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Abstract— One of the crucial tasks of an air traffic controller 
(ATCo) is to evaluate pilot readbacks and to react in case of errors. 
Undetected readback errors, when not corrected by the ATCo, can 
have a dramatic impact on air traffic management (ATM) safety. 
Although they seldom occur, the benefits of even one prevented 
incident due to automatic readback error detection justify the 
efforts. The HAAWAII project uses automatic speech recognition 
and understanding (ASRU) to support the ATCo in this critical 
task. This paper presents for readback error detection 
approaches: a rule-based and a data-driven approach based on 
machine learning. The combination of both detects 81% of the 
readback error samples on real-life voice recordings from Isavia’s 
en-route airspace. Proof-of-concept trials with six ATCos from 
Isavia producing artificial, but challenging readback error 
samples resulted in a false alarm rate of 11% and a readback error 
detection rate of 80%. These results are based on Word Error 
Rates of 5% for ATCos and 10% for pilots, respectively. 

Keywords-component; Readback Error Detection; Speech 
Recognition; Speech Understanding; Air Traffic Control; 
Assistant Based Speech Recognition; Machine Learning 

I.  INTRODUCTION  

A. Problem 
Voice communication between air traffic controllers 

(ATCo) and pilots using radio equipment is still widely used. 
The ATCo issues verbal commands to an aircraft’s cockpit crew 
(hereinafter called pilot). The pilot has to repeat all the 
commands that influence the motion of the aircraft, e.g., 
altitude, speed, or direction commands. This repetition of the 
ATCo commands by the pilot is called a readback. Readback 
errors, which are not corrected in time by the ATCo can cause 
incidents or even accidents. In order to reduce the workload and 
increase the awareness level of the ATCo, Automatic Speech 
Recognition and Understanding (ASRU) could be a solution to 
support readback error detection. Fortunately, readback error 
samples are seldom events. Between one and two percent of the 
utterances contain a readback error. A Readback Error Detection 
Assistant (REDA), however, requires a good accuracy, a very 
low false alarm rate, and a close-to real-time availability. A low 
false alarm rate means an ASRU-supported REDA should not 

falsely trigger the ATCo’s attention too often in case of false 
detections. Otherwise, the ATCo will most likely start to ignore 
the readback error alarms. 

B. Solution 
This paper describes two different approaches to integrate 

ASRU into a Readback Error Detection Assistant (REDA), 
which were developed within the SESAR Joint Undertaking 
(SJU) funded project HAAWAII (Highly Advanced Air Traffic 
Controller Workstation with Artificial Intelligence Integration). 
Validation airspace are the London approach area and the en-
route airspace of Isavia ANS, the Icelandic air navigation 
service provider. The first approach is rule-based, whereas the 
second one is data-driven. It employs deep learning and is 
capable of adapting itself to new situations, provided enough 
training data is available. The combination of both was tested 
on noisy voice data from the operations room environment of 
Isavia ANS. 

C. Paper Structure 
Section II starts with related work to readback error use 

cases and machine learning of air traffic management (ATM). 
Section III describes two different approaches for semantic 
interpretation of utterances, one based on rules and one based on 
machine learning. The performance of both approaches on 
semantic level is compared. Section IV details readback error 
use cases and describes the rule-based readback error detection 
approach, which relies on a good semantic interpretation of the 
speech-to-text output. The data-driven readback error detection 
approach is described in section V. Section VI describes the 
performed experiments and describes the results with respect to 
readback error detection rates and false alarm rates before the 
last section presents the conclusions. 

II. RELATED WORK 
The content of communication between ATCos and pilots is 

of utmost importance for the safety of air traffic. 
Miscommunication between ATCos and pilots is the cause of 
roughly 80% of all incidents or accidents based on aviation 
safety system reports [1]. The communication feedback loop 
between ATCos and pilots ensures reduced communication 



errors using information redundancy. ATCos transmit verbal 
ATC instructions via radiotelephony whose safety-related parts 
must be read back by pilots according to International Civil 
Aviation Organization (ICAO) Annex 11. Errors in pilot 
readbacks must be identified and corrected by the ATCos [2]. A 
wrong readback that is not detected and corrected by the ATCo 
is referred to as a hearback error. 

In real life, communication errors occur very seldom, i.e., 
between every hundredth [3], [4] or every sixteenth ATC 
communication with some transmissions containing multiple 
errors [5]. En-route ATCos are capable of detecting 90% of pilot 
readback errors [3]. The hearback error rate seems to be 
proportional to the number of transmissions per time slot, since 
tower and radar approach ATCos detect only 63% and 50% of 
all readback errors, respectively [4], [6]. Further factors increase 
the likelihood of readback errors and clarification requests such 
as long utterances [7], more complex instructions [8], non-native 
English speakers [9], deviations from the ICAO phraseology [6], 
[10], or the current flight phase, e.g., pilots in approach produce 
more readback errors than in departure phase [5]. 

