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Abstract—In the European air transportation network, over-
loads (i.e., critical imbalances between traffic demand and
capacity) are generally resolved by activating air traffic flow
management regulations, which delay flights on ground using a
- more or less - first-planned, first-served principle. According
to a recent research study, some of the regulations that are
requested by the flow managers across Europe may not be strictly
necessary due to the complex interactions between them. Results
using an adaptive tabu search algorithm revealed that some
regulations could be safely removed, thereby reducing the delay
without causing problems elsewhere in the network. Such an
algorithm, however, was designed to suggest which regulations
among those requested by the flow managers could be cancelled,
not to change the parameters of existing regulations or to propose
new ones. This paper addresses this limitation by proposing a
simple yet effective optimisation algorithm based on adaptive
large neighbourhood search, which is able to determine the best
set of regulations minimising air traffic flow management delay
from scratch. The potential of the proposed method is assessed
for various challenging scenarios using historical traffic data.

Keywords—Air traffic flow management; demand and capacity
balance; adaptive large neighbourhood search

NOMENCLATURE

β Destruction factor
δ Success of the heuristic
ε Tolerance for initial temperature
Ω Set of operators
φ Temperature decay factor
ρ Weight decay factor
p Probability vector
w Weights vector
x Solution vector
c Objective function (cost)
T Simulated annealing temperature

I. INTRODUCTION

Adapting capacity to demand is the first step in aligning
demand and capacity. This can be accomplished by modifying
the airspace configuration, for example. If demand still cannot
be met, air traffic flow management (ATFM) measures are
implemented to match demand with available capacity. At
present, the most common measure used by flow managers in
coordination with the Network Manager consists of limiting
the rate at which aircraft enter the congested traffic volumes1

during a given period of time, i.e., to activate regulations.

1A traffic volume is related to a single geographical entity (either an
aerodrome, a set of aerodromes, an airspace sector or a navigation point),
and may consider all traffic passing through that entity or only specific flows.

The flights subject to one or several ATFM regulations
are issued with a ground delay (i.e., the ATFM delay) on a
first-planned, first-served basis by the Computer Assisted Slot
Allocation (CASA) system [1] so that the maximum entry
rates in the corresponding traffic volumes are not exceeded
during the regulated periods. The mechanisms that are used
to assign and manage ground delays using ATFM regulations
are described in previous publications. The reader is refereed
to Refs. [2], [3] for further details about this exciting subject.

During 2020, there were 2.6M minutes of ATFM delay
in the European network, a drop of 89% when compared to
2019 [4]. The en-route ATFM delay was 0.33 min per flight
(79% decrease with respect to 2019), and airport ATFM delay
was 0.20 min per flight (67% decrease with respect to 2019).
En-route air traffic control (ATC) disruptions and airport
weather were the main reasons for ATFM delay in the network.
This exceptional reduction of ATFM delay, however, was also
consequence of the extremely low traffic levels caused by the
COVID-19 outbreak (55% less traffic than in 2019). Because
of the low levels of traffic, the current network infrastructure
had plenty of capacity to meet the demand and less ATFM
regulations were required. Despite the traffic demand forecasts
are more uncertain than ever due to the unclear impact of the
pandemic on the travel habits [5], domain experts forecast that
the upward trend is going to resume once travel restrictions
lighten [6]. With air traffic likely to increase, regulations (and
delays) will inevitably come back to ensure safe operations.

Countless scientists have been interested for many years
in optimising ATFM measures in order to resolve demand
and capacity imbalances in the best way possible, albeit the
concept of best is obscure because different actors with often
conflicting interests are part of the optimisation problem.

For instance, Ref. [7] proposed a mixed-integer optimisation
algorithm to assign ATFM delays in a way that minimises de-
lay propagation to subsequent flights, simultaneously increas-
ing flight adherence to departure slots at coordinated airports.
Similarly, Ref. [8] formulated an integer programming model
for strategic redistribution of flights so as to respect nominal
sector capacities, in short computation times for large-scale
instances. A variant that considers aircraft rotations through
the turn-around time constraints was also proposed by [9], and
recently Ref. [10] suggested a convenient way of visualising
the results of that model. In consonance with the previous
authors, Ref. [11] proposed a collaborative ATFM framework
aiming to improve the cost-efficiency for airspace users when



facing ATFM measures. Arguably, one of the main difficulties
of the aforementioned works was to translate the ATFM delay
into a monetary cost. Reference [12] addressed this issue by
defining quantitative and qualitative indicators to assess the
expected impact of the costs that regulations could cause.

