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Abstract— This paper presents findings, lessons learnt and 

guidelines for the use of explainable and transparent Artificial 

Intelligence (AI)/Machine Learning (ML) in ATM. The paper 

focuses on the results obtained from validating two AI/ML 

prototypes for Conflict Detection & Resolution (CD&R) and Air 

Traffic Flow and Capacity Management (ATFCM) problems. 

These two prototypes are representative of the type of advanced 

automated systems that can support respectively the tactical and 

the pre-tactical operational phases The aim is, shifting the 

paradigm of human-AI teaming, providing full explainability and 

operational transparency. The major question is: when and how 

explanations should be provided for systems to be acceptable and 

trustworthy by operators? 

Transparency; Explainability; AI/ML; CD&R; ATFCM 

I. INTRODUCTION

With the advances in computing power that have been 

experienced in the last 5-10 years, the application of AI and ML 

techniques is becoming commonplace for solutions where 

automated support is concerned. This paper describes the 

process followed to address the effectiveness of introducing 

AI/ML solutions to increase the levels of automation in ATM, 

considering the operator relinquishes certain tasks to the 

system. The main objective is to explore AI/ML 

explainability/transparency for automated systems to be 

acceptable and trustworthy by ATM operators. In so doing, this 

article provides details on the exploration followed, as well as 

on findings and lessons learnt by the SESAR exploratory 

research project TAPAS [1]. This includes the presentation of 

two use cases (CD&R and ATFCM), the description of the 

AI/ML prototypes developed for each one of them, the details 

on the validation activities performed, and the most remarkable 

conclusions gathered from the conducted verification tests and 

Real Time Simulations (RTS).  

This study aims at paving the way for the deployment of 

AI/ML technologies in ATM environments, in particular, in 

automation levels 2 and 3 as expressed in the successive 

editions of the European ATM Master Plan [2]. In that sense, 

the paper provides not only principles and criteria for 

explainable/transparent systems, but technical lessons learnt as 

well regarding the selection and application of AI/ML methods 

in the context of the two use cases. 

II. PRELIMINARIES

A. Levels of Automation: Goals, issues and questions

TAPAS project considers as basis the levels of automation

as defined in the European ATM Master Plan and adopted by the 

SESAR programme [2]. Although the objective is not to amend 

these, the work done provides some insights on this topic. 

Figure 1. Extract of Automation levels defined in the European ATM Master 

Plan [2].  



 

 

ATFCM (Air Traffic Flow and Capacity Management) and 

CD&R (Conflict Detection and Resolution) automation 

developments have two automation levels (level 1 and level 2) 

focusing on increasing the level of system support, while the 

initiation of actions always remain with the human. The 

breakthrough happens in automation level 3, when higher 

automation levels put the human in a monitoring position instead 

of a leading position in the decision-making process. 

The applicability and acceptance of such automation systems 

is currently limited by their lack of explainability of decisions 

and actions to humans, especially in the certification and training 

phases. The work presented in this paper aims at contributing to 

this in ATM operational environments, to help building 

principles to facilitate the adoption of these technologies in the 

ATM domain. 

B. Explainability, Transparency and Trustworthiness in 

AI/ML 

The concept of trustworthiness in AI/ML has special 

relevance in the context of ATM. In June 2018, the European 

Commission (EC) set up a High-Level Expert Group on AI with 

the objective of supporting the implementation of the European 

strategy on AI. Later, in April 2019, this group of experts 

proposed the following seven key requirements for trustworthy 

AI [3]: accountability, robustness and safety, oversight, privacy 

and data governance, non-discrimination, environmental well-

being and transparency.  

 

Figure 2. EXplainable AI (XAI) vs todays' automation without Explainability. 

This last requirement of transparency is the focus of this 

paper. In particular, the paper goes beyond transparency and 

explores explainability, which goes a step further contributing to 

the interpretability of an action given by an AI system. Going 

deeper into definitions [4], explainability seeks to provide 

valuable information to the user on the inner mechanisms of AI-

based models. Such explanations may provide comprehensible 

insights on aspects such as what the system is doing, why it made 

certain decisions over others, as well as give intuitive rationale 

for certain solutions that might seem counterintuitive, at first, to 

the human operator. From these concepts, it could be concluded 

that achieving higher explainability levels can be 

straightforwardly related to a higher comprehension and trust to 

the outcomes given by the system. But there is a further step: 

Transparency, that relates to the AI system's ability to produce 

effective explanations by means of proper visualization, text or 

examples, making such explanations comprehensible to humans 

with diverse expertise and support their reasoning w.r.t. 

operational constraints.  