Miscommunication affects different aircraft states, i.e., 
almost 40% of miscommunications result in altitude deviations 
[11], more than one-third of readback errors in en-route deal 
with frequency changes [3], and 10% of communication errors 
result from speed being mixed up with headings [12]. Moreover, 
about 20% of communication errors are also caused due to the 
presence of similar callsigns on the same frequency [11], [13]. 
This has unintended effects on safety such as runway 
incursions [14].  

Given the above findings on miscommunication and its 
consequences, a reliable system for automatic readback error 
detection with as few false alarms as possible is necessary to 
increase safety. Such a system requires an ASRU to initially 
convert spoken ATC utterances into written text to enable 
further analysis of ATCo and pilot utterances [15]. It is 
especially challenging to correctly recognize pilot speech with 
their tendency to shorten utterances as compared to ATCos and 
the bad quality audio signals in pilot transmissions [16]. The 
second important step for readback error detection is language 
understanding, also called spoken instruction understanding in 
ATC [17]. An ontology for annotating ATCo and pilot 
utterances in a standardized form as agreed between European 
ATC stakeholders [18] helps to compare the semantic contents 
of ATCo transmissions and pilot readbacks as they often use 
different words and readback order [19]. Automatic extraction 
algorithms for ATC concepts have already been developed for 
the tower [19], [20], [21], ground [22] and approach domains 
[23]. In addition, the automatic pairing of utterance semantics 
from ATCos and pilots belonging together is part of further 
research [19]. This helps in avoiding unnecessary readback 
error alarms if the error has already been detected and is 
corrected in ATCo’s hearback. However, the biggest challenge 
remains in having a low false alarm rate i.e., 1 minus precision, 
without significantly decreasing the detection rate (recall). 
Another important work on automatically extracting pilot 
reports (PIREP) related to weather has been carried out in [24], 
where Automatic Speech Recognition (ASR) was used to 
obtain the Speech-to-text translation of the spoken pilot 
utterance, which is then input to a neural network based binary 

classifier to detect the presence of a weather report in a given 
pilot utterance.  

In addition to traditional rule-based approaches to readback 
error detection, modern methods employ machine-learning 
(ML) models that are trained on available data and devise 
statistical data-dependent classifiers. As in other fields of 
computer science, recent ML approaches take advantage of the 
deep neural networks, as applied in [25], [26] to compute the 
contextual representation of transcribed pairs of ATCo-pilot 
communication. The data for training is collected from manually 
transcribed communication and books for civil aviation 
radiotelephony training in Chinese. A simple, one-layer 
convolutional neural network for readback error classification is 
introduced in [27]. This model classifies pairs of ATCo 
command and pilot readback into six classes: correct readback, 
partial information loss, call sign readback error, altitude 
readback error, runway readback error, and heading readback 
error. To train this model, 2,500 pairs containing a readback 
error were collected.  

In addition, neural network-based models have been used to 
obtain representations that can be used for Natural Language 
Processing (NLP) tasks such as concept extraction [28] in the 
clinical domain. [29] and [30] also use BioTagger-GM and 
LSTM-based RNN models to extract useful information from 
unstructured clinical text documents and medical records. All 
the above work states the need for more similar research to be 
carried out in the ATC domain.  

Evidently, there is a huge domain mismatch between the 
clinical setting and ATC communications. However, similar 
ML approaches have been developed in the area of ATC 
communications, for instance, named-entity recognition 
(NER). A data-driven callsign detection system is introduced 
in [17] where NER is employed together with an ASR system. 
In [31] authors depict a pipeline to simultaneously transcribe 
and extract key entities by NER e.g., callsigns. Furthermore, 
some other research has targeted the direct extraction of 
callsigns in ICAO format, which is slightly different to 
NER [32], [33]. Later, [34] proposes a system, where 
contextual data (real-time surveillance data) is used to increase 
the performance of the ASR system. Here, a NER is fused with 
these outputs to increase the overall performance of the system 
at detecting callsigns. In [35], a similar approach is proposed, 
but it aims at detecting whether an incoming communication is 
from a pilot or ATCo e.g., also called speaker role detection. 
This is a promising work that could reduce the complexity of a 
REDA system, by using this prior information i.e., 'who is 
talking when'. 

III.  INTERPRETATION OF ATC UTTERANCES 
Table I quotes an example from [36] and shows that the 

ATCo utterance is completely different on word level from the 
pilot’s readback (RB). On the semantic level, however, they both 
mean the same, i.e., the pilot would have performed a correct 
readback.  

The transformation of a speech utterance into a sequence of 
words is called transcription, whereas the semantic 
interpretation is called an annotation. More than 20 European 
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ATC stakeholders agreed on the first draft of annotation rules 
for ATCo utterances [18]. These rules were extended in the 
HAAWAII project [36].  

Different approaches for automatic annotation, i.e. command 
extraction, exist. In the following two subsections, we compare 
the implementation performance results of two different 
approaches: a rule-based approach and a data-driven approach. 

A. Rule-Based Approach 
The rule-based REDA presented in section IV heavily relies 

on a good speech-to-text engine, but even more on a good text-
to-concept engine, i.e., a good automatic annotation of the 
spoken word sequences. Table II shows the ASRU performance 
for ATCos and pilots on NATS and Isavia data. 