The paradigm of ATFM used in the current operations,
however, is way far from a massive cherry-picking that opti-
mally assigns specific delays to individual flights. Even though
previous research demonstrated through realistic use cases that
optimisation models could significantly reduce total ATFM
delay, the current delay assignment by CASA is regarded as
equitable by airspace users, and is a legacy and trusted system
that has proven to ensure safe flight operations for decades.

In this context, Ref. [13] presented a new ATFM technique
that, exploiting some of the rules and mechanisms existing
in CASA, could potentially allow airspace capacity to be used
more effectively, thus reducing ATFM delays and their associ-
ated costs for the airspace users, with relatively small changes
in the operational system that is currently in operations.

Getting closer to current operations, a recent work [3] was
founded on the hypothesis that, especially during busy days,
only some of the requested regulations are actually indispens-
able, i.e., a set of the regulations requested by flow managers
could still solve all overloads with less delay. Instead of creat-
ing new regulations, however, the proposed algorithm takes the
regulations requested by the flow managers as starting point,
assuming that otherwise all of them will be active, and tries
to cancel those regulations that are ineffective. Accordingly,
determining the optimal set of regulations becomes a binary
optimisation problem, where each regulation can be either
active or cancelled.

Such an algorithm, however, was designed to suggest which
regulations among those requested by the flow managers
could be cancelled, not to change the parameters of existing
regulations or to propose new ones. This paper addresses
this limitation by proposing an hyper-heuristic algorithm (i.e.,
an heuristic to select heuristics) based on adaptive large
neighbourhood search (ALNS), which is able to determine the
best set of regulations minimising air traffic flow management
delay from scratch [14]. The performance of the proposed
algorithm is demonstrated for several busy days during 2019.

II. ADAPTIVE LARGE NEIGHBOURHOOD SEARCH

Recently, heuristics based on large neighbourhood search
(LNS) [15] have shown outstanding performance in solving a
wide variety of transportation problems [16]. LNS gradually
improves the initial solution (x0) by alternately destroying and
repairing it. The steps of LNS are listed in Algorithm 1.

The basic idea behind LNS is to alternate between feasible
and infeasible regions, similar to how strategic oscillations
work [17]. At each iteration of the algorithm, the destroy
heuristic creates an infeasible solution, which is brought back
into the feasible region by the repair heuristic. It is worth
noting that the destroy and repair heuristics can be thought of
as fix-and-optimise operations, respectively. In particular, the
fix operation (equivalent to the destroy heuristic) freezes some

variables of the solution to their current values, whereas the
optimise operation (equivalent to the repair heuristic) seeks
to improve the solution by modifying the variables that are
free. Furthermore, the LNS also has many similarities to the
iterated greedy [18] and the ruin and recreate [19] algorithms.

In the problem addressed in this paper, the destroy heuristic
is in charge of removing some of the regulations in the
current solution. After destruction, the solution often presents
imbalances between demand and capacity, i.e., it is infeasible.
Starting from an infeasible solution, the repair heuristic takes
action to resolve overloads by creating new regulations. A
very simple destroy heuristic could consists of cancelling
those regulations that generate most ATFM delay, while a
straightforward repair heuristic could consists of activating
regulations in the traffic volumes where major overloads exist.

