Integrated Traffic Flow Based Optimization of Airport and Terminal Area

Ying HUO
Daniel DELAHAYE, Ji MA, Mohammed SBIHI
ENAC – Université de Toulouse
Toulouse France

Tuesday, December 3rd, 2019
Content

1. Background and problem description
2. Problem modeling
3. Solution approach
4. Results
5. Conclusion and perspective
Content

1. Background and problem description

2. Problem modeling

3. Solution approach

4. Results

5. Conclusion and perspective
Air traffic evolution

✈ A continuous growth of the air traffic:

► Annual growth rate: 4.5%.
► Will be doubled in the following 15 years.

✈ Airport and TMA (Terminal Manoeuvring Area) Congestion.
► Safety issues.
► Operating costs.
Integrated research

arrival Management Problem
▶ Landing sequencing
▶ Mitigate congestion and conflicts resolution workload

Surface Management Problem
▶ Arriving aircraft taxi-in routes

departure Management Problem
▶ Take-off times and sequences for departing flights
Content

1. Background and problem description

2. Problem modeling

3. Solution approach

4. Results

5. Conclusion and perspective
Integrated optimization of TMA and airport

Network abstraction:

- Airside: runways, taxiway network and terminals
- TMA: nodes and links
Network abstraction in TMA

Paris-CDG airport route network for arrivals: Graph(\mathcal{N}, \mathcal{L}).
Given data for optimization

Given a flight $f \in \mathcal{F}$, the flight can be operated with three operations.

<table>
<thead>
<tr>
<th>Information</th>
<th>Arrival</th>
<th>Departure</th>
<th>Connected flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wake turbulence category C_f</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Assigned terminal number M_f</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Entry node E_f</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>TMA entry time T_f^o</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>TMA entry speed V_f^o</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Arrival runway R_f^a</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Departure runway R_f^d</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Scheduled off-block time T_f^d</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Turn around time t_f^{ad}</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Decision Variables

- TMA entry time t_f:
 \[t_f = T_f^o + j\Delta T, \quad j \in \left[\Delta T_{min}/\Delta T, \Delta T_{max}/\Delta T\right], \quad j \in \mathbb{Z} \]

- TMA entry speed v_f:
 \[v_f = V_f^{min} + j\Delta v, \quad j \in \left[0, (V_f^{max} - V_f^{min})/\Delta v\right], \quad j \in \mathbb{N} \]

- Arrival runway r_f^a.

- Pushback delay p_f:
 \[p_f = \left\{ P_f^o + j\Delta T \right\}, \quad j \in \left[0, \Delta T_{max}/\Delta T\right], \quad j \in \mathbb{N} \]

\[x_f = (t_f, v_f, r_f^a, p_f) \]
Traffic flow-based model

We measure the evaluation values distribution of each resource. Evaluation parameters:

- Time step/unit: Δ (1 min).
- Evaluation time parameter: k.
- Evaluation time interval: $L = k \cdot \Delta$.
- Evaluation start time t, $t_i = t_{i-1} + \Delta$.

Flow Based Flight Evaluation

$\downarrow \downarrow \downarrow \uparrow \uparrow$
t_1
$\downarrow \uparrow \uparrow \uparrow \downarrow \downarrow$
t_2
$\uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow$
t_3
$\uparrow \downarrow \downarrow \uparrow \uparrow \uparrow \downarrow$
t_4
\vdots

\uparrow Flight exit resource movement
\downarrow Flight entry resource movement
Link evaluation and runway evaluation

We evaluate the number of flights that enters a link/runway during evaluation time interval t to $t + L$.

- $k = 10$.
- $L = 10$ mins.
Node evaluation

We estimate the conflicts resolution workload.

\[E_n(t) = \frac{2N_s \sqrt{v_{l_i}^2 - 2v_{l_i}v_{l_j} \cos \theta_{ij} + v_{l_j}^2}}{v_{l_i}v_{l_j} \sin \theta_{ij}} \cdot E_{l_i}^{out}(t) E_{l_j}^{out}(t) \quad n \in \mathcal{N} \]

- \(N_s \): standard separation requirement of flights.
- \(E_{l_i}^{out}(t) \): number of flights that exits link \(l \) during \(t \) to \(t + L \).
Airside evaluation

We evaluate the *number of flights* at each time interval.

