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Abstract—Digital assistants in air traffic control today have access 

to a large number of sensors that allow monitoring of traffic in the 

air and on the ground. Voice communication between air traffic 

controller and pilot, however, is not used by these assistants. 

Whenever the information from voice communication has to be 

digitized, controllers are burdened to enter the information 

manually. Research shows that up to one third of controllers 

working time is spent on these manual inputs. Assistant Based 

Speech Recognition (ABSR) has already shown that it can reduce 

the amount of manual inputs from controllers. This paper presents 

how a modern digital assistant, a so-called A-SMGCS, can utilize 

the outputs of ABSR. The combined application is installed in the 

complex apron simulation training environment of the Frankfurt 

airport. This allows on the one hand the integration of recognized 

controller commands into the A-SMGCS planning process. On the 

other hand, ABSR performance is improved through the usage of 

A-SMGCS information. The implemented ABSR system alone 

reaches Word Error Rates of 3.1% for the text recognition 

process, which results in a callsign recognition rate of 97.4% and 

a command recognition rate of 91.8%. The integration of ABSR in 

the A-SMGCS brings a reduction of workload for controllers, 

which increases the overall performance and safety. 

Keywords—Apron Controller; Assistant Based Speech 

Recognition; Speech Understanding; A-SMGCS; STARFiSH  

I.  INTRODUCTION 

A. Problem 

In air traffic control (ATC), as in many other areas, there is 

a permanent need to increase the performance of the overall 

system. This need exists in particular at highly congested 

airports. However, an increase of efficiency must never come at 

the expense of safety. A decisive factor in this equation of 

efficiency and safety is the air traffic controller (ATCO), who 

has a major influence on the overall system performance. A key 

approach to increase efficiency is through digitization and 

automation. The means used to achieve this are digital assistants 

that support ATCOs in carrying out their work. This leads to a 

reduction of workload and allows ATCOs to guide the air traffic 

more efficiently while maintaining the same level of safety. 

Today, the most advanced digital assistants in ATC already 

have access to a large number of sensors that allow monitoring 

of traffic in the air and on the ground. Together with manual 

input from the ATCO, the assistants are able to detect potentially 

hazardous situations and alert the ATCO. Voice communication 

between ATCO and pilot, however, as one of the most central 

sources of information in ATC, is not used by these assistants. 

Whenever the information from voice communication has to be 

digitized, ATCOs are burdened to enter the information 

manually. Research results show that up to one third of the 

working time of controllers is spent on these manual inputs [1]. 

This results in a decrease of the overall efficiency, because 

ATCOs spend less time on the optimization of traffic flow. The 

time needed for manual inputs will even increase in the next 

years as future regulations require more manual inputs e.g., 

Commission Implementing Regulation (EU) 2021/116 [2]. 

Assistant Based Speech Recognition (ABSR) has already 

shown that it can significantly reduce manual inputs from 

ATCOs by automatically recognizing and understanding 

ATCO-pilot communication as well as providing the required 

outputs for digital assistants automatically. The Active Listening 

Assistant (AcListant®) project [3] originally introduced ABSR 

[4] as a new form of automatic speech recognition (ASR). 

AcListant® coupled ABSR with a research prototype for arrival 

management to enable an early adaptation of the arrival route 

planning via voice information and support ATCOs with more 

precise arrival sequences [5], [6]. The successor project 

AcListant®-Strips proved the benefit of ABSR through the 

reduction of workload via automatic radar label maintenance 

[1], which leads to a more efficient ATC [7]. The Horizon 2020 

funded project MALORCA [8] introduced a semi-automatic 

adaptation process for ABSR to reduce costs and provided 

research prototypes for radar label maintenance for Prague and 

Vienna approach. Also, other SESAR projects like, PJ.10-96-

W2 [9], PJ.05-97-W2 [10] and HAAWAII [11] are currently 

working on different research applications for ABSR, e.g., 

incorporating pilot speech, providing automatic readback error 

detection, enabling automatic flight plan management. All 

projects clearly show that including voice information via ABSR 

into digital assistants is a valuable feature which not only 

provides benefits for existing applications, it also enables new 

ones. All projects so far incorporated ABSR into specific 



research prototypes which were adjusted to prove the 

capabilities of a digital assistant equipped with ABSR. A first 

integration into a commercial product from ATC is needed to 

bring ABSR closer to industrialization. 

B. Solution 

The project STARFiSH (Safety and Artificial Intelligence 

Speech Recognition), funded by the German ministry of 

education and research, couples ABSR with the TowerPad® 

from the company ATRiCS, a commercial Advanced Surface 

Movement Guidance and Control System (A-SMGCS). This 

combined application of A-SMGCS and ABSR is integrated into 

the complex apron training simulator of the Frankfurt airport. 

