regulation (the issue of so-called low-volume
users). The natural extension would be to allow for inter-airline
slot swapping, which is the UDPP extension implemented in
Mercury, the goal being to test the reduction of delay and offer
airlines flexibility in managing flight and passenger delays and
related costs. E-AMAN The aim of AMAN is to sequence
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arriving flights, making sure that safety is respected but also
that the runway throughput is as high as possible, given the
capacity. Since runway capacity cannot be infringed, traffic
overload translates into delay, usually in a holding stack, where
flights wait for a (runway) slot to land. The E-AMAN agent in
Mercury manages an explicit queue of slots for the airport. The
algorithm optimizes the arrival sequence between the planning
and the tactical horizon, considering a particular objective
function. When a flight enters the planning horizon, all flights
present between the planning and the execution horizon are re-
optimized, i.e., assigned to the slots which are either planned
or available, considering a given optimization function. The
optimization of all the flights within the E-AMAN every time
a flight enters or exits the system ensures that the best sequence
is maintained within the arrival manager with respect to the
optimization function and that a flight may slow down to
absorb part of the delay. When a flight enters the planning
horizon, it receives the amount of delay that it is expected to
experience and tries to absorb as much delay as possible by
slowing down, saving some fuel (we term it planned absorbed
delay). At the tactical horizon, a flight will be issued with a
slot (assigned as the output of another re-optimization), and
the required delay (if any) will be performed as holding.

III. METHODOLOGY

As mentioned previously, we propose to integrate metamod-
eling and SHAP-based analysis for enhanced explainability
of ATM simulators for performance assessment. Figure 2
provides an overview of the proposed approach.

The first step is trivially to define the object of study, i.e.,
a particular ATM system, along with a problem statement
and set of features (e.g., SESAR Solutions) to be evaluated,
eventually leading to the specification of our two case studies,
which are then run in the simulator. The Mercury design
allows for an easy switch between the two case studies, which
in turn are encoded as input parameters. The metamodel
is then used to provide an approximate explicit functional
relationship between the input variables and the KPIs of
interest for the case study. After the metamodel is fitted to
a data set comprised of pre-computed simulation results, the
SHAP method is applied to improve its explainability and,
by proxy, the transparency of the underlying simulator. We
deem this metamodel as an ‘explainable metamodel’ as it
aims to better explain the relationships between the variables
and KPIs, which ultimately provides an additional level of
understanding regarding the problem being addressed.

A. Experimental Setup

The simulation used in the paper runs the day of operations
at Charles De Gaulle airport, based on the historical data
from 12 September 2014: flights, origin-destination, routes,
aircraft types, estimated cruise wind, distributions on climb
and descent profiles, requested nominal cruise speeds and
flight levels, companies, airspace structure, ATFM regula-
tions, minimum connecting times, minimum turnaround times
(sourced from EUROCONTROL’s Demand Data Repository),

Figure 2. Methodology Overview.

TABLE I. VARIABLES USED IN THE CASE STUDIES.

Variable Description Theoretical
range

Practical
range Default

Fuel price Price of one kg of fuel. [0, ∞) [0, 5] 1

Hotspot
solver

Type of solver in the
hotspot.

[GlobalOpt,
NNBound,
UDPP,
ISTOP]

NA ISTOP

Planning
horizon

Distance horizon where
the EAMA tries to opti-
mize the arrival, in NM.

(100, ∞) [100, 1000] 300

Cruise
uncertainty

Deviation in the aircraft
speed during cruise. [0, ∞) [0, 10] 1

Turn-around
time scale

Scaler of mean of the
distribution of
turn-around times.

[0, ∞) [0, 10] 1

Minimum
connecting
time scale

Scaler of mean of the
distribution of passenger
minimum connecting
times.

[0, ∞) [0, 10] 1

Claim rate Proportion of passengers
claiming compensation. [0, 1] [0, 1] 0.14

cost of delay values [25], taxi times (from International
Air Transport Association summer 2010 report), non-ATFM
delays (from CODA databse), passenger itineraries, fares and
alliances (from Paxis), schedule departure/arrival times (from
Innovata). In this simulation, all the flights to and from Charles
De Gaulle are simulated with all corresponding information
on passenger connections and turnaround. Furthermore, the
ATFM regulations are inflated to be able to test UDPP
mechanisms (i.e. case study 1).