Algorithm 1 Large neighbourhood search (LNS)

Require: x0

1: x← x∗ ← x0

2: repeat
3: x′ ← REPAIR (DESTROY (x))
4: if ACCEPT (x,x′) then
5: x← x′

6: if c (x) < c (x∗) then
7: x∗ ← x
8: end if
9: end if

10: until TERMINATION
11: return x∗

According to Algorithm 1, at each iteration of the LNS
algorithm a new candidate solution (x′) is generated as a result
of sequentially applying the destroy and repair heuristics to
the current solution (x). The candidate solution replaces the
current solution if it satisfies the acceptance criteria, otherwise
is discarded. The acceptance criteria can be implemented in
different ways. Despite the simplest choice is to only accept
better solutions (the so-called high-climbing acceptance), other
methods such as simulated annealing, threshold acceptance or
old bachelor acceptance are often implemented in order to
reduce the chances of getting stuck in local minima [20].

If the objective function of the candidate solution is better
than the best found so far, it becomes the new best solution
(x∗). Finally, the algorithm terminates when a certain condi-
tion is triggered, e.g., after a number of iterations, when the
maximum execution time is exceeded, when the best objective
has not improved during a given number of iterations, etc.

Note that the destroy heuristic must be designed in such
a way that the entire search space can be reached, i.e.,
it cannot constantly focus on destroying the same part of
the solution. For this reason, some degree of randomness is
commonly introduced in the destroy heuristic. Conversely,
in most implementations the repair heuristic makes use of
variants of the greedy paradigm, e.g. performing the locally
best (or least bad) action from the currently infeasible solution.
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Using this kind of design, the destroy heuristic guarantees
diversification, while the repair heuristic fosters intensification.

Note that LNS uses exactly one destroy and one repair
heuristic. Adaptive large neighbourhood search (ALNS) is an
extension of LNS originally introduced by [21], which allows
multiple destroy and repair heuristics to be used during the
optimisation. This algorithm has been used to solve difficult
problems like the multi-period vehicle routing [22].

ALNS was designed on the premise that different problem
instances, and even different solutions to the same problem,
are managed with varying success by distinct destroy and
repair heuristics. It may be difficult, however, to guess which
heuristics will be the most successful. ALNS uses a rather
simple yet effective mechanism to learn, on the fly, the
likelihood that an heuristic will generate a good candidate [14].

Let Ω− and Ω+ be the catalogue of possible destroy and
repair heuristics, respectively (note that both Ω− and Ω+ must
be defined by the user beforehand). Each heuristic has an
associated weight, which determines the likelihood of selecting
the heuristic at each iteration. The vector of weights of the
destroy and repair heuristics are denoted by w− and w+,
respectively. The probability to select the ith destroy and the
jth repair heuristics is given, respectively, by:

p−i =
w−i∑|Ω−|

k=1 w
−
k

; p+
j =

w+
j∑|Ω+|

k=1 w
+
k

. (1)

That is, the higher the weight of an heuristic, the more likely
it will be selected to destroy/repair the current solution.

The weight of the different heuristics must be updated
in order to increase the probability of selecting successful
heuristics, and to decrease that of less effective ones. In
order to accomplish this goal, the quality (δ) of the candidate
solution generated by the current destroy and repair heuristics
is determined at each iteration of the algorithm. The quality,
which has a purpose similar to that of the reward in reinforce-
ment learning, depends on its success. In particular:

δ =


δ∗ if x′ is the better than x∗

δb else if x′ is better than x

δa else if x′ is not better than x but is accepted
δr Otherwise (x′ is rejected),

(2)
where δ(·) are fixed parameters of the algorithm.

After determining the quality of the candidate solution with
Eq. (2), the weights of the destroy and repair heuristics that
generated the candidate solution are updated according to:

w−i = ρδ + (1− ρ)w−i ; w+
j = ρδ + (1− ρ)w+

j , (3)

where the decay factor (ρ) controls the influence of the recent
success of the applied heuristic on its weight.

The steps of the ALNS are detailed in Algorithm 2. Note
that a local search step could be also applied when finding a
new best solution (x∗), e.g., with tabu search. The objective

of the (optional) local search step is to thoroughly explore the
close neighbourhood of the current best solution and attempt to
reach a local minima before to continue exploring a large (i.e.,
far) neighbourhood. In this paper, however, the local search has
not been implemented for the sake of simplicity and clarity.