The developed ABSR-system is one of the first implementations 

of the ABSR-architecture proposed by the SESAR 2020 project 

HAAWAII [12] [13]. 

The paper aims to validate the quality of the implemented 

ABSR system in a complex apron environment of a major 

airport and to present an implementation of ABSR into a 

commercial A-SMGCS. On the one hand, this involves 

integrating ABSR output into the A-SMGCS to incorporate 

recognized commands into the planning process to relieve apron 

controllers from the burden to enter this information manually. 

On the other hand, ABSR recognition performance should be 

improved through the usage of A-SMGCS information. 

C. Paper Structure 

The next section presents related work on speech recognition 

in ATC and applications surrounding it. Section III gives an 

overview of the implemented ABSR architecture and the 

integration with the A-SMGCS. Section IV explains the general 

application of an A-SMGCS and how ABSR outputs are 

incorporated. Section V describes the Frankfurt simulation 

environment used for validations and explains the evaluated 

metrics, whereas Section VI presents the results. Section VII 

concludes the paper and gives an outlook on next steps. 

II. RELATED WORK 

The use of ASR in aviation training began in the 1980s [14]. 

Improved ASR systems are nowadays used in simulators to 

replace expensive simulation pilots in ATCO training, e.g., FAA 

[15], DLR [16], MITRE [17], DFS [18]. ASR applications 

beyond the scope of training [19], allow objective recording of 

controller workload [20], displaying warnings when a clearance 

is given for a closed or occupied runway [21], [22], verifying 

whether a pilot correctly repeats the ATCO instruction [23]. 

Although ASR systems such as Siri are widely used and 

aviation phraseology is standardized, recognizing and 

understanding controller-pilot communication is still a major 

challenge. The use of common and widely used commercial 

ASR tools has not produced acceptable results yet. Specific 

reasons for the poor performance include the variety of accents, 

the deviation of controllers from standard phraseology [24], and 

also the fact that aviation phraseology cannot be described by a 

common language model for every day speech. Cordero et al. 

reported word recognition rates of no more than 20% for various 

commercial-off-the-shelf recognizers [19].  

A promising approach to improve ASR performance is to 

further exploit contextual knowledge about expected utterance. 

Attempts to do this date back to the 1980s [25], [26]. This 

knowledge can greatly reduce the search space and thus 

significantly improve recognition performance [16]. 

DLR and Saarland University coupled an Arrival Manager 

with ASR and developed a system for the Düsseldorf approach 

area that also recognizes complex commands and does not 

require strict adherence to the standard phraseology. As a result, 

both the Arrival Manager and ASR were improved [5], [6].  

Although speech recognition has been the subject of aviation 

research, the voice communication between ATCO and pilot 

remains hidden from the current generation of A-SMGCS in use. 

However, the next generation of A-SMGCS will become a 

mandatory tool for many European airports and as a result of the 

European Commission Implementing Regulation (EU) 

2021/116 [2], many ATCO clearances have to be available to the 

system in a timely manner, e.g., for monitoring purposes.  

Systems currently available on the market from the five 

established suppliers (Saab Group, Indra, Thales Group, 

ATRiCS and ADB Safegate) require that these inputs are made 

manually by the ATCO via traditional user interfaces like 

mouse, touch or keyboard. Initial experience from the 

introduction of these next-generation A-SMGCS indicates 

additional workload for ATCOs, which can lead to reduced 

situation awareness and as a result in delays and a possible cap 

on airport capacity. 

III. ABSR ARCHITECTURE 

The STARFiSH project implements as one of the first 

projects a modern ABSR system as defined by the architecture 

of the SESAR 2020 project HAAWAII. The core of the ABSR 

mainly relies on three modules (Fig. 1), which perform speech 

to text transformation (S2T), prediction of relevant context 

(Callsign Prediction) and extraction of semantic meaning 

(Concept Recognition). The only mandatory input in the ABSR 

is an ATC audio signal. Nevertheless, providing at least 

surveillance data as additional input to create context 

information is recommended and, therefore, used within 

STARFiSH. Fig. 1 gives an overview about the integration of 

the ABSR components (light blue) in the context of the project.  

 

Figure 1. Application of HAAWAII architecture to the 

STARFiSH project 

Voice Activity Detection (VAD). The audio signal comes 

as a continuous stream from the voice communication system. 