In order to find interesting relationships between variables,
those that are harder to model, and thus more interesting
from the metamodelling point of view, we selected the input
variables shown in Table I, with a short description, theoretical
and practical range, and a default value. The practical ranges
are defined to limit the scope of the case studies but are wide
enough to capture the effects of high values, e.g., in theory,
there is no maximum value for the fuel price, but in practice,
we believe there is some upper limit.

As can be noted, a large number of input variables and
output KPIs are available from the simulator, and not all the
relationships and emergent behaviors can be shown here due to
space restrictions. However, to showcase our methodology, for
each case study, we chose to explore and present relationships
between one output KPI and all input variables.
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TABLE II. HYPERPARAMETERS OPTIMIZED WITH A GRID SEARCH.

Hyperparameter Space

Max depth [3, 4, 5, 6, 7, 8, 9]
L2-regularization [0, 0.1, 0.2, 0.3, 0.4, 0.5]
Learning rate [0.01, 0.05, 0.1, 0.2, 0.3, 0.4]

B. UDPP Case Study

As mentioned, the goal of UDPP Solution is to reduce
delays and offer airlines flexibility in managing flight and
passenger delays and related costs. Flight and passenger delays
are not the same when there are connecting passengers. Thus,
we want to explore the effect of input variables on ”Passenger
arrival delay” which represents passenger arrival delay to the
final destination. The UDPP mechanisms allow airlines to
minimize passenger delay, as they take into account the costs
that would be due for compensation and duty of care for large
delays.

C. E-AMAN Case Study

E-AMAN strives to sequence flights, further away from the
airport (we test up to 1000 NM), with the goal to transfer
the planned delay from holding to the en-route phase of the
flight. Here, we explore the KPI ”Planned absorbed delay”
which denotes how much of the delay flights manage to absorb
during the en-route portion of the flight. Absorbing delay in
the cruise phase consumes less fuel but is limited to the aircraft
performance and the flight cost strategies used by airlines.

D. Optimizing the metamodel

Following the general approach in the machine learning
field, we optimize the hyperparameters of each metamodel
using the classical train-validation-test split to get a good
generalization performance for each of the KPIs. We generate
a training data set with 50k simulations and a test data
set with 10k simulations, both created with Latin hypercube
sampling to cover the full variable space. We randomly split
the train data set into a smaller training data set with 40k
simulations and a validation data set with 10k simulations,
such that we can tune the hyperparameters of XGBoost with
a grid search. We optimize the maximum depth of each
decision tree, the L2 regularization, and the learning rate,
using the grid search and 10-fold cross-validation splits. The
hyperparameters and their search space are listed in Table II.
Additionally, we use the exact greedy algorithm to choose the
splits in the decision trees. For all the models, we set the
maximum number of boosting steps to 1000 and apply early
stopping if the validation accuracy does not improve for five
steps. We evaluate the accuracy of XGBoost by comparing
the Root Mean Square Error (RMSE) and the Root Relative
Square Error (RRSE) with a baseline model, which predicts
the average value of the training set.

IV. RESULTS

We first open the simulation box by using the explainable
metamodel to investigate the KPIs. Then, we report the model
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Figure 3. Variable impact on passenger arrival delay.

performance together with the used hyperparameters, along
with several computational considerations.

A. UDPP Case Study

In this section, the KPI passenger arrival delay is explored,
using the SHAP values to explain the metamodel’s - and thus
the simulator’s - predictions, and afterward use the metamodel
to investigate different scenarios, shedding light on interactions
between variables relevant for passenger arrival delay.

Figure 3 shows the importance of variables (given by the
SHAP values) in predicting the passenger arrival delay.