Algorithm 2 Adaptive large neighbourhood search (ALNS)

Require: x0, w−0 , w+
0

1: w− ← w−0
2: w+ ← w+

0

3: Initialise p− and p+ according to Eq. (1)
4: x← x∗ ← x0

5: repeat
6: DESTROY ← Sample from Ω− according to p−

7: REPAIR ← Sample from Ω+ according to p+

8: x′ ← REPAIR (DESTROY (x))
9: if ACCEPT (x,x′) then

10: if c (x′) < c (x∗) then
11: δ ← δ∗
12: x∗ ← x′

13: else if c (x′) < c (x) then
14: δ ← δb
15: else
16: δ ← δa
17: end if
18: x← x′

19: else
20: δ ← δr
21: end if
22: Update w− and w+ according to Eq. (3)
23: Update p− and p+ according to Eq. (1)
24: until TERMINATION
25: return x∗

III. OPTIMISATION ALGORITHM

Section II described the working principle of the generic
ALNS algorithm. The designer must specify the following
functions in order to customise the ALNS algorithm to a
specific problem: the initial solution generator (x0); the cat-
alogue of DESTROY and REPAIR heuristics (Ω− and Ω+,
respectively); the ACCEPT criteria; and the TERMINATION
criteria. Next sections describe the functions that have been
selected for tailoring the general-purpose ALNS algorithm to
the problem of optimising the ATFM regulations scheme.

The following paragraphs explain the various data structures
used by the optimisation algorithm. In the problem tackled in
this paper, a solution x consists of a set of ATFM regulations,
where each ATFM regulation is described by:
• the traffic volume identifier, and
• the list of applicability periods, where each applicability

period is composed of:
– the start time,
– the end time and
– the maximum entry rate (in entries per hour).
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The cost of a feasible solution c (x) is the total ATFM delay
generated by the corresponding set of regulations applied to a
certain traffic demand, where each flight of the traffic demand
is a data structure composed of:
• the flight identifier,
• whether the flight is exempt from ATFM measures and
• the traffic volume profile, where each element of the

traffic volume profile is a data structure composed of:
– the traffic volume identifier and
– the estimated time over (ETO) the traffic volume.

Last but not least, the declared set of capacities is also
required in order to detect overloads as well as to determine the
rate of the regulations created during the optimisation process.
Each element of this data structure is composed of:
• the traffic volume identifier,
• the capacity periods, where each capacity period is com-

posed of:
– the start time,
– the end time and
– the declared capacity (in entries per hour).

A. Initial solution

The initial solution is a key component of presumably any
optimisation algorithm, because the closer the initial solution
to the (unknown) best solution, the less time it will take to
converge. Generating high-quality initial solutions, however,
may be difficult or time consuming. In most of the cases, there
exists a trade-off between the quality of the initial solution
and the time it takes to generate it. In this paper, a simple yet
effective greedy optimisation algorithm has been implemented
to create relatively good initial solutions in a short amount of
time. The steps of this algorithm are listed in Algorithm 3.

Algorithm 3 Greedy regulations

Require: Traffic demand & capacity
1: Identify overloaded time windows taking into account

overload 20 and overload 60 tolerances
2: repeat
3: Activate a new regulation on every overloaded time

window, using the corresponding capacity as regulation
rate

4: Group consecutive regulations with same rate within
the same traffic volume (or which gap is lower than a
max gap tolerance)

5: Remove regulations which duration is less than
min duration

6: Run the CASA algorithm
7: Shift the traffic demand according to the delays as-

signed by CASA
8: Identify overloaded time windows taking into account

overload 20 and overload 60 tolerances
9: until All overloads are resolved

10: return Set or regulations that resolve overloads in a
greedy way

Algorithm 3 starts by identifying the set of time windows
that are overloaded given the traffic demand and the declared
capacity. In this process, both windows of 20 min duration
slicing every 20 min as well as windows of 60 min duration
slicing every 20 min are monitored. For the sake of clarity,
Fig. 1 shows the time windows monitored for an hypothetical
traffic volume, considering different combinations of duration
(Λ) and slice (λ) . It is worth noting that certain tolerances
may be taken into account when deciding whether or not an
entry counts value that exceeds a time window’s capacity
is considered to be an overload. For instance, an overload
could exist if and only if the entry counts value on a 20 min
(resp. 60 min) window is 15% (resp. 5%) higher than the
capacity. These tolerances are denoted as overload 20 and
overload 60, respectively, and the default value is 0%.