Therefore, some trigger is needed for ABSR to determine when 

a controller is speaking and the recognition and understanding 
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should be executed. The most precise trigger would be an access 

to the push-to-talk (PTT), which controllers are triggering via 

hardware to start and end their transmissions. Due to technical 

reasons PTT could not be used as a trigger in this project. To 

compensate that problem, STARFiSH utilizes an online VAD 

which determines, based on acoustics, when a transmission has 

started and ended.  This decision is made by extracting the 

endpoint silence phones from the S2T module. The start and end 

of speech segments are detected based on the duration of pre-

detected silence states and a probability of reaching to the final 

decoding state. We considered five pre-defined rules for 

detecting the end of a segment.1 

Speech-to-text (S2T). Whenever the VAD detects a 

transmission, the signal is forwarded to S2T and the recognition 

process starts instantaneously to transform the audio signal into 

word sequences. This means the S2T delivers intermediate 

recognitions as soon as a controller starts speaking and updates 

the recognized words continuously until the end of the 

transmission. The S2T is implemented as a hybrid Deep Neural 

Network Hidden Markov Model (DNN-HMM). It is based on an 

HMM architecture combined with a Convolutional Neural 

Network Factorized Time Delayed Neural Network (CNN-

TDNNF) architecture. The whole architecture is trained by the 

lattice-free Maximum Mutual Information objective function. 

This system follows the standard Kaldi recipe which uses Mel 

Frequency Cepstral Coefficients (MFCC) and i-vector as input 

features, and 3-fold speed perturbation and one third frame sub-

sampling. Typical 3-gram language model (LM) was trained and 

adapted using in-domain data.  

Concept Recognition. Every time a word sequence is 

forwarded it is analyzed by the concept recognition and 

transformed into relevant ATC commands as defined by SESAR 

project PJ.16-04 CWP HMI [27] and extended by HAAWAII 

[28]. An input word sequence could be “lufthansa four nine nine 

taxi to alfa five eight via lima and november eight”. The 

transformation then results in the following commands: 

DLH499  TAXI TO A58 

DLH499  TAXI VIA  L N8 

For intermediate recognitions from S2T, the concept 

recognition can provide an early recognition of the callsign or if 

requested by the application even an early recognition of the 

commands. The implementation relies on a rule-based 

algorithm, which determines the relevant parts in a step-by-step 

manner [28]. The concept recognition does not only transform 

the sequence of words into ATC commands, it also takes the 

decision whether a transformation could have been the result of 

a misrecognition and neglects a command if it seems unlikely. 

This decision is based on heuristic rules that define which 

commands are allowed or likely to appear together within the 

same transmission. A simple example would be a TURN LEFT 

and a TURN RIGHT within one transmission which usually 

does not make sense and is therefore neglected. 

                                                           
1 Rules for endpoint detection defined in https://github.com/kaldi-

asr/kaldi/blob/master/src/online2/online-endpoint.h 

Callsign Prediction. This module takes surveillance data 

and in the case of STARFiSH also flight plan information from 

the A-SMGCS into account to determine if a callsign could be 

part of a controller voice transmission. The surveillance data is 

used to provide an overview of available callsigns in the airport 

area. The flight plan information then helps to determine, which 

of the callsigns are likely to be addressed in the near future. For 

that purpose, the callsign prediction takes a look at the 

responsible controller position, the target startup approval time 

(TSAT), the actual take off time (ATOT), the actual landing time 

(ALDT) and the actual in block time (AIBT). Relevant callsigns 

are forwarded to S2T and concept recognition to incorporate the 

callsigns in the process and enhance the quality. 

A-SMGCS. The targeted application of the STARFiSH 

project takes the output of the concept recognition and 

incorporates it in the planning process so that apron controllers 

do not have to update the system manually. Furthermore, the 

recognitions are forwarded to the simulation pilot stations and 

carried out by the respective aircraft automatically. More 

information and details about the integration of the recognized 

commands into the A-SMGCS can be found in the next section. 

IV. A-SMGCS COUPLED WITH SPEECH RECOGNITION 

The original purpose of an A-SMGCS is to enable 

controllers to cope with the increasing number of operations at 

today’s airports with more complex layouts and enhanced 

capacity, even in low visibility conditions [29]. For this, an A-

SMGCS collects, fuses and enhances data from many different 

sources, most importantly surveillance data including onboard 

sensors (radar, MLAT, GPS via ADS-B, cameras, etc.) and 

flight plan data bases. A modern A-SMGCS goes one step 

further. As a digital assistant, it can detect and warn about 

potentially hazardous situations and inefficient plans or even 

mitigate these by controlling infrastructure such as stop bars. 