TABLE II.  PERFORMANCE OF TEXT-TO-CONCEPT EXTRACTION WITH 
RULE-BASED APPROACH 

ANSP Spea
ker WER 

Command 
Level Callsign Level Unkn 

Rate Extract 
Rate 

Error 
Rate 

Extract 
Rate 

Error 
Rate 

NATS ATCo 2.8% 93.2% 3.6% 97.5% 2.3% 10.2% 
Pilot 7.1% 79.9% 11.5% 95.9% 2.9% 10.2% 

Isavia 
ANS 

ATCo 2.9% 92.3% 4.3% 96.9% 2.4% 15.3% 
Pilot 10.4% 71.3% 9.7% 88.4% 5.8% 18.8% 

NATS 
ATCo 0% 

96.4% 1.7% 98.5% 1.3% 10.7% 
Pilot 91.5% 3.1% 97.7% 1.7% 10.0% 

Isavia 
ANS 

ATCo 0% 
93.9% 4.2% 97.6% 1.7% 15.6% 

Pilot 88.3% 5.4% 96.4% 1.7% 16.1% 

It lists the word error rate (WER), based on Levenshtein 
distance [37], the concept extraction rates and extraction error 
rates for callsigns and complete commands as well as the 
percentage of words, which are classified to be unknown during 
the extraction process. Semantic extraction performance for 
both only the callsign (column “Callsign Level Extract Rate”) 
and also for the whole command including conditions (column 
“Command Level Extract Rate”) is very good, if we only 
consider ATCo utterances. If we consider also pilot utterances 
the rates go down. Although the WER drops by a factor of 2.5 
for NATS the callsign extraction rate and the callsign extraction 
error rate only slightly decrease. The extraction performance for 
the whole command, however, dramatically decreases. The 
reason is mostly pilot’s tendency to shorten utterances [16]. For 
the callsigns this can be compensated by using the surveillance 
data and flight plan data information. The still good, but 

improvable, extraction performance for Isavia’s pilots result 
from the fact that no flight plan data was available for this study, 
so that 10% of callsigns being talked to were not in the available 
surveillance data.  

Around 15% of the recognized words of Isavia ATCos were 
not considered for the extraction of semantic marked ATC 
concepts (Column “Unkn Rate”). The words in “faroe line four 
five five you were blocked somehow confirm gunpa robur i got 
the thirty eight and free speed”, in blue font, are not used for 
automatic command extraction. In this case “confirm gunpa 
robur” could mean “DIRECT_TO GUNPA ROBUR none” and 
“thirty eight” could mean “ALTITUDE 380 none”. Another 
example for previously unused words is the word sequence “on 
conversion” in “on conversion normal speed ice air three five 
three two”. It was not mapped to the condition “WHEN 
SPEED_CONVERSION”, until Isavia’s ATCo performed 
proof-of-concept trials. This is an important condition because 
the aircraft should not change its speed immediately, but when 
it changes from Mach speed to indicated air speed, which could 
be twenty minutes later. This required manual software changes 
in the rule-based approach of command extraction. The next 
subsection presents an approach, which tries to avoid manual 
and costly changing of the implemented rules. 

The last four shaded rows of the Table II show the results 
when concept extraction is performed on the gold transcriptions, 
i.e. the word error rate can be assumed as 0% provided that the 
manual transcription is totally correct. We observe that even on 
perfect transcription the automatic concept extraction often fails. 
This is especially true for pilot command and for commands of 
the enroute airspace of Isavia. 

B. Data-Driven Approach 
Next, we present an alternative approach based on machine 

learning, which was designed in the HAAWAII project. 
Basically, the command extraction task can be interpreted as a 
translation from a sequence of words spoken by an ATCo or 
pilot to a machine-readable language – i.e., annotation, as first 
defined in [18] – like translation from Czech to English. The pre-
trained transformers are popular in automatic translation and 
other NLP text-to-text transfer tasks.  

 
<uttr> speed bird two zero zero zero reduce one eight zero knots 
contact tower on frequency one one eight decimal seven zero zero 
<context> BAW2000, BAW2222, BAW3000, BAW200, BAW4000 

⇩ 
 

 TRANSFORMER  

 ⇩  

 
<csgn> BAW2000 <type> REDUCE <valu> 180 <unit> kt </c> 
<csgn> BAW2000 <type> CONTACT <valu> TOWER </c> 
<csgn> BAW2000 <type> CONTACT_FREQUENCY <valu> 
118.700 </c>  

 

Figure 1 Architecture of the data-driven command extractor. 