On the y-axis, the variables are sorted in descending order,
such that the minimum connecting time scale5 is the variable
with the largest impact on the metamodel’s output, and the
choice of hotspot solver has the smallest impact on the meta-
model’s output. On the x-axis, the SHAP value (the impact on
the model output) is shown. Lastly, the color bar denotes the
value of the variables. Thus, the graph shows that the two most
important variables are the minimum connecting time scale
(MCT) and turn-around time scale (TAT), where the higher
MCT and TAT (red points), the higher delay (positive SHAP
values). Moreover, the SHAP values for the MCT seem to be
equally spread and turning from blue to red, going from left to
right. This suggests a linear connection between the MCT and
the passenger arrival delay. For the TAT, there are more points
centered around smaller SHAP values, suggesting a non-linear
relationship between TAT and the passenger arrival delay. Both
of these patterns can be further explored with the SHAP values
and with predictions from the metamodel.

In Figure 4, there are two interaction plots based on the
SHAP values. In the left plot, we have the minimum con-
necting time scale (MCT) on the x-axis and the SHAP values
for MCT on the y-axis. The colors denote the value of the
feature turn-around time scale, such that a blue point and red
point correspond to a low and high turn-around time scale,
respectively. Irrelevant of the colors, we see that the higher
MCT, the higher the SHAP value, meaning that the higher
MCT, the more it contributes to a higher passenger arrival
delay. The colors indicate the value of the turn-around time
scale (TAT), showing that if TAT is low, there is a more

5Mercury samples both minimum connecting times and turn-around times
from theoretical distributions. The scale effectively changes the shape of the
distribution from which the sampling is performed by multiplying the mean
of the distribution by this parameter.
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Figure 4. SHAP interaction plots for minimum connecting and turn-around
time scales.

0 2 4 6 8 10
Minimum connecting time scale

200
300
400
500
600
700
800
900

1000

Pa
ss

en
ge

r a
rri

va
l d

el
ay TAT = 1

TAT = 5
TAT = 9

0 2 4 6 8 10
Turn-around time scale

300

400

500

600

700

800

900

1000

Pa
ss

en
ge

r a
rri

va
l d

el
ay

MCT = 1
MCT = 5
MCT = 9

Figure 5. Metamodel predictions of passenger arrival delay for different
minimum connecting and turn-around time scales.

considerable change in the passenger arrival delay when MCT
is increased compared to the case where TAT is high. In
other words, if TAT is high, the value of MCT has a smaller
impact on the passenger arrival delay. We investigate the same
interaction in the right plot, now having TAT on the x-axis.
When MCT is low, the increase in the passenger arrival delay
is almost linear with respect to TAT. On the other hand, when
MCT is high, the value of TAT affects the passenger arrival
delay less.

The interaction plots based on the SHAP values give a
good interpretation of the metamodel and, consequently, of
the simulator, but they do not say anything about the actual
output of the simulator. Instead, we can use the metamodel
directly to predict the simulator’s output in different settings.
We investigate how MCT and TAT affect the passenger arrival
delay when all the other variables are set to their default val-
ues, cf. Table I. Since we already know there is an interaction
between MCT and TAT, we explore both variables for a low,
medium, and high value for TAT and MCT, respectively. In
Figure 5, the left plot shows that the passenger arrival delay
increases when MCT increases.

When TAT is low (blue line), the passenger arrival delay
increases from 200 to 1000 as MCT is increased from 0 to 10.
If TAT is high (red line), the passenger arrival delay is already
high for low values of MCT, and for MCT higher than six,
the passenger arrival delay is only slightly affected by TAT.
In Figure 5, the right plot shows that for a high MCT, the
passenger arrival delay is around 1000 and is not affected by
TAT. Conversely, when MCT is low, TAT has a high effect on
the passenger arrival delay. Overall, these relationships are to
be expected. It is interesting that MCT and TAT play the most
important roles in passenger delay, even in UDPP processes
that allow airlines to reduce this KPI, albeit based on the cost
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Figure 6. The impact of minimum connecting and turn-around time scales on
arrival delay for passengers with and without connections.
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Figure 7. Metamodel predictions of arrival delay for passengers with and
without connection for different minimum connecting and turn-around time
scales.

of delay.
1) Passenger arrival delay with and without connections:

The passenger arrival delay consists of the average passenger
arrival delay for all types of passengers. However, we can
analyze the KPI for passengers with and without connections.
We focus on the impact of MCT and TAT since other variables
are less important, cf. Figure 3. In Figure 6, we see two things:
1) the minimum connecting time scale (MCT) has almost
no impact on the delay for passengers without connections,
whereas it is essential for passengers with connections, and
2) a higher turn-around time scale increases the delay for
passengers without connections but seems to have the opposite
effect on passengers with connections.