However, these new services require even more data. The 

instructions and clearances, including taxi routes, that a 

controller issues to pilots, need to be available to the A-SMGCS.   

European legislation has acknowledged the value of these 

new A-SMGCS services for safe operations and requires 

providers of ATC at complex airports to deploy systems that can 

monitor clearances [2]. It seems clear that the mandated 

deployment of these systems can only succeed if the gains in 

safety and efficiency from automation are not cannibalized by a 

workload increase due to manual inputs for controllers [30]. 

Research results already show that up to one third of controllers 

working time is required on such manual inputs [1]. At the same 

time the radio telephony (R/T) transmissions from controller to 

pilot, which are a regulatory requirement, already contain the 

required information for modern A-SMGCS services. 

The approach in STARFiSH is to replace the need for the 

majority of manual inputs by automatically recognizing the 

speech within R/T transmissions. Building on the architecture 

from Section III, the recognized commands are checked for 
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plausibility before being considered by the A-SMGCS. The 

commands from ABSR (output of the concept recognition) are 

fed into two components: 

a) The controller A-SMGCS manages the world state 

(clearances, routes, instructions) for the apron controllers as a 

utility for situation awareness and planning. It also displays the 

traffic situation and other properties of the aircraft created by the 

traffic simulator.2  

b) The simulation pilot A-SMGCS manages the world state 

for simulation pilots which control the trajectory and other 

properties of the simulated aircraft. The simulation pilot 

commands are translated automatically into realistic aircraft 

movements by the connected traffic simulator. 

Fig. 2 shows how both A-SMGCS systems are connected to 

ABSR and the rest of the simulation. Independent of the user’s 

role at the workstation (pilot or controller), the A-SMGCS 

processes commands received from the ABSR as follows: 

• Check if a command is plausible and discard it when it is 

not consistent with the traffic situation, e.g., a “TAXI TO” 

command to a runway line-up for an inbound flight. 

• Forward the command to the correct working position (e.g., 

EAST), but discard commands for flights that are not under 

control of a position, e.g., when ABSR recognizes a wrong 

callsign not controlled by a certain working position. 

• Highlight the flight on the HMI of the working position that 

manages it, so the user knows that the ABSR has recognized 

this callsign and associated commands. 

• Display an information whenever ABSR indicates that no 

command (“NO_CONCEPT”) was recognized. The user 

has to enter the information manually instead. 

• Delay execution of the command, if the next command may 

change the meaning, e.g. 

DLH499  TAXI TO  A58 

DLH499  TAXI VIA  L N8 

The first command here sets a new destination, which will 

trigger the A-SMGCS to calculate a new route. However, 

the next command specifies part of the route, which must 

be considered as well. So, the new route will only be 

displayed after the second command or when the ABSR 

marks the transmission as complete. 

• Execute functions that need to be triggered due to the 

context. E.g., in some situations, a TAXI command implies 

a “continue”, in others it does not. 

• Augment commands that contain insufficient or ambiguous 

information. “Give way to A320 from the right” is, e.g., 

unambiguous for the pilot, but the A-SMGCS needs to 

evaluate all possible situations of A320 flights that will 

                                                           
2 It does not alert of hazardous situations, as many A-SMGCS would, in order 
to mimic the system that Fraport’s apron controllers are currently familiar 

with. 

come close to the pilot’s aircraft at possible crossings and 

intersections and then select the most plausible one. 

• Display the results of the command on the work station, 

offer “UNDO” for commands that can be easily undone and 

have proven the necessity to take back quickly in case of an 

error, e.g., handover of aircraft to a wrong position. 

 

Figure 2. STARFiSH Simulation and Validation Setup 

V. EXPERIMENTAL SETUP AND METRICS 

The A-SMGCS coupled with ABSR was integrated into the 

apron training simulator of the Frankfurt airport to validate the 

quality of the ABSR architecture in a complex simulation 

environment and to evaluate the benefits of ABSR in a 

commercial application. This section describes the simulation 

environment, traffic scenarios and metrics used for evaluations. 

A. Simulation environment and scenarios 

The validation was executed in the Fraport apron simulator 

(manufactured by ATRiCS) which includes the traffic 

simulation, the A-SMGCS for controllers and pilots and 3D 

visualization for the outside view of the controllers (see Fig. 2). 

Movements outside the areas of apron controller responsibility 

have been automated, i.e., landing, runway exit, lineup and take 

off. The validations were done with the three apron controller 

working positions East, Center and West. Each controller used 

an A-SMGCS Integrated Controller Working Position (ICWP) 

and a radio for communication to the pilots. For each apron 

controller there was also one simulation pilot for monitoring and 

controlling the simulation and to give R/T readback.  