We use the encoder-decoder transformer [38] that first 
encodes the source sequence of ATC words into an internal 
vector representation, and it decodes to the target word 
sequence, i.e., the annotation (see Figure 1). The source 
sequence is a concatenation of one ATCo or Pilot utterance 
transcription, and a list of the candidate callsigns extracted from 

TABLE I . EXAMPLE OF ATCO-PILOT COMMUNICATION THAT SHOWS READ-
BACK ERROR DETECTION ON WORD LEVEL VS. CONCEPT LEVEL 

 Spoken Words / 
Transcription 

Ontology Instructions / 
Annotation 

ATCo 

speed bird two zero zero 
zero  reduce one eight zero 
knots until DME four miles 
contact tower 
on frequency one one eight 
decimal seven zero zero 

BAW2000 REDUCE 180 kt UNTIL 4 
NM DME  
BAW2000 CONTACT TOWER  
BAW2000 
CONTACT_FREQUENCY 118.700 

Pilot 
one eighty to DME four 
tower one eighteen seven 
speed bird two thousand 

BAW2000 PILOT SPEED 180 none 
UNTIL 4 none DME  
BAW2000 PILOT CONTACT 
TOWER 
BAW2000 PILOT CONTACT_-
FREQUENCY 118.700 
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surveillance data, similar to [33].  As the surveillance data could 
contain tens or hundreds of callsigns for a given time, we used 
TF-IDF (term frequency – inverse document frequency) 
retrieval to reduce callsign space to top-5 most relevant ones 
with respect to the input utterance. The source sequence is fed 
to the encoder and the decoder generates a sequence of keys, 
values, and command separators that can be easily deserialized 
to machine-readable format. 

To increase the robustness of especially the callsign 
extraction, the training data was automatically augmented from 
manually transcribed utterances. A template was created from 
each utterance by replacing the callsign and values of the most 
important commands in the transcription and command 
annotation with special tokens (<csgn>, <heading>, <speed>, 
etc.). New samples were then generated by populating the 
templates with valid callsigns and values consistently at both 
transcription and annotation levels. The rule-based approach 
from the previous subsection was used to extract commands and 
annotate concepts in the text. In this way, a dataset containing 
one million samples was generated for Isavia ANS and NATS.  

We fine-tune the pre-trained T5 model [39] on artificially 
generated data and report results on test data that is excluded 
from the process of training data generation (augmentation 
process). Table III shows the performance of the data-driven 
approach for NATS and Isavia data. 

TABLE III.  PERFORMANCE OF TEXT-TO-CONCEPT EXTRACTION WITH 
DATA-DRIVEN APPROACH 

ANSP Speaker WER 
Command Level Callsign Level 
Extract 

Rate 
Error 
Rate 

Extract 
Rate 

Error 
Rate 

NATS ATCo 2.8% 89.9% 4.8% 92.9% 2.8% 
Pilot 7.1% 75.2% 13.9% 91.8% 1.7% 

Isavia 
ANS 

ATCo 2.9% 85.6% 9.6% 93.8% 4.5% 
Pilot 10.4% 66.4% 17.6% 86.5% 6.1% 

NATS ATCo 0% 92.8% 2.5% 93.9% 1.8% 
Pilot 83.6% 4.5% 94.1% 0.8% 

Isavia 
ANS 

ATCo 0% 86.4% 8.1% 95.2% 2.8% 
Pilot 78.9% 11.4% 94.2% 3.9% 

C. Interpretation of Both Command Extraction Approaches 
Comparison of the tables II and III in table IV shows the 

rule-based approach slightly, but significantly, outperforms the 
data-driven one for both ANSPs. This is true for the semantic 
interpretations from both the output of Speech-to-Text block 
and also from the gold transcriptions (last four rows). 

TABLE IV.  COMPARISON OF BOTH EXTRACTION APPROACHES 

ANSP Speaker 
Command Level Callsign Level 
Rule-
Based 

Data-
Driven 

Rule-
Based 

Data-
Driven 

NATS ATCo  93.2% 89.9% 97.5% 92.9% 
Pilot  79.9% 75.2% 95.9% 91.8% 

Isavia 
ANS 

ATCo 92.3% 85.6% 96.9% 93.8% 
Pilot 71.3% 66.4% 88.4% 86.5% 

NATS 
0% 

ATCo 96.4% 92.8% 98.5% 93.9% 
Pilot 91.5% 83.6% 97.7% 94.1% 

Isavia 
ANS 0% 

ATCo 93.9% 86.4% 97.6% 95.2% 
Pilot 88.3% 78.9% 96.4% 94.2% 

The rule-based approach benefits from the expert 
knowledge that allows covering of known edge cases or rare 
command types, which the data-driven model might have never 
seen during training, see example at the end of subsection III.A 
with “on conversion” word sequence. More manual annotation 
is necessary for the data-driven approach, but on the other hand 
it uses general methods from similar tasks that leads to less 
manual coding, data analysis, and rules updating by experts.  

This simplifies and accelerates adaptation to new airports, 
which can be an important argument. The decrease in command 
extraction rate is only 4.5% relative for NATS ATCo 
commands. 

A different story is security certification of both approaches. 
Certification of a rule-based system might be easier, because the 
analysis of source code can show potential limitations and 
interpret system results. In the case of a data-driven approach, 
the interpretation of the system output is difficult, and you 
seldom can predict the output of a Deep Neural Network (DNN), 
even if you think that nothing important in the input has 
changed. The chosen method also suffers from hallucinations, 
when the commands extraction is straightforward, but the model 
provides completely wrong or nonsensical outputs. Methods for 
DNN interpretability, robustness, and preventing hallucinations 
are popular research topics today, and their use for command 
extraction needs to be investigated in future works. Due to better 
performance, we concentrate on the Rule-Based approach for 
rest of the paper. 