In Figure 7, we investigate the different effects of the
turn-around time scale (TAT) further by using the metamodel
to predict the arrival delay for passengers with and without
connections.

We predict the delay given TAT for a low, medium, and high
value of MCT, and with the rest of the variables fixed to default
values. The effect of TAT is the same across the values of MCT
and has a positive linear correlation, except for values below
1, with the arrival delay for passengers without connections.
For connecting passengers, the TAT interacts with the MCT:
if the MCT is low, the delay is smallest for low TAT, but if it
is high, the delay is smallest for high values of TAT.

B. E-AMAN Case Study

In this section, we follow the same procedure as for the first
KPI and give a second example of how SHAP values, together
with a metamodel can be used to uncover the simulator’s
behavior.
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Figure 8. Variable impact on passenger arrival delay.
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Figure 9. Investigating the effect of the planning horizon on the planned
absorbed delay. Left: The planned absorbed delay given the planning horizon.
Right: The SHAP values for the planning horizon given the planning horizon.

In Figure 8, it is seen that the planning horizon is by far
the variable with the biggest impact on the planned absorbed
delay, which is to be expected. The larger the planning horizon,
the flight has more time and space to absorb the larger amounts
of delay. The turn-around time scale (TAT) and fuel price
have smaller but notable effects. Simply using the training
data and plotting the planned absorbed delay as a function of
the planning horizon - see the left plot in Figure 9 - we see
that the planned absorbed delay increases when the planning
horizon is increased from 100 to 400, but increasing it further
has no effect on the planned absorbed delay. For a planning
horizon higher than 400, there also seems to be a constant
trend. Though this plot shows the general trend, it can not
uncover any potential interactions. In the right plot in Figure 9,
we see almost no variation in the SHAP value for the planning
horizon for different planning horizon values; thus, there are
no interactions with other variables. This means that the effect
of changing the planning horizon is unaffected by changes in
other variables.

The second and third most important variables are the
turn-around time scale and fuel price. In the left plot in
Figure 10, we see that a turn-around time scale (TAT) below
two contributes to a higher planned absorbed delay compared
to a TAT above two.

We also see a minor interaction with the planning horizon,
where, e.g., a TAT between 2-4 gives a higher planned
absorbed delay if the planning horizon is low compared to
if it was high. In the right plot in Figure 10, we see that
changing the fuel price in the range 1-3 has no contribution
to the predicted planned absorbed delay. However, out of this
range, the fuel price notably affects the model output. Most
prominent is the jump in the SHAP value for a fuel price
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Figure 10. SHAP interaction plots for turn-around time scale and fuel price.
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Figure 11. Predictive accuracy averaged across 10 runs for the metamodel
trained on different numbers of simulations.

above 3. Lastly, we see interaction with the planning horizon,
showing that the fuel price has, in general, the most significant
effect on the prediction of the planned absorbed delay when
the planning horizon is around 500-600, whereas a planning
horizon around 100-200 has the smallest effect.

C. Performance of metamodel

The performance of the metamodels is given in Table III.
For both KPIs, the metamodel achieves lower RMSE and
RRSE, and is significantly better than the baseline models.
On a CPU Threadripper 3960X, the grid search for XGBoost
is parallelized and takes less than 10 minutes. With the
tuned parameters, the training time is less than five seconds.
Both times can be considered insignificant compared to the
computational burden of acquiring the 50k simulations for
training and validation.