In the near feature apron controllers at Frankfurt airport need 

to use an A-SMGCS were they have to input all commands 

given via radio to the pilot additionally into the system (i.e., 

pushback, taxi, change of taxi routes etc.). This way of working 

was simulated with and without (baseline) the support of ABSR.  
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In the baseline scenario apron controllers worked with an A-

SMGCS, where all inputs were manually entered with a mouse, 

since no ABSR was available. This was compared to the solution 

scenario, where an ABSR System delivered the inputs 

automatically and controllers had to correct the system in case 

of a misrecognition. Additionally, the influence of automatically 

executing the controller commands within the simulation was 

evaluated. For this purpose, the recognized commands from 

apron controllers were, in some scenarios, forwarded to the pilot 

A-SMGCS and executed automatically. In these scenarios the 

pilots were only responsible for the R/T readback and correcting 

actions in case of misrecognitions. In all other scenarios the 

pilots had to manually trigger all the actions in the simulation in 

addition to giving R/T readback. 

The baseline and the solution scenario have been simulated 

in both operational directions for Frankfurt airport, i.e., either 

runways “25” or “07” have been used. The operational direction 

influences the entry and exit points of the traffic and the work is 

differently distributed among the controller positions. All 

simulations had a very high traffic volume. 

The simulations took place for five days and the group of 

apron controllers changed each day, i.e., every day three new 

apron controllers participated for the positions East, Center and 

West. Each day started with an introduction and a short training, 

followed by six different validation runs with a duration of 30 

minutes. Table I shows the setup of the different runs and 

showcases whether the output of ABSR was used at the 

respective station, or not. The order of the runs varied each day. 

TABLE I.  SETUP OF SIMULATION RUNS FOR ONE SIMULATION DAY 

(ORDER OF RUNS DIFFERENT ON EACH DAY) 

Run RWY direction Pilot stations ATCO stations 

1 25 ABSR ON ABSR OFF 

2 07 ABSR ON ABSR ON 

3 25 ABSR ON ABSR ON 

4 07 ABSR ON ABSR OFF 

5 25 ABSR OFF ABSR OFF 

6 25 ABSR OFF ABSR ON 

 

B. ABSR metrics 

To evaluate the performance of the ABSR system, different 

evaluation metrics are used. The performance of the S2T module 

is evaluated using Word Error Rate (WER).  It is computed by 

the Levenshtein distance between the recognized word sequence 

and the spoken word sequence. The Levenshtein distance 

considers the substitutions, insertions and deletions [31].  

 The performance of the Concept Recognition module is 

evaluated by comparing the automatically extracted commands, 

so called automatic annotations, with the correct commands 

manually created and verified by human experts, so called gold 

annotations. The evaluation is carried out using the following 

three metrics: command recognition rate (RecR), command 

recognition error rate (ErrR) and command rejection rate (RejR). 

The RecR is defined as the number of correctly recognized 

commands divided by the total number of actually given 

commands. A command is said to be recognized if and only if 

all the elements of the command such as the command type, 

value, unit, qualifier, condition etc., as defined by the ontology 

[28], are all correctly recognized. ErrR is the percentage of 

wrongly extracted commands, divided by the total number of 

gold annotations. RejR is the percentage of gold annotations, 

which are not extracted at all. Table II below illustrates the above 

defined metrics using an example. 

TABLE II.  EXAMPLE TO ILLUSTRATE CONCEPT RECOGNITION METRICS 

Example 

Gold Annotation Automatic Annotation 

DLH4AR TURN LEFT DLH4AR TURN RIGHT ⊖ 

DLH4AR TAXI VIA A B DLH4AR TAXI VIA A B ⊕ 

 DLH4AR TAXI TO V143 ⊖ 

AUA1AB PUSHBACK AUA1AB NO_CONCEPT 〇 

BAW123_NO_CONCEPT BAW123 NO_CONCEPT ⊕ 

Result 

RecR = 2/4 = 50% 

(green ⊕) 

ErrR = 2 / 4 = 50% 

(purple ⊖) 

RejR =1/4 = 25% 
(yellow 〇)  

The example above also illustrates that the sum of RecR, ErrR, and RejR 

can exceed 100%. 

 

Similarly, callsign extraction rates are calculated using 

metrics such as callsign recognition rate (CaRecR), callsign 

recognition error rate (CaErrR) and callsign rejection rate 

(CaRejR). For every utterance, each callsign is considered only 

once, except for when multiple callsigns are annotated or 

extracted. Detailed information on defined metrics are in [32]. 