C. ATFCM and CD&R use cases 

Two different use cases are explored: ATFCM and CD&R. 

The first use case deals with a pre-tactical timeframe (one day 

before the operation day, D-1) and focuses on the Flow 

Management Position (FMP) role of an ACC. Whilst the 

CD&R use case stays in the tactical horizon (the day of 

operation, D) and focuses on the role of the executive air traffic 

controller (EC). The selection of those use cases allows the 

exploration of different time horizons, along with different 

necessities regarding safety and time criticality.  

In the ATFCM exercise the prototype supports the FMP in 

the detection and solution of the hotspots (imbalances between 

demand and capacity). In contrast with the current operation 

paradigm, here the AI/ML system tries to solve all hotspots at 

the same time by applying demand measures (regulations, level 

capping), instead of using capacity measures (new 

sectorization) alongside with the demand measures and 

analyzing a single sector at a time. 

In the CD&R exercise, the prototype supports the EC in the 

detection and resolution of conflicts, and monitoring of non-

conformances in a similar way to today’s operation.  

 

Figure 3. Space explored. 

Depending on the automation level, some tasks are initiated 

by the human and others by the machine, as shown in Figure 4.  

 

Figure 4. Tasks allocation roadmap between machine and human. 

III. PROTOTYPE SYSTEMS 

To test the previous task allocation roadmap, as well as to 

extract a set of principles and criteria for transparency and 

explainability, different prototypes were developed for both use 

cases, ATFCM and CD&R. Those prototypes were built 
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according to technical and operational requirements that were 

defined with the aid of operational experts and further refined 

through the conduction of several workshops with them in an 

iterative approach. 

A. Air Traffic Flow and Capacity Management (ATFCM) 

The overall architecture of the ATFCM prototype is shown 

in Figure 5. It comprises an AI/ML module enhanced with 

functionality for the provision of explanations, and two other 

components: the Visual Analytics (VA) tool, that provides data 

exploration facilities, presenting the proposed ML solutions and 

explanations on those solutions; and the FMP client, a Demand 

& Capacity Balance (DCB) tool that allows the FMP to monitor 

the sectors, define hotspots, create demand measures, and 

perform what-if query on those hotspots. This FMP tool is also 

connected to the Innovative Network Operations Validation 

Environment (INNOVE) [5] platform where the sectorization 

and flight data is uploaded. The FMP tool provides information 

on the sectors, demand charts (OCC, HEC) and allows the 

creation of hotspots and demand measures.  

The data preparation component processes the source data 

sets to provide the trajectories reported in flight plans, 

associated with contextual information (sectorization, 

entry/exit points and times for each crossed active sector). This 

information together with the airspace configurations, their 

activity intervals and sectors’ capacity thresholds are then feed 

into the AI/ML and the VA module.  

The AI/ML module [6] deals with identifying the 

imbalances/hotspots (capacity exceeded 110%), preparing the 

DCB measures (regulations/ground delays, level capping) and 

selecting the flights impacted by those measures. To do that, the 

component implements a Deep Reinforcement Learning (DRL) 

[7] method using Deep Q-Networks (DQN) [8]. According to 

this agent-based methodology, agents are the flights that decide 

on additional minutes of ground delay to be taken at every time 

step of the simulation; the system simulates each 24 hours 

scenario with all flights, to detect all hotspots occurring. In the 

trials, the time step of the simulation was set to 10 minutes and 

the decision of agents on additional delay a number between 0 

and 10 minutes. Agents may increase at any time step their 

delay by adding additional minutes, until they reach their 

maximum delay parameter that is set as a constrain. To decide 

on additional delay at every time step, each agent participating 

in the scenario (i.e., each flight crossing the airspace at any time 

during a 24 hour interval) calculates the demand per active 

sector that it crosses in the airspace, identifies the imbalances 

and hotspots, prepares the types of measures to be taken to 

resolve any hotspot, and finally, it individually decides on the 

DCB measures to be taken. Therefore, the problem is tackled as 

a whole and from the flight perspective, not from the individual 

view of the opened sector where there is an imbalance, which 

is the current operating method. 