At each iteration, regulations are activated on the overloaded
time windows, using the corresponding capacity as regulation
rate. Then, consecutive regulations with same rate within the
same traffic volume (or which gap is lower than a max gap

tolerance) are grouped. Following this step, regulations which
duration is less than another parameter, called min duration,
are removed. Finally, the CASA algorithm is executed with
the current set of regulations, the traffic demand is shifted
according to the delays assigned by CASA, and overloads are
identified again in the new situation. Algorithm 3 stops when
all overloads are resolved by the current set of regulations.

The current implementation of the algorithm uses the high-
fidelity replica of CASA included in the R-NEST (Research
Network Strategic Monitoring Tool) tool of EUROCONTROL.

B. DESTROY heuristics

In this paper, three DESTROY heuristics have been defined,
which select a subset of regulations to be removed from the
current solution x. As discussed in Section II, any destroy
heuristic should include some randomness in order to foster
exploration. For this reason, a β percentage of the regulations
are randomly removed from the current solution as a result
of the destroy phase. The probability of each regulation being
removed is determined by the specific destroy heuristic.

1) High delay: The objective of this heuristic is to explore
solutions with a high potential of decreasing the objective
function. As a result, the likelihood of each regulation being
removed from x is proportional to the ATFM delay that it
generates: the higher the delay, the greater the probability.

2) Low efficiency: The efficiency of a regulation is defined
as the ratio between the number of flights that have the
regulation as most penalising (MPR), and the total number
of flights affected by the regulation. Accordingly, a regulation
concerning a lot of flights which delay is forced by other
regulations in the network is considered inefficient. When this
heuristic is selected, the likelihood of each regulation being
removed from x is inversely proportional to its efficiency: the
lower the efficiency, the greater the probability.

3) Random: The random heuristic, as the name implies,
assigns the same probability to all regulations in x.
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Fig. 1: Time windows monitored for an hypothetical traffic volume, considering different combinations of duration (Λ) and
slice (λ). Each magenta bar represents a time window. The width denotes the duration (min), while the height represents the
number of flights which ETO falls within the time window. The capacity is indicated by the horizontal orange line.

C. REPAIR heuristic

As discussed in Section II, any REPAIR heuristic should
optimise the variables that are free after the destroy phase,
while keeping those fixed untouched. After the destroy phase,
some overloads will most likely be formed as a result of
cancelling regulations; alternatively, the repair phase could be
effectively skipped and more regulations destroyed.

In this paper, a single repair operator has been defined,
which acts greedily by regulating overloaded time windows
with Algorithm 3. Note that, in contrast to the generation of
the initial solution, where Algorithm 3 starts from scratch (i.e.,
from a clean solution without regulations), the repair heuristic
starts with the destroyed solution, which (likely) has some
regulations in place. This implies that the traffic demand has
the effect of these regulations. Algorithm 3 can only add more
regulations, but cannot remove existing ones (which comprise
the fixed variables in the destroy-repair argon).

D. ACCEPT criteria

In this paper, simulated annealing has been adopted for
the ACCEPT criteria of the ALNS algorithm. Using this
method, each candidate solution x′ is accepted with proba-

bility exp
c(x)−c(x′)

T , where T is the so-called temperature.
Following the approach suggested by [23], The initial tem-

perature T0 is chosen so that a hypothetical candidate solution
that is ε percent worse than the initial solution x0 has a 50%
percent chance of being accepted. Accordingly:

T0 = ε
c (x0)

log 2
. (4)

The temperature parameter is decreased by a factor φ in
each iteration. As a result, as the search progresses, the
algorithm tolerates fewer and fewer deteriorating solutions.
Both ε and φ are fixed parameters to be defined by the user.

E. TERMINATION criteria

In the current implementation, the ALNS algorithm stops
after a given number of destroy-repair iterations.