C. A-SMGCS metrics 

To evaluate how much interaction with the A-SMGCS is 

required with and without ABSR we recorded the number of 

HMI interactions at each position and for each simulation run, 

categorized into 48 different tasks such as “edit route”, “clear 

pushback”, “select label”. The expectation was that the number 

of interactions are significantly lower when ABSR support is 

available. However, it was clear from previous experiments that 

controllers would not correct every error made by the ABSR 

since a missing input at the controller A-SMGCS in many cases 

has no direct consequence: If, e.g., a pushback command was 

not input on the controller A-SMGCS, then the aircraft would 

not be flagged as pushing back, but would still push after a few 

seconds, because the pilot would take care of that even when 

ABSR fails to recognize the command. That means for the HMI 

interactions pilots are also evaluated, since they have to input 

everything which makes their results more reliable.  

D. Workload and performance metrics 

 NASA TLX [33] questionnaire was used to measure the 

individual workload of the participating controllers by self-

estimation on a scale of 1-20 for the degree of high mental, 

physical, and temporal demand, lack of performance, and high 

effort and frustration. The controllers filled in a questionnaire 

after each run.  
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The SHAPE SASHA [34] questionnaire was used after each 

run to measure the situational awareness of controllers by 

estimation on a scale of 0-6 whether they have been ahead of 

traffic, did focus on a single problem, risked forgetting 

something, were able to plan before, were surprised, or had to 

search for an information item. 

Additionally, we wanted to get an estimation for the 

automation trust of the apron controllers, and used the SHAPE 

SATI [34] questionnaire. It measures the automation trust by a 

self-estimation on a scale of 0-6 whether the system seems 

useful, reliable, accurate, understandable, and robust and makes 

them feel confident. The controllers filled in a questionnaire 

after each day, and were asked to focus on the automation 

feature of ABSR, i.e., immediate highlighting of recognized 

callsigns and integration of recognized commands at the 

TowerPad® ICWP. 

The questionnaires reflect the subjective experience of the 

controllers. It can be argued that, for many real-world 

applications, this is the most important measure. However, in 

order to have more objective data on the impact on workload, 

we designed a secondary task that requires similar skills to the 

main task of controlling traffic, e.g., color perception and quick 

orientation in the user interface, yet can be executed in parallel. 

The task is based on the Stroop test [35] and implemented in 

an open source app3 that records the number of correctly 

executed tests over time. A higher number of correct tests 

indicates more mental capacity available for the secondary task, 

so less workload capacity is consumed by the primary task [36]. 

After 10 minutes of a simulation run, the controllers had to 

perform the secondary task for ten minutes in addition to 

controlling the traffic. 

 

Figure 3. Stroop Test Screenshot 

When the user presses the “START” button (Fig. 3), the app 

shows a word for a color printed in a different color. The user 

has to select the color of the print from a list of buttons labelled 

with the names of colors.  So, in the example in Fig. 3 the user 

has to select RED. As the brain is faster in perceiving the text 

than recognizing the color and translating it into a word, this task 

creates mental load and requires focus.  

                                                           
3 Our implemtation of the stroop test can be accessed here: 

https://github.com/MathiasMaier/workload-gauge 

VI. RESULTS AND DISCUSSION 

This section shows the results of the quality measures for the 

ABSR system. Afterwards the metrics related to the A-SMGCS, 

workload and performance of the controllers are presented. 

 The WER and concept recognition metrics for the ABSR 

system are presented for the online and offline mode. Online 

performance measures the live performance of the ABSR 

achieved during the final simulation trials carried out end of June 

2022. This means these results include a certain proportion of 

errors made by the VAD as the PPT signal was not available (see 

Section III) and, therefore, some transmissions were not detected 

correctly. Offline performance measures the quality of the 

ABSR system with a perfect splitting of the audio stream 

performed offline, i.e., a simulation of how the system could 

perform if PPT would have been available. 

Table III shows the WER of the S2T component from 

Section III. In total the utterances of 14 apron controllers have 

been evaluated. We see that the offline recognitions of the S2T 

are better than the online recognitions with overall WERs of 

3.1% and 5.0%, respectively. It is also interesting to observe that 

the average WERs of female apron controllers (2.6% resp. 3.7%) 

were better than those of male apron controllers (3.3% resp. 

5.5%). On the other hand, out of the total 14 apron controllers, 

only 4 were females. 

The question often arises as to which WER is good enough. 