 

Figure 5. ATFCM prototype overall architecture. 

To train the AI/ML module, information from the Spanish 

airspace during 2019 was used. In particular, the algorithm was 

provided with flight plan trajectories [9] from DDR (in the 

ALLFT+ format); the sector configuration including volumetry 

and declared capacity of sectors; the regulations applied, and 

flights affected by those demand measures over the Spanish 

airspace. 

The solutions are provided to the Explainability component, 

which following the mimicking paradigm implements an XAI 

method through a Stochastic Gradient Tree [10], emulating the 

decisions taken from the DQN method. This module ‘learns’ 

how the DQNs is solving the problem and presents an 

inherently interpretable method by exploiting a decision tree. 

At this point the explanations include arguments on what is 

important for the decision of an agent at a specific time point 

during the simulation, and counterarguments on what it 

considers important to take an alternative decision. 

These explanations and the enriched flight information go 

into the VA component (Figure 6). It presents to the operator an 

overview of the current situation (demand charts highlighting 

imbalances and delays) and allows the user to compare two or 

more scenarios involving the same set of flights, understand the 

process of the solution development (it provides the solutions 

for all simulation timesteps) and investigate the details for 

scenarios, sectors and intervals, including the decision tree on 

the explanations for a specific flight/agent. 

This VA component runs in a secondary screen with the 

FMP tool running in another screen. Both consume the same 

data from the XAI algorithm.  
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Figure 6. Explanations view for a particular flight for the ATFCM use case. 

 
Figure 7. FMP Client Showing Potential Hotspots. 
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B. Conflict Detection & Resolution (CD&R) 

The overall architecture of the CD&R integrated prototype 

developed is shown in Figure 8. This prototype comprises the 

operational ATC platform SACTA (the Spanish ATC platform 

developed by INDRA) [11] and the XAI system, together with 

the visualization and user interface (Vis&UI) component.  

In particular, the ATC platform facilitates the user/ATCO to 

monitor the flights through a radar screen, where they can see 

the actual and planned trajectory of all the flights under their 

responsibility. The platform also provides updates on radar 

tracks and Flight Plans (FPLs) every 30 seconds to the XAI 

module to allow it to compute the solutions and provide them 

to the user through the Vis&UI interface. 

 

Figure 8. Overall CD&R Prototype System 

The XAI module integrates three different components: 

conflict detection; conflict resolution; and conformance 

monitoring. The first component detects conflicts in the 

horizontal (separation infringements of less than 5NM) and 

vertical plane (separation infringement of less than 1000 ft), by 

projecting the trajectory into the future, 10 minutes ahead (th) 

(Figure 9). The module distinguishes whether the flight follows 

its FPL (a) or if it deviates from it (b). In the latter case, the 

trajectory projection is estimated according to the deviation of 

flight’s course. 

 

Figure 9. Projection of flight trajectory for the detection of conflicts. 

The conflict resolution module, using an enhanced graph 

convolutional cooperative reinforcement learning method [12] 

[13] , decides on the actions (and their duration) to be taken for 

each flight to avoid a conflict. Those actions, decided in each 

timestep of the computation, every 30 seconds, include: change 

of altitude [±1 FL]; course change [±20, ±10, 0]; speed change 

[±7 knots;]; and go direct to a waypoint of the FPL.  

Finally, the conformance monitoring component oversees if 

an aircraft follows the resolution actions as prescribed by the 

AI/ML module, by comparing the desired trajectory against the 

actual trajectory.  

This AI/ML module is trained with real operational data 

from the entire 2019 year of the Spanish Barcelona ACC en-

route sectors. The dataset comprises the FPL data, along with 

radar tracks of those flights and ATC events detected using 

ATON [14]. These ATC events include the clearances 

performed by the ATCOs to all the flights under their Area of 

Responsibility (AoR). 

The CD&R prototype does not have any distinct 

explainability component for providing explanations of 

instructions decided by the system. Thus, a different 

explainability paradigm is followed from the one from ATFCM 

case. All relevant parameters that drive system’s decisions are 

provided, offering more transparency on decision making (i.e., 

making transparent the situations the system foresees), focusing 

on operational concerns, rather than on explainability of how 

decisions are taken from an AI/ML model. 