IV. DESCRIPTION OF THE EXPERIMENT

In this paper, the performance of the algorithm presented
in Section III to optimise the scheme of ATFM regulations
was assessed for various realistic scenarios. Section IV-A
particularises the parameters of the algorithm used during the
experiment, and Section IV-B describes the different scenarios.
Finally, Section IV-C describes our implementation of the
ANLS algorithm for the problem at hand.

A. Parameters of the algorithm

The algorithm described in Section III may react quite
differently depending on the settings. The values of the various
parameters used in this experiment are shown in Table I.

TABLE I: Parameters of the optimisation algorithm

Algorithm Parameter Value

OVERLOADEDWINDOWS
overload 20 0.
overload 60 0.

GREEDYREGULATIONS
max gap 60 min

min duration 0

TERMINATION iterations 200

ALNS
(δ∗, δb, δa, δr) (3, 2, 1, 0.5)

β 0.2
ρ 0.8

ACCEPT
ε 0.05
φ 0.995

According to Table I, a feasible solution could not present
any overload in 20 or 60 min windows; overloaded windows
separated by less than 60 min within the same traffic volume
were grouped together under the same regulation; any over-
loaded window (regardless of the duration) was regulated; the
ALNS algorithm attempted to optimise regulations by destroy-
ing and repairing the solution 200 times; in the first iteration,
any candidate solution 5% worse than x0 was accepted with
50% probability; the temperature parameter at a given iteration
was 99.5% the temperature of the previous iteration; 20% of
the active regulations were removed as a result of the destroy
phase; and the decay factor for the weights in Eq. (3) was 0.8.
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B. Scenarios

In this experiment, the performance of the algorithm was
assessed for 8 different scenarios, corresponding to the morn-
ing (AM) and afternoon (PM) periods of 4 very busy days
during summer 2019: 26th and 27th of July, and 9th and 27th

of August. It should be noted that only a sub-region of the
network was considered, which includes the Area Control
Centres (AACs) involved in the ISOBAR2 project: LFMM-
CTA (Marseille), LFEECTA (Reims), LECMCTA (Madrid),
LECBCTA (Barcelona) and LECPCTA (Palma). The demand
and capacity data for each scenario were obtained from the
EUROCONTROL’s Demand Data Repository (DDR).

For each scenario, three different pictures of the traffic
demand can be obtained from DDR: the initial (or last-filled
flight plan), the regulated, and the actual (i.e., what was
actually flown). Because the regulated demand already has the
effect of the ATFM regulations that were activated during the
day, and the actual demand has further tactical modifications,
the initial demand was used to populate the traffic data.

For determining the capacity, one could use the actual
opening scheme of each ACC (i.e., which sector configurations
were used along the day) as reported in the DDR. Comparing
the initial demand with the actual opening schemes, however,
may result in a large number of exaggerated overloads that
are difficult (or even impossible) to solve. For this reason,
the capacity values were obtained from opening schemes
optimised to minimise the overloads subject to manpower
constraints. In particular, the ICO (Improved Configuration
Optimizer) tool [24] was executed by considering the initial
demand in order to obtain, for each ACC, an opening scheme
more in line with the demand. The capacity values according to
these optimal opening schemes were used to run the algorithm.

It should be noted that any research can fully replicate the
scenarios by using the network strategic tool (NEST) v1.8
tool of EUROCONTROL: NEST can load historical data from
DDR and can execute the original ICO algorithm on them.

C. Implementation details

The ALNS algorithm was implemented in Python v3.8.
The typical execution time per algorithm using the Red Hat
Enterprise Linux release 8.5 with 12x Intel(R) Xeon(R) W-
2235 CPU @ 3.80 GHz processors and 256 GB of RAM is:
• Greedy regulations (Algorithm 3): Each run of the CASA

algorithm of R-NEST takes around 0.5 s. The greedy
regulations algorithm converges, most of the time, in 5
iterations. Therefore, the execution time is around 3 s.

• ALNS (Algorithm 2): in the current implementation,
the ALNS consists of executing the greedy regulations
Algorithm 200 times. Accordingly, the execution time is
around 10 min. The authors admit that 200 iterations is
insufficient to ensure a thorough exploration of the state
space. The algorithm, however, was used in real-time
validation exercises where human operators expected a
relatively ”good” solution in a short amount of time.