 
Figure 2 Basic readback use cases. 

 
Figure 3. ATCo-pilot communication use cases shown in the timeline view. 
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IV. RULE-BASED READBACK ERROR DETECTION 
The rule-based (also called ontology-based) approach for 

readback error detection transforms each word sequence 
detected by ASRU into its semantic concepts, i.e. annotations, 
as described in the previous section. In principle, only a 
comparison of the annotations is then needed, considering that 
the callsign can be missing, a readback of an issued REDUCE 
command could be read back as a SPEED command, the unit, or 
the qualifier (e.g., LEFT, RIGHT) can be missing. However, a 
“HEADING LEFT” is not a correct readback for a “HEADING 
RIGHT”. More details are provided in [36].  

The basic readback use cases, covering more than 90% of 
the ATCo-pilot communication, are shown in Figure 2. A state 
machine is implemented for each callsign. Either the pilot 
initiates the communication (cases 1a-5a in Figure 3) or the 
ATCo initiates with one or more commands. The callsign moves 
into the state “EXPECTING_ READBACK”. Depending on the 
correctness of the pilot readback, the next state is 
READBACK_OK or READBACK_ ERROR. If the pilot 
answers, but no command or not all commands get a readback, 
the next state is MISSING_ READBACK. This state is also 
entered if the pilot (of this recognized callsign) does not read 
back in a defined timeframe (e.g., 30 seconds). We have the 
following six states: 

 UNKNOWN: initial state, 
 READBACK_OK: if no readback is missing and the pilot 

does not wait for an answer to a request, 
 PILOT_REPORTING: pilot’s utterance just contains 

reports and the previous state was UNKNOWN or 
READBACK_OK, 

 EXPECTING_READBACK: ATCo issued one or more 
commands, which require a pilot readback, 

 READBACK_ERROR: pilot readback is available, but is 
wrong, 

 MISSING_READBACK: following the EXPECTING_ 
READBACK state, when no readback is given after a 
certain time or when a readback is not complete,  

This simple state machine already classifies about 85-90% 
of the relevant samples correctly. Fortunately, readback errors 
are rare events. Only about two percent of the communication 
sequences result in a readback error. From 1000 command 
sequences, about 20 result in a readback error. 85% of correct 
classifications would mean 150 wrong classifications of 
readback error or not, which would result in a false alarm rate of 
at least 150/(150+20) = 88%. Only one of eight readback alerts 
would be correct, i.e., the above-mentioned rate of 85% of 
correctly classified samples would result in a very high false 
alarm rate of 88%. Examples which are not covered, by these 
simple rules are: 

 The wrong callsign could answer. 
 The pilot could read back a command which is never given 

(“reduce normal speed” is read back as “free speed”).  
 The pilot’s readback could contain “say again” for the 

whole utterance or for one of more given commands. 
 The pilot’s readback could contain a negotiation or a request 

for clarification (“is flight level three seven zero also 
available”, “can you spell waypoint dexon”). 

This is covered in the HAAWAII project by introducing 
more states to the rule-based approach:  

 CORRECTED_READBACK: ATCo detected a 
READBACK_ERROR or MISSING_READBACK and 
corrects or repeats the commands again, 

 HEARBACK_ERROR_FROM_RB_ERROR: ATCo does 
not react to a readback error or does not fully react, 

 HEARBACK_ERROR_FROM_MISS_RB: ATCo does 
not react to a missing pilot readback,  

 EXPECT_REQUEST_ANSWER: pilot requested 
something and then expects a reaction from ATCo, 

 MISSING_REQUEST_ANSWER: the ATCo does not 
answer to the pilot request in a given time. 

These additional states introduce much more complexity to 
Figure 2 and are not shown in it. 

V. DATA-DRIVEN READBACK ERROR DETECTION 
The previous section has shown the complexity of a good 

REDA and it still does not cover all situations even with a 
perfect speech-to-text engine. Therefore, the HAAWAII project 
also developed a data-driven approach for the REDA, which 
relies on a DNN being trained on readback error samples. This 
approach requires a sufficient number of readback error training 
examples. As the real readback error samples are rare events, we 
employed synthetically generated data for training the DNN. 
Just for clarification: The data-driven approach described in this 
section supports readback error detection. It is different from the 
data-driven approach used in subsection III B for semantic 
interpretation of utterance, the so-called speech understanding. 

A. Model 
In addition to the readback error detection functionality, the 

data-driven approach also provides two ways of result 
interpretation: First, the model classifies the input ATCo-Pilot 
pairs into �� = � + 1 classes, where one class represents 
correct readback, and N classes represent different kinds of the 
readback error, for example: wrong altitude, flight level, speed, 
waypoint, etc., similarly to [27]. Second, the model provides 
evidence of the ATCo utterance and wrong value in pilot one in 
the case of a readback error. This information can be used to tune 
the system and set an optimal ratio between the detection and 
false alarm rates.  