Transparency is achieved through the use of a Vis&UI 

interface. The design of this interface respected the safety and 

time criticality aspects of the CD&R use case. Therefore, 

minimal information, but sufficient for understanding the 

problem and suggested solutions was presented; and a simpler 

and intuitive view was provided.  

This translates into a representation of the conflicts and 

resolution actions in a tabular form as shown in Figure 10. The 

conflict is described in the upper part, including aircraft 

involved; aircraft altitude; separation minima violated; previous 

conflicts and resolution actions, if any, that provoked the new 

conflict; time at the start/end of the conflict and at the Closest 

Point of Approach (CPA); and a severity metric on the conflict. 

This severity metric, highlighted in red colored bars, is 

calculated as the sum of two scores: compliance measure (MoC, 

as the percentage of compliance with the separation minima 

required) and rate of closure of the flights (how the aircraft are 

getting close to each other). All this information is configurable, 

and the user can select to disclose or hide any of the columns. 

Additionally, the tool shows a 3D map of the conflict, 

separating the 2D view from the vertical one. This is a 

complementary view to the one provided by the ATC platform. 

Another view shows in a table list the potential ATC clearances 

for each flight involved in a conflict, ranking them according to 

their likelihood to solve the problem. 

IV.  PROTOTYPES VALIDATION  

To explore and define the main principles and criteria for 

explainable and transparent AI/ML, several RTS were 

conducted. Those trials were performed using operational staff 

from the Spanish ANSP ENAIRE. The tests consisted of 

different runs conducted in the context of the three automation 

levels explained in Figure 1 and according to defined roadmaps. 

The idea behind these validation activities was to reproduce a 

realistic environment, in which to integrate the developed 

prototypes, prior to their verification tests, and extract the 

feedback of the involved operational users. 
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Figure 10. User interface of the VA component for the CD&R use case. 

A. Air Traffic Flow and Capacity Management (ATFCM) 

This first exercise focuses on the validation of ATFCM use 

case. It was assumed that tasks allocation was according to the 

roadmap described (Figure 4) and operators involved were fully 

familiar with the NM pre-tactical planning and DCB process.  

Additionally, the dataset used for this validation activities 

was not included in neither the training nor in the testing 

datasets for the AI/ML component. Thus, the airspace of study 

focused on Madrid ACC and the traffic samples used were 

selected from the busiest days of 2019, where more imbalances 

between demand and capacity were found. 

 

Figure 11. ATFCM simulated region. 

During a three-day exercise, the operational users 

participated in different runs with the three automation levels. 

First day was focused on training with the new tools, and the 

rest of the days were oriented to validate the tools and extract 

inputs from them. To collect the feedback from the operational 

users, the validation team used over the shoulder observations, 

along with questionnaires on situational awareness, automation 

and workload, and debriefing sessions.  

From the ATFCM experiments, it was concluded that both, 

FMP client and XAI/VA tool, were useful for the task at place. 

The users confirmed that in general they were able to access to 

the information in an easy way and that all the relevant 

information (monitoring data, solutions, explanations) and 

functionalities (what-if, creation of measures) that they would 

need were included in the tools.  

With regards to the VA tool, the participants considered it 

helped them to maintain the situational awareness, although 

sometimes the access to the explanations were somehow 

obscure. Moreover, they also declared that the tool provided too 

much information (e.g.: how the algorithm arrives to the 

solution in each timestep of its calculation) that in the operation 

timeframe was not needed and that they would not consult, but 

in the certification and training phase such detail would be 

probably useful. The explanations provided by the tool were 

also considered appropriate. However, they also recommended 

to have the solutions’ impact from a sector perspective rather 

than a flight perspective, as well as to include some statistical 

metrics on that impact (e.g.: delays saved, number of flights 

impacted, etc.). This was also related to the fact that the 

paradigm of solving hotspots was tackled by the AI/ML 

component in a different way than today’s operating method, 

from a sector perspective to a global approach. This was 

especially relevant in automation level 2, where the human 

must decide to implement or not the solutions proposed by the 

system. Since those solutions involved different outcomes, a 

solution could, for instance, try to solve more than one hotspot 

at a time in different sectors. Then the operator was unable to 

partially implement a solution and would need to implement all 

solutions or none. Here the operator also declared the 

importance of avoiding any biases in the computation of the 

solutions (e.g.: the AI/ML method should not prioritize any 

company over another, any country over another). In any case, 

this different approach was not rejected by the users, as they 

considered it could be also applicable as long as that fairness or 

the ‘game rules’ are guaranteed. 