D. Computational considerations

In practice, it is infeasible to create a data set with 50k
simulations because of the computational burden of the simu-
lator. One solution would be to employ an active learning [26]
metamodel, which can balance the trade-off between model
accuracy and the number of simulations needed, as seen
in [10]. In short, the active learning metamodel iteratively
augments a small initial data set by running new simulations
that are selected to increase the performance of the metamodel.
We leave the integration of explainable and active learning
metamodels for future work. Here, we show that with smaller
training data sets, the metamodel still reasonably performs
well. In Figure 11, it is seen how the performance gain de-
creases as more data is added, and with only 2000 simulations,
the metamodels perform almost equally well as those trained
on 40k simulations in Table III. We believe that with active
learning metamodels, the number of simulations needed to
achieve a good performance can be reduced even further.
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TABLE III. PERFORMANCE OF THE METAMODELS.

RMSE RRSE Hyperparameters

Passenger arrival delay
Baseline 202.3 1.00 -
XGBoost 43.0 0.21 Max depth = 5, learning rate = 0.05, L2-reg. = 0.4

Passenger arrival delay w/o connections
Baseline 115.5 1.00 -
XGBoost 43.4 0.38 Max depth = 3, learning rate = 0.05, L2-reg. = 0.1

Passenger arrival delay w/ connections
Baseline 1690.3 1.00 -
XGBoost 112.8 0.07 Max depth = 5, learning rate = 0.01, L2-reg. = 0.5

Planned absorbed delay
Baseline 0.242 1.00 -
XGBoost 0.094 0.39 Max depth = 3, learning rate = 0.1, L2-reg. = 0.5

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a unified modeling framework
that integrates SHAP values with simulation metamodels to
create explainable metamodels, uncovering the intricate hid-
den relationships among the input and output variables of a
simulated ATM system in a rather practical way.

Using the state-of-the-art ATM simulator Mercury, we con-
ducted two case studies exploring two delay-centered perfor-
mance metrics w.r.t seven variables, covering exogenous and
endogenous variables. We created an explainable metamodel
using XGBoost with SHAP values and showed how such a
metamodel could be used as a systematic framework to analyze
the simulator, thereby enhancing the overall understanding
of the interactions among the variables. The case studies
show that the proposed methodology can effectively make
simulation and its results more explainable, facilitating the
interpretation of obtained emergent behavior and opening
new opportunities for novel performance assessment processes
within the ATM research field. It is worth noticing that this
approach is not meant, nor is it able, to completely discard
traditional simulation-based analyses but rather to complement
them in a constructive and meaningful way. We believe that
the presented methodology can effectively enhance scenario-
based and what-if analyses, greatly contributing to a more
comprehensive and in-depth ATM performance assessment
framework. In future work, we plan to extend the current
methodology to integrate active learning as a solution to
address the potential computational drawbacks associated with
the generation of the data sets used for fitting the metamodels.
In this way, we will be able to simultaneously tackle the lack of
explainability of simulation models and the burden of running
computationally expensive computer experiments.
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grounded agent based simulator for the air traffic management in the
sesar scenario,” Journal of Air Transport Management, vol. 59, pp. 26–
43, 2017.

[6] L. Delgado, G. Gurtner, P. Mazzarisi, S. Zaoli, D. Valput, A. Cook,
and F. Lillo, “Network-wide assessment of atm mechanisms using an
agent-based model,” Journal of Air Transport Management, vol. 95, p.
102108, 2021.

[7] A. M. Law, Simulation Modeling and Analysis, 5th ed. McGraw-Hill
Higher Education, 2015.

[8] J. P. Kleijnen and R. G. Sargent, “A methodology for fitting and
validating metamodels in simulation,” European Journal of Operational
Research, vol. 120, no. 1, pp. 14–29, 2000.

[9] R. B. Gramacy, Surrogates: Gaussian process modeling, design, and
optimization for the applied sciences. CRC Press, 2020.

[10] C. Riis, F. Antunes, G. Gurtner, F. C. Pereira, L. Delgado, and C. M. L.
Azevedo, “Active learning metamodels for atm simulation modeling,”
Proceedings of the 11th SESAR Innovation Days, vol. 2021, 2021.

[11] SESAR Joint Undertaking, “Vision of the future performance research
in sesar,” Project PJ19 CI, Tech. Rep., 2018.

[12] ——, “European atm master plan: digitalising europe’s aviation infras-
tructure, executive view,” 2020.
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