This question cannot be answered easily, because ultimately it 

does not matter how many words are correctly recognized. What 

does matter is the ability of the system/application to grasp the 

meaning behind the recognized words. Some errors on word-

level may change the meaning of an utterance, while others have 

no effect at all. Therefore, it is not possible to define a general 

threshold for WER, but a low WER obviously allows 

conclusions to be drawn about the quality of the implemented 

S2T component. Compared to humans, the WER presented in 

Table III can be considered very good. In the literature, the WER 

of humans is estimated somewhere between 4% and 11%, 

depending on the circumstances, e.g., only correction of pre-

transcriptions, fast transcriptions with one chance to recognize 

everything, or listening multiple times to one utterance and 

making corrections along the way [37]. 

TABLE III.  WER - EVALUATION OF SPEECH-TO-TEXT 

Type of Recognition WER 

Offline Recognition 3.1% 
Male - 3.3% 

Female - 2.6% 

Online Recognition 5.0% 
Male - 5.5% 

Female - 3.7% 

 

The following Tables IV and V illustrate the performance of 

the concept recognition using the metrics defined in Section V. 

These tables show the total number of utterances (#Utter), 

commands (#Cmds), command recognition (RecR), error (ErrR) 
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and rejection rates (RejR), and also the callsign recognition 

(CaRecR), error (CaErr) and rejection rates (CaRejR). The 

performance is evaluated on only a subset (~56%) of the entire 

data for which manually verified annotations are available.  

TABLE IV.  COMMAND EXTRACTION RATES 

Type of Recognition #Utter #Cmds RecR ErrR RejR 

Offline Recognition 5,495 13,251 91.8% 3.2% 5.4% 

Online Recognition 5,432 13,168 88.7% 4.3% 7.5% 

 
TABLE V.  CALLSIGN EXTRACTION RATES 

Type of Recognition #Utter CaRecR CaErrR CaRejR 

Offline Recognition 5,495 97.4% 1.3% 1.3% 

Online Recognition 5,432 95.2% 2.3% 2.4% 

 

From Table IV, we see that we obtain recognition rates of 

91.8% and 88.7% when concept recognition is run on offline and 

online word recognitions, respectively. Similarly, the error rates 

are also better in the offline recognitions. The improvement in 

the output of the concept recognition in the offline mode directly 

corresponds to the better word-level recognitions by S2T. 

Similarly, from Table V we see that the callsign recognition rates 

are also better with offline recognition as compared to the online 

recognition with recognition rates of 97.4% and 95.2%, 

respectively.  

Table VI shows the offline rates for each command type for 

the most frequently occurring and important command types, 

which are relevant for the application. From the table, we 

observe that the concept recognition rates are above 86% with 

error rates less than 4% for all command types, except for 

GIVE_WAY, where we obtain recognition and error rates of 

69.6% and 10.2%, respectively. GIVE_WAY is a complex 

command which can be given using very different phraseology, 

not all of which are modelled, thereby leading to lower 

command recognition rates. 

TABLE VI.  RECOGNITION RATES PER COMMAND TYPE 

Command Type #Cmds RecR ErrR RejR 

TAXI VIA 2922 86.9% 3.9% 9.1% 

HOLD_SHORT  1837 89.3% 0.8% 9.9% 

TAXI TO 1406 89.0% 1.1% 9.9% 

CONTACT_FREQUENCY 1387 95.7% 0.7% 3.6% 

CONTINUE TAXI 1102 95.4% 0.0% 4.6% 

GIVE_WAY 728 69.6% 10.2% 20.3% 

CONTACT 672 98.4% 0.3% 1.3% 

PUSHBACK 663 92.3% 1.2% 6.5% 

TURN 359 89.2% 3.9% 6.9% 

HOLD_POSITION 223 93.4% 0.0% 6.6% 

 

As mentioned before, using VAD incurs a certain number of 

errors in identifying the start and end of a transmission. Since 

we are ultimately interested in extracting the correct concepts, 

we try to fix this problem at the concept-level by automatically 

merging recognitions which seem to belong to the same 

utterance. On day 1 of the final simulation trials this automatic 

merging process was not applied, the CaRecR for that day 

deteriorated from 98.6% to 95.4% using the VAD. This means 

there was a decrease of 3.2% absolute when using VAD. On the 

other hand, on the remaining days with the automatic merging, 

the CaRecR only reduced from 96.7% to 95.1%, meaning the 

decrease was only around 1.6% absolute, i.e., merging on 

command level partially compensates the errors induced by 

VAD and makes the system more robust. 