The sequence classifier is based on BERT-like [40] pre-
trained encoder in a cross-encoder setup, where the input 
sequence is the concatenation of ATCo and pilot utterance 
transcriptions with a special separator token [SEP] between 
them: 

[CLS] ATCo words [SEP] Pilot words [EOS]. 

The vector representation of the input token w obtained by 
the cross-encoder is denoted as En(��, ��)[�] ∈ ℝ�. The pre-
softmax scores for each class are as follows: 

 �(��, ��) = ��
�En(��, ��)[���] , (1) 

where ��  ∈  ℝ�×��  is a trainable matrix and [CLS] is a special 
token used for sentence classification. We define the probability 
of readback error class c as: 
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 ����(�|��, ��) = softmax��(��, ��)�
�
 . (2) 

We adopt the traditional named-entity recognition BIO 
(Beginning/Inside/Outside) tagging format for extracting 
evidence and error sequences in the text. Every input token is 
classified into �� = 5 classes (B-evidence, I-evidence, B-error, 
I-error, and Outside). The score for each class is obtained as: 

 �(��, ��)[�] = ��
�En(��, ��)[�] , (3) 

where ��  ∈  ℝ�×��  is a trainable matrix and i is the input token. 
The probability of sequence labelling t given the input ATCo-
Pilot pair is defined as follows: 

 
��(�|�1, �2) = � softmax(�(��, ��)[�])��

|�|

�=1
 . (4) 

Both tasks are trained jointly with the following loss function: 

� = − � log ���� (�|��, ��)
(��,��,�,�)∈�

+ log �� (�|��, ��) . 
(5) 

Generally, the designed approach can cover all use cases 
described shown in Figure 3 by extending the model input by 
more recent utterances. However, due to the lack of training 
data, we aim only to identify incorrect pilot’s readbacks in the 
use cases 1-4 that are aligned with ontology-based states 
“READBACK_OK” and “READBACK_ERROR”. For these 
cases, we designed the augmentation process described in the 
following section. 

B. Data Augmentation 
As already mentioned, readback errors are relatively rare 

events, so it is difficult to collect enough real examples for 
training. Consequently, we designed an automatic process for 
generating a new dataset from transcribed utterances. In the first 
step, the entities as “callsign”, “waypoint”, “speed”, “altitude”, 
etc. are automatically recognized in the manual transcriptions by 
the rule-based system, described in section III.A. Based on the 
callsign, consecutive ATCo and pilot utterance are paired. The 
template for generating new readback errors is obtained by 
replacing the extracted entities in both utterances with special 
tokens. New examples are generated by filling the special tokens 
with new values, where in the case of the readback error, one of 
the entities in pilot utterance is replaced with similar, but 
different value as in the ATCo utterance. The type of replaced 
entity represents the class of the readback error.  

The dataset for the data-driven approach is generated from 
37 441 manually transcribed utterances collected in the 
HAAWAII project (including NATS’ and Isavia’s recordings) 
and contains 129 000 synthetic examples of which 79 000 
examples of readback errors for 8 different kinds of readback 
error, and 50 000 examples without readback errors. The dataset 
is split into training data (103 200 examples) and validation set 
(25 800 examples). Note that all utterances used for experiments 
are excluded from the augmentation process. 

We fine-tune the pre-trained RoBERTa-base [41] 
transformer on the generated training data and choose the best 
checkpoint with respect to the F1 metric on the validation split. 

We use learning rate2 ⋅ 10��, batch size 64, AdamW 
optimizer [42] with the maximum optimization steps 20 000, 
and model validation after every 400 steps.  

VI. EXPERIMENTAL SETUP AND RESULTS 
Both read-back error approaches were independently 

evaluated on 7.7 hours recorded in the ops-room and examples 
collected during ATCos’ exercises focused on system 
evaluation. The 7.7 hours are silence reduced and include 
recordings from 21st July to 2nd September 2020. Roughly 40 
different ATCos of the approx. 90 ATCos working in the 
approach and oceanic control (ACC/OAC) of Isavia ANS are 
covered by these voice recordings. We also designed a simple 
mechanism for combining the results of rule-based and data-
driven REDA approach: Since the data-driven approach only 
targets a specific subset of readback error use cases, readback 
error detection is first performed by the rule-based system, and 
resulting “READBACK_ERROR” cases are then confirmed or 
rejected by the data-driven approach. 

A. Ops-Room Recordings 
3090 ATCo utterances and 3630 pilot utterances, recorded 

from July to September 2020 in Isavia’s enroute airspace, were 
manually transcribed and annotated. Only half of the data was 
manually annotated. All readback error samples are taken from 
the manually checked annotations. The 6720 ATC utterances 
were grouped into 2200 communication threads between ATCo 
and pilot. Most of those threads just consist of one utterance 
(only a pilot report or an ATCo information) or two utterances 
(ATCo command and pilot readback). However, some of the 
communication threads contain more than ten ATC utterances. 
All threads were first automatically analyzed with respect to 
possible readback errors. The candidates were then manually 
classified according to the readback error types, from which 
87 readback error samples remained. 