The operators consulted agreed on the feasibility of 

automation level 3, with no need of too many explanations from 
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the tool. Instead, they expressed the need for the tool to be 

effective and, thus, trust is built from the continued use of it. 

Especially since this use case takes place in the pre-tactical 

phase and the FMP are nowadays used to EUROCONTROL’s 

CASA algorithm, which allocates automatically the delays 

implied by the regulations. This algorithm is a ‘black box’ for 

the operators, but they trust it as it solves the imbalances. 

During trials for automation level 1, which reflects todays’ 

operating method, operators did not have any CASA algorithm. 

Therefore, regulations should be calculated manually by the 

user, leading to a lower automation level. 

All these conclusions and lessons learnt from this use case 

were very valuable and served as an input for the next CD&R 

use case, which was conducted several months later. 

B. Conflict Detection & Resolution (CD&R) 

For the CD&R also a three-day RTS with actual ATCOs 

was conducted. The trials focused on two en-route sectors 

(above FL345) of Madrid ACC: Domingo upper (LECMDGU) 

and Toledo upper (LECMTLU) sectors. Each run focused on 

one sector at a time as the prototype was developed in that way, 

that is, to detect conflicts inside the active sector and the borders 

of the downstream sector. 

 

Figure 12. CD&R Airspace considered for the RTS. 

The traffic samples used were historical data from 2019 (the 

25th and 30th of June, and the 4th of July 2019). This traffic 

samples were loaded into the SACTA platform, and its traffic 

simulator provided both FPL and radar track to the radar screen 

and VA prototype. At first, the VA tool worked in a secondary 

screen, but later it was integrated into the radar screen. This was 

highlighted as very useful by the experts involved, since this 

CD&R use case is safety critical, thus, deviating the line of sight 

from the radar screen is not preferable. The trials also involved 

a pseudo-pilot emulating the pilots aboard the aircraft crossing 

the ATCO AoR and their communications. It also should be 

noted that the trials were performed with no planner controller 

aiding and supporting the executive role. 

For this specific use case, the VA tool provided information 

focusing on the transparency rather than explanations, since this 

was a safety critical experiment, where explanations of the 

proposed solutions and detected conflicts were self-explanatory 

and there would not be as much time to consult them. 

The participants were Spanish ATCOs, familiar with the 

airspace of the study. They quickly assimilated the information 

provided by the tool regards the conflict detection and the 

analysis of the proposed solutions. Some features of the display 

were considered less useful than others. For example, users 

indicated that the graphical display of the conflict trajectories 

in the VA display did not provide useful information beyond 

what was already available in the radar screen. However, other 

information that was provided related to conflict alerts and the 

proposed actions, was considered very useful and allowed the 

users to quickly understand the conflict and traffic involved, as 

well as the solutions that were proposed, even if they did not 

always agree with the priorities given by the AI/ML method. 

Users responded that the system was easy to use and 

understand with little or no assistance from technical support 

personnel. They also indicated that little or no additional 

training was needed. Additionally, the VA component allowed 

certain degree of configuration, as the user could hide some of 

the fields shown. They stated that feature was very useful and 

that probably they would not need all the fields present, just 

mainly the flight ID of the aircraft involved in the conflict, time 

to conflict, separation minima at the CPA, the best solution to 

solve the conflict and the point and/or alert where/when the 

flight after the resolution action should resume to its FPL. 

Regarding the solutions, even though the tool provides a 

ranking, the users stated that by default they would prefer a 

single solution presented, but also have the option to search for 

more. As for the solutions themselves, they should consider the 

performance of the aircraft and other basic rules (e.g.: ceiling 

of the aircraft, descend a flight that plans to descend). 

In cases where the users disagreed with the clearances being 

proposed, or automatically implemented at level 3, they still 

tended to accept the solutions if they solved the conflicts, even 

though the solutions differed from those that they would have 

applied themselves. But most users indicated that due to the 

often very short lead times for conflicts to be identified and 

solved, including the instructions given to traffic, offering more 

information than was already provided by VA tool would not 

necessarily have changed the understanding that they could 

usually acquire due to their own experience and expertise in the 

domain. Therefore, users agreed that the level of information 

provided was sufficient for their needs in the CD&R use case. 