2https://www.sesarju.eu/projects/isobar

In a point of fact, at least 1000 destroy-repair iterations
may be required to reach a near-optimal solution.

• For comparison purposes, solving the exact slot alloca-
tion problem for the same scenarios using mixed-integer
linear programming (MILP) [25] takes at most 1 min
by using the CBC (COIN-OR Branch and Cut) solver
(release 2.10.5). It should be noted, however, that the
slot allocation problem does not consider the first-planned
first-served rule that governs the CASA algorithm.

V. RESULTS

This section presents the main results of the experiment. In
particular, Section V-A thoroughly describes one of the sce-
narios for illustrative purposes. The aggregated performance
metrics are presented and discussed in Section V-B.

A. Illustrative example

The scenario corresponding to the 9th of August 2019
during the PM period has been selected as illustrative example.
Figure 2 shows the maximum overload (i.e., absolute entry
counts above the capacity) per airspace sector in the region of
interest, considering monitoring windows of 20 min. Note that
Fig. 2 has been generated by considering the initial demand
and the capacity from the optimal (ICO’s) opening schemes.

Fig. 2: Overloads (counts above capacity) for 09082019 PM

According to Fig. 2, all the ACCs involved in the project
presented severe demand-capacity imbalances in this scenario.

The ALNS algorithm was executed to resolve these imbal-
ances, repeatedly destroying and repairing the initial (greedy)
solution - with a cost of 26043 min - during 200 iterations.
Figure 3 shows some metrics of the optimisation process. In
particular, Fig. 3a shows the cost c of the current (x), candidate
(x′) and best (x∗) solutions in each iteration; and Fig. 3b
shows the histogram of success for each destroy heuristics.
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(a) Convergence of the algorithm (b) Success of the heuristics

Fig. 3: Optimisation metrics for 09082019 PM

According to Fig. 3a, and as expected, the more the num-
ber of iterations, the better the best solution found so far.
Furthermore, the convergence of the best solution follows
an exponential curve, with a significant improvement in the
early iterations. For instance, the best solution improved from
around 26K minutes of delay to approximately 21.5K after 25
iterations. In this scenario, the cost of the best solution was
19154 min, 6889 min (26%) better than the initial, greedy,
solution. In Fig. 3a, one can also observe several cases in
which the candidate solution was not better than the current
one, but was accepted due to the acceptance strategy based on
simulated annealing, which objective is to escape from local
minima (for instance iteration 100, when the candidate solution
is accepted even if being worse than the current one).

Figure 3b shows that, for this particular scenario, the most
successful destroy heuristic consisted of removing regulations
randomly, with 2 best instances and 30 rejections. Destroying
regulations with low effectiveness presents a similar histogram,
albeit with less better and accepted cases. The least successful
destroy heuristic, on the other hand, was to remove regulations
with high delay, with just 1 best instance and 46 rejections.

Figure 4 shows the total ATFM delay per regulated airspace
sector in the region of interest for the greedy (4a) solution and
for the best solution (4b), as a result of the optimisation.

Both ATFM delay maps shown in Fig. 4 are consistent with
the absolute overloads map shown in Fig. 2, i.e., airspace sec-
tors with high overloads typically require more ATFM delay to
resolve the corresponding demand-capacity imbalance. ATFM
delays shown in Fig. 4b, however, are generally lower than
those shown Fig. 4a for the same airspace sectors, thereby
illustrating the benefits of the suggested optimisation method.

B. Aggregated performance metrics

Table II shows the aggregated performance metrics for the
8 scenarios, including the number of regulated flights, the
number of regulated flights with a delay higher than 30 min,
the maximum, average, median, and maximum ATFM delay

as well as its standard deviation. In Table II, GR and OR stand
for greedy regulations (i.e., the initial solution, or x0) and best
regulations (i.e., the best solution, or x∗), respectively.