Table V shows the total number of detected readback error 
samples (D-RB), the total number of false alarms (FA), the false 
alarm rate (FAR), the readback error detection rate (Detect.), the 
accuracy (Acc.), and the F1-score.  

TABLE V.  FALSE ALARM AND DETECTION RATES ON OPS-
ROOM RECORDINGS 

 Abs Number Rates 
D-RB FA Detect. FAR Acc. F1 

Gold Annotation 84 19 97% 18% 99% 88% 
Gold Transcription 82 113 94% 58% 95% 58% 
Data-Driven alone 37 133 43% 78% 92% 29% 
Rule-Based alone 72 163 83% 69% 92% 45% 

Combined 71 145 82% 67% 93% 47% 

Row “Gold Annotation” presents the results of the rule-
based REDA approach, when it runs on the manually annotated 
utterances, i.e., a perfect Speech-to-Text and a perfect Text-to-
Concept is assumed. It shows how good the implementation of 
the rule-based REDA approach is. Still, 3 readback errors were 
not detected, whereas 19 readback error samples were detected, 
when no readback error was present due to the manual human 
classification. As an example, one non-detected readback error 
sample includes a pilot clearly uttering a wrong callsign, which 
does not exist in the airspace at that moment. 
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Row “Gold Transcription” shows the results, when the rule-
based sematic interpretation, presented in subsection III.A, was 
used to generate the semantic interpretations from manually 
transcribed utterances, i.e., only a perfect Speech-to-Text is 
assumed. It shows how good the implementation of the rule-
based REDA approach and the semantic interpretation are. The 
readback error detection rate only slightly decreases from 87% 
to 94%, but the false alarm rate significantly increases from 18% 
to 58%. 

The last three rows show the results of the three different 
REDA approaches: rule-based REDA, data-driven REDA, 
combination of rule-based and data-driven. The best value of 
each column of these three rows is always marked in bold face. 
The readback error detection rate with 82% is still very high, 
because due to [4], [6] ATCos only detect 50% to 63%. The false 
alarm rate again increases from 58% to 67%. It seems that the 
weakest component with respect to false alarm rate is the 
automatic Text-to-Concept component, because the false alarm 
rate increases from 18% to 58%, but the false alarm rate only 
increases from 58% to 67%, when using the automatic Speech-
to-Text component. It should, however, be kept in mind that 
readback error samples are seldom events when challenging 
phraseology is used. Semantic interpretation fails e.g. for the 
ATCO command “continue climb flight level three nine zero 
and that was restriction to cross rapax zero eight three eight 
or later”. The bold face words were not extracted as 
“TIME_CMD 0838 OR_LATER WHEN PASSING RAPAX”. 
The same happens for the pilot’s readback “climb flight level 
three nine zero rapax at zero eight three eight or later”. Here 
“rapax” resulted into a condition for the CLIMB command. 
Table II has already shown that especially pilot readbacks of 
enroute clearances of Isavia’s airspace are the challenging part 
for improving automatic semantic interpretation. 

B. Proof-of-Concept ATCos’ Exercise 
Only 4% of the above 2200 communication threads contain 

readback error samples, i.e., 1.3% of the total utterances result 
in a readback error sample. Proof-of-Concept trials with 
artificial scenarios with six ATCos from Isavia ANS were 
performed during two days in May 2022. The semantic outputs 
of ATC concepts for the pilot or the ATCo were shown to them, 
e.g., “UAL2830 DIRECT_TO 65N_000L TABEV”. They were 
asked to act as an ATCo or as a pilot making a readback error or 
not, e.g., “united two eight three zero additional clearance after 
six five north zero long cleared direct tabev tango alfa bravo 
echo victor” with the readback “six five north zero long cleared 
direct tabev united three zero”. The samples were selected from 
original ops room recordings. The second utterance was taken 
from the original operations room recordings. 70 different use 
cases were prepared and each ATCo randomly selected 11 to 15 
of them, so that 76 ATCo and 76 pilot utterances were available. 
51 of them contained a readback error and 25 contained a correct 
readback. 20 readback errors were related to altitude, eleven to 
speed, four to DIRECT_TO, one to the frequency change, four 
to runway information and eight to squawk code. 

Table VI shows the results. The data-driven approach and 
the rule-based approach detect the same number of readback 
error samples. In this validation setup, however, we do not have 
any MISSING_READBACK error cases. The false alarm rate 

of the data-driven approach is higher. The data-driven approach 
had problems with the readback “direct tabev tango alfa bravo 
echo victor”, which was recognized as “direct tabev tango alfa 
bravo echo” without “victor”. In other cases, wrongly extracted 
commands, due to wrongly recognized words, got a low 
plausibility on the command level and were, therefore, excluded 
from readback error checking. 