The users also stated the importance of the visual aids used 

in this use case. The VA tool highlighted through red colored 

bars those conflicts with more severity. However, the view was 

simplified, and an extensive use of colors to catch the ATCO 

attention would be desirable.  

The participants also considered that automation levels 1 

and 2 were feasible in terms of operational applicability as they 

were implemented in the trials. Nonetheless, there were mixed 

outputs regarding automation level 3. In general, users declared 

that relegating the human to a monitoring role would imply that 

over time the ATCO would lose its expertise and capabilities to 

take over, if necessary. In those scenarios it would be extremely 

important to have a degrading mode, where the system alerts on 

its malfunctioning, and adequate and sufficient training has to 

be completed to allow the human to regain control. 
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Regards to the later issue, tests including the malfunctioning 

of the prototype in automation level 3 were performed. In all 

these runs, the ATCO was able to detect that malfunction and 

take over to solve the remaining conflicts. However, this was 

expected since the participants were well trained ATCOs. 

V. CONCLUSIONS 

All these experiments conclude in the following findings, 

insights and remarks on explainability and transparency. 

Further research is also advised especially regarding Human 

Performance assessment with use of extensive indicators apart 

from the ones used in the simulations through questionnaires, 

debriefing sessions and over the shoulder observations. 

First, rather than having explanations, the user needs to trust 

the system. This was especially true for the CD&R use case, 

where aspects such as robustness and safety are more critical 

than transparency & explainability. Through the constant use of 

the system, especially during the training phase, the human can 

develop trust in the system through how it performs and the 

solutions it is providing. For example, a booster for stimulating 

the human understanding and building of trust is to see the 

impact of the solution implemented/proposed by the system 

before making decisions. This seems to be more valuable than 

the explanations provided by the support tools to the users. 

Confidence and trust can be volatile. Developing trust and 

confidence in an AI/ML system takes a long time and depends 

on the system providing reliable solutions that the user accepts 

as a valid response to a problem. When something subsequently 

fails badly, even after trust has been achieved, that confidence 

in the system can be lost rapidly and rebuilding it can be hard. 

This is especially critical in the CD&R domain, and therefore 

close attention must be paid to the reliability and suitability of 

the proposed solutions. Additionally, disruptive solutions, 

solutions leading to more complex issues later on, and the lack 

of a complete resolution process (e.g., resumption of flight 

plan) may contribute to a reduction in trust and confidence. 

Varied levels of explainability are necessary according to 

the time horizon considered. During the operation, the users do 

not need to see all information or explanations related to the 

proposed solutions by the AI/ML system (it may require a time 

they do not have). In contrast, during training, explanations and 

solutions provided by the AI/ML are needed and appreciated by 

the user, but once the approach being used was understood, 

users did not really interrogate this information further.  

The traceability of explanations is key for transparency. The 

user needs, not only to see the final explanation of the solutions 

but have a clear traceability of the elements related to each 

measure/solution. In particular, in ATFCM scenarios they 

prefer to see aggregated information, but they appreciate the 

possibility of following the thread of certain solution down to 

the level of the flights to which it is related. This gives a clear 

transparency to the solutions or explanations provided, making 

it easier for the user to build trust in the system. 

Complexity of the solutions limits the capacity of the human 

to understand the explanations in real time. Although these are 

provided, in cases where the solution is too complex the human 

will have neither the time nor the ability to understand them. 

However, more than having explanations, the user wants to see 

the impact of the solutions proposed by the system.  

For the safety critical use case of CD&R, the acceptance of 

automation level 3 requires further research. In the trials, human 

experts discussed extensively that performing a monitoring task 

may result in ATCO loss of expertise in the controlling tasks 

and whenever the AI/ML system fails (even though it will 

supposedly work well most of the times) the ATCOs will not 

have the capability to recover control in complex situations in a 

safe manner. 

In CD&R scenarios the importance lies on providing 

solutions that work well and are accurate, rather than focusing 

on explanations. Users consider that little or no additional 

explanatory information is needed since the combination of 

information already provided (usually linked to conflict 

characteristics) combined with a prioritization of choices is 

sufficient to allow them to rapidly understand the proposals and 

the consequences of those actions.  
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