TABLE II: Performance metrics

Scenario Solver Flights (count) ATFM Delay (min)
Date Period Delayed >30 min Max. Mean Median Std. Sum

26072019
AM GR 1973 492 84 22 14 19 44071

OR 1950 423 69 19 13 15 37692

PM GR 1604 167 83 16 11 15 26428
OR 1534 166 83 16 11 16 25080

27072019
AM GR 2031 373 80 20 14 16 41153

OR 1916 378 80 20 13 17 39238

PM GR 1737 83 52 14 13 8 25983
OR 1627 52 45 13 12 7 22374

09082019
AM GR 2108 552 65 21 15 14 44403

OR 2017 559 64 21 16 14 43323

PM GR 1716 208 42 15 12 9 26043
OR 1561 9 33 12 11 6 19154

27082019
AM GR 1743 221 102 18 13 17 31707

OR 1665 196 102 17 12 17 28899

PM GR 1500 194 58 15 12 12 23302
OR 1416 145 55 14 11 10 20205

According to Table II, the ALNS algorithm proposed herein
was able to improve the initial (greedy) solution in all scenar-
ios. The relative improvement, however, varies greatly among
scenarios. For instance, in the scenario of the illustrative
example (09082019 PM) the cost of the initial solution was
reduced by around 26%, while in the AM period of the
same day the reduction was just 2.5%. The precise difference
between the cost of the initial and the best solutions depends
on (1) the quality of the initial solution and (2) the success of
the heuristics during the 200 destroy-repair iterations. Overall,
meta-heuristics cannot mathematically guarantee the global
optimality of the best solution, thus one must be enthusiastic
with finding a sufficiently decent local optimum in a reason-
able amount of time for such a difficult combinatorial problem.
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(a) Greedy (initial) solution (b) Best solution

Fig. 4: ATFM delay (min) for 09082019 PM

Table II also suggests that the total number of delayed flights
is significantly reduced when optimising the greedy ATFM
regulations scheme with ALNS. The number of flights that are
delayed more than 30 min in the OR schemes is also lower
when compared to the corresponding GR schemes, except for
the 09082019 AM scenario - aside from the fact that the
difference in this example is minor. The maximum and average
delay per regulated flight are also improved when optimising
the greedy ATFM regulations scheme with ALNS. In the
best case (26072019AM), the maximum and average delay
decrease from 84 and 22 min to 69 and 19 min, respectively.
Following the same trend, the median delay is smaller for the
OR schemes, except for the 09082019 AM scenario.

VI. CONCLUSIONS

This paper proposed an hyper-heuristic algorithm based
on adaptive large neighbourhood search (ALNS) to construct
from scratch the best plan of air traffic flow management
(ATFM). The proposed algorithm could be used during the
pre-tactical phase (D-1) as well as during the day of opera-
tions, provided that the Network Manager (NM) has access to
accurate traffic demand and capacity information.

Results show that by iteratively removing regulations and
regulating the resulting overloads again, the algorithm is able
to determine where and when to regulate. This paper set
the basic principles, but the authors encourage the research
community to explore other configurations of the algorithm,
e.g., a different pool of destroy and repair heuristics and/or
acceptance criteria, as well as to perform a comprehensive
comparison of the different settings. It would also be inter-
esting to determine the value (if any) of conducting a local
search whenever a best solution is discovered. Furthermore,
this problem may be also solvable with machine learning
techniques. Particularly attractive is the use of graph neural

networks combined with state-of-the-art multi-agent reinforce-
ment learning algorithms. Nodes could represent traffic vol-
umes during specific time windows, and the actions would be
binary: to regulate or not. The authors encourage researchers to
explore this challenging yet scientifically interesting approach.

Currently, flow managers define the regulations in their
area of responsibility. Furthermore, they are encouraged to
provide as little ATFM delay as possible. Future work must
also consider the practical implications of having a centralised
authority manage the process of several flow managers. An-
other interesting study would be to examine the sensitivity of
the solution, in terms of delay as well as overloads, to traffic
fluctuations (specifically, the entry time of the flights at the
various sectors). Actually, removing ATFM regulations may
leave sectors vulnerable (i.e., unprotected) to traffic bunching
if the actual trajectories differs from the planned ones. This
potential issue must be considered in future work.
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