TABLE VI.  FALSE ALARM AND DETECTION RATES ON 
PROOF-OF-CONCEPT TEST RECORDINGS 

 Abs Number Rates 
D-RB FA Detect. FA Acc. F1 

Gold Annotation 48 0 94% 0% 96% 97% 
Gold Transcription 48 6 94% 11% 88% 91% 
Data-Driven alone 42 13 82% 24% 72% 79% 
Rule-Based alone 42 6 82% 13% 81% 85% 

Combined 42 6 82% 13% 81% 85% 

In addition to ops-room and proof-of-the-concept exercises, 
table VII provides data-driven results on the artificially 
generated validation data set.  

TABLE VII.  RESULTS ON ARTIFICIALLY GENERATED DATASET 

 Detect. FA rate/ 
Error rate Acc. F1 

RBE detection 98.1% 1.6% 97.9% 98.3% 
RBE classification 97.5% 2.5% 97.5% 97.5% 

The row “RBE detection” shows results of binary readback 
error detection that can be compared with our others 
experiments. In the “RBE classification” setup, the model 
categorizes errors into several classes (e.g. altitude or frequency 
error) and increases the error rate by only about 0.9%, where 
the readback error is classified correctly as an error, so the false 
alarm would be the same as before, but the error is classified 
into the wrong class.. 

C. Interpretation of Results with respect to ATCo support 
Table VIII shows that most of the 87 readback error samples 

from the operational data are missing readback errors and 22% 
of the readback errors are not even corrected. This, however, 
does not mean that Isavia ANS has a safety issue. It just means 
that detecting a readback error and developing a tool supporting 
the ATCo are just two different kettles of fish.  

TABLE VIII.  CONVERSATION THREAD TYPES  WITH RESPECT TO 
READBACK ERROR SAMPLES 

RB Error RB miss Hearback Other 
12% 51% 22% 15% 

We need to distinguish between (i) a readback error samples 
according to the book, (ii) a sample, which should be brought to 
the ATCo’s attention, and (iii) the most important category, a 
readback error sample, which should be communicated to the 
pilot by the ATCo. If the pilot reads back a wrong frequency, 
and also later uses it, (s)he will either manage on their own or 
contact the ATCo again. If the wrong speed value is read back 
and there is only a minor difference, the ATCo might accept it. 
A readback of a left turn instead of a right turn or a wrong flight 
level might, however, be an issue, which requires immediate 
action. The presented results have just addressed the first bullet 
“according to the book”. It is possible to detect readback error 
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samples by automatic speech recognition and understanding. 
Human-in-the-Loop simulations are necessary to validate tools, 
which also support the ATCos. 

VII. CONCLUSIONS 

The presented readback error samples clearly demonstrate that 
readback error detection considering only the word level cannot 
be successful. Instead, an abstraction of the recognized words to 
ATC concepts consisting of callsigns, command types, 
command values, conditions etc. is necessary. The abstraction is 
called command extraction. It can be interpreted as a translation 
from a sequence of spoken words to a machine-readable 
language, i.e. annotation, like a translation from e.g. German to 
English. Two different translation approaches are presented: a 
rule-based and a data-driven one based on pretrained 
transformers. Both approaches are evaluated on voice 
recordings from air traffic controllers and pilots from NATS 
London airspace and from Isavia’s en-route airspace. Metrics 
are the callsign extraction and the command extraction rates. It 
seems that the rule-based approach should be the first choice. It 
benefits from the expert knowledge that allows covering of 
known edge cases or rare command types, which the data-
driven model might have never seen during training. The 
current data-driven approach suffers from the fact that only 
eight hours of training were available, which do not cover 
seldom used phraseology. Its big advantage is, however, that it 
uses general methods from similar tasks that leads to less manual 
effort for rule adaption, data analysis, and coding of highly paid 
experts. This simplifies and accelerates adaptation to new 
airports, which can be an important argument.  

Command extraction, however, is just an enabler for the 
implementation of readback error detection. Here also two 
approaches were implemented, again a rule-based and a first 
version of the data-driven one. The combination of both 
approaches provides the best results. Proof-of-concept trials 
with six ATCos from Isavia producing challenging readback 
error samples in lab environment resulted in a false alarm rate of 
13% and a readback error detection rate of 82%. Validating the 
combination of both approaches on just 7.7 hours recorded in 
the ops-room environment of Isavia with noisy and abbreviated 
pilot utterances still provided a detection rate of 82%. Due to 
the fact, that readback error samples are seldom events, the false 
alarm rate is with 67% much higher. 

We have demonstrated that automatic speech recognition 
and understanding is possible also for the very challenging 
application of readback error detection on noisy pilot utterance. 
The next step must be to integrate this into a readback error 
detection assistant (REDA) supporting the ATCo, which will 
also enable the collection of more data to also improve data 
driven approaches. Before technical improvements are 
addressed conceptual decision are needed. It must be evaluated, 
which detected readback sample should be brought to the 
ATCo’s attention, and which ones should even be 
communicated to the pilot. Only then we know whether a false 
alarm of 67% also considering samples never communicated to 
the ATCo are a show-stopper. Then a REDA promises to 
increase safety of air traffic control communication. 
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