Table VII shows how many HMI interactions remain for 

controllers and pilots in runs with ABSR compared to baseline 

runs without ABSR. The total shows a clear decrease which is 

about 85% for controllers and 60% for pilots. The average 

number of inputs performed for some classes of commands, e.g., 

taxi, pushback and hold short, dropped quite dramatically. This 

proves that many required inputs are automated through ABSR. 

The lower decrease for pilots is probably due to the additional 

tasks in controlling the simulation and the fact that pilots must 

correct errors while controllers were observed to skip some 

corrections.  

TABLE VII.  PERCENTAGE OF INTERACTIONS REMAINING WITH ABSR 

Interaction Type 
Remaining HMI interactions with ABSR 

Controller Pilot 

cancel hold short 3,77% 33,94% 

clear pushback 3,51% 16,02% 

clear taxi 3,52% 19,31% 

give way 18,35% 53,83% 

hold short 4,88% 26,27% 

select/label/deselect 14,08% 37,63% 

routing 20,77% 39,03% 

handover 5,58% 22,09% 

Total 15,38% 40,39% 

 

Table VIII shows the average and standard deviation for 

correctly performed secondary tasks for baseline and ABSR 

runs. For Center and West, a paired T-test shows significant 

evidence (alpha 0.9 and 2.0) that the mental load is lower with 

ABSR, since the average number of correctly performed tasks is 

higher. For the East position no significant evidence is available. 

TABLE VIII.  STROOP EVALUATION – AVERAGE AND SIGMA PER POSITION 

Position 
Average Sigma 

Baseline ABSR Baseline ABSR 

East 56.5 53.0 49.5 42.5 

Center 32.8 51.1 36.3 40.7 

West 89.5 113.6 41.0 52.7 

 

The overall NASA TLX workload index was 8.6 on average, 

7.5 with ABSR (better) and 9.7 in the baseline. Mental and 

temporal demand and effort got higher indices in all 

circumstances than physical demand, frustration and the 

performance aspect. In all single aspects, the index values are 

higher, i.e., better with ABSR compared to the baseline (notably, 

except for 'performance' at East and 'frustration' at West). 

Considering that controllers estimated their own performance 

already quite good, the main improvement by ABSR lies in 

lowering the mental and temporal workload and the effort. The 

overall SASHA situation awareness index was 4.6 with ABSR 
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and 4.2 (worse), in the baseline, especially the risk of forgetting 

and the ability to plan and organize was better with ABSR. The 

overall automation trust index of 4.6 showed a high trust in the 

system. Highest rated aspect was usefulness (5.1). Accuracy 

(4.3) and robustness (4.2) were rated a bit lower. 

VII. CONCLUSION AND OUTLOOK 

A modern commercial A-SMGCS was combined with 

ABSR. This increased on the one hand the ABSR performance. 

Word Error Rates of 3.1% on unseen voice recordings were 

achieved. The callsign recognition error rate was only 1.3%, 

when information from the A-SMGCS was used. Command 

recognition rates of 91.8% were measured, which includes that 

every single part of a command is correctly extracted. 

On the other hand, ABSR could dramatically reduce the 

manual workload for apron controllers. In the coming years 

these controllers will have to digitize almost every spoken 

command, either manually by mouse and keyboard or with 

ABSR support. The experiments with 14 apron controllers 

showed a reduction of the needed interactions by a factor of 7. 

The performance on the secondary task increased by 55% resp. 

27% for the Center and West position, whereas it decreased a bit 

for the East position. This shows that ABSR often enables 

additional safety buffers, because the time, the apron controller 

spent on the secondary task, will be available in the operational 

environment for monitoring and short-term reactions. Feedback 

from post-run questionnaires also clearly show that the 

controllers were more flexible and efficient with ABSR. Even 

during high-workload situations they were more likely to give 

individual situation-dependent taxi clearances, whereas without 

ABSR more standard routing was used. 

Additionally, also simulation pilots were supported by 

ABSR. They only had to input commands misrecognized by 

ABSR, which reduced manual interactions by more than 50%. 

An additional source of error had to be addressed, since PTT was 

not available and ABSR had to decide in real-time the start and 

end of transmissions via acoustics. Offline analysis show that the 

word error rate can be reduced by 60% relative, i.e., from 5.0% 

to 3.1%, whereas semantic extraction is quite robust against 

these errors as the command extraction rate decreases only from 

91.8% to 88.7%. 

The next steps will be to move ABSR from the simulation to 

the operational environment of Fraport and to improve the user 

interface of the simulation pilots so that their manual effort can 

also be reduced by a factor of 7. 
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