- $k=1$.
- $L = 1\text{min}$.

![Graph showing flight numbers and times](image_url)

- Upward arrows indicate aircraft in-block time.
- Downward arrows indicate aircraft off-block time.
Capacities constraints

- **Link capacity:**

 \[C_l = \frac{M \cdot v_l}{K} \]

 - M: link separation 1 flight/ 5NM.
 - K= 1 hour/ L: time scale.
 - \(v_l \): average speed on link \(l \).

- **Node capacity:** \(C_n = 6 \) conflicts resolutions / hour.

- **Airside capacity.**

<table>
<thead>
<tr>
<th>Landing Runway</th>
<th>Departure Runway</th>
<th>Terminal 1</th>
<th>Terminal 2</th>
<th>Terminal 3</th>
<th>Taxiway</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/h</td>
<td>40/h</td>
<td>20</td>
<td>130</td>
<td>25</td>
<td>19</td>
</tr>
</tbody>
</table>
Objective function

- First metric: **average congestion** during time horizon T.
- Second metric: the **maximum overload** during time horizon T.

$$G(x) = \sum_{s \in S} \gamma_s \left[\frac{1}{T} \sum_{t \in T} \max(E_s(t) - C_s, 0) \cdot \Delta \right]$$

$$+ \sum_{s \in S} \gamma_s \left[\max_{t \in T} \max(E_s(t) - C_s, 0) \right]$$
Content

1. Background and problem description
2. Problem modeling
3. Solution approach
4. Results
5. Conclusion and perspective
Simulated annealing

- Temperature
- Objective function
- Neighborhood
- Stopping criterion
Neighborhood solution selection

<table>
<thead>
<tr>
<th></th>
<th>Airspace performance</th>
<th>Ground performance</th>
<th>Total performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>a_1</td>
<td>g_1</td>
<td>m_1</td>
</tr>
<tr>
<td>f_2</td>
<td>a_2</td>
<td>g_2</td>
<td>m_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>f_N</td>
<td>a_N</td>
<td>g_N</td>
<td>m_N</td>
</tr>
</tbody>
</table>

$$p_a^f = \frac{a_f}{m_f} \quad p_g^f = \frac{g_f}{m_f}$$

- We choose a random number $n \in [0, 1]$ for the decision variable choosing:

<table>
<thead>
<tr>
<th></th>
<th>$f \in \mathcal{A}$</th>
<th>$f \in \mathcal{AD}$</th>
<th>$f \in \mathcal{D}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n < p_a^f$</td>
<td>t_f, v_f</td>
<td>$n > p_a^f$</td>
<td>t_f, v_f</td>
</tr>
<tr>
<td>$n > p_a^f$</td>
<td>t_f, v_f, r_f^a</td>
<td>$n < p_a^f$</td>
<td>t_f, v_f, r_f^a, p_f</td>
</tr>
<tr>
<td>$n < p_a^f$</td>
<td>t_f, v_f, r_f^a</td>
<td>$n > p_a^f$</td>
<td>t_f, v_f, r_f^a, p_f</td>
</tr>
<tr>
<td>$n > p_a^f$</td>
<td>t_f, v_f, r_f^a</td>
<td>$n < p_a^f$</td>
<td>t_f, v_f, r_f^a, p_f</td>
</tr>
<tr>
<td>$n > p_a^f$</td>
<td>t_f, v_f, r_f^a</td>
<td>$n < p_a^f$</td>
<td>t_f, v_f, r_f^a, p_f</td>
</tr>
<tr>
<td>$n > p_a^f$</td>
<td>t_f, v_f, r_f^a</td>
<td>$n < p_a^f$</td>
<td>t_f, v_f, r_f^a, p_f</td>
</tr>
<tr>
<td>$n > p_a^f$</td>
<td>t_f, v_f, r_f^a</td>
<td>$n < p_a^f$</td>
<td>t_f, v_f, r_f^a, p_f</td>
</tr>
<tr>
<td>$n > p_a^f$</td>
<td>t_f, v_f, r_f^a</td>
<td>$n < p_a^f$</td>
<td>t_f, v_f, r_f^a, p_f</td>
</tr>
<tr>
<td>$n > p_a^f$</td>
<td>t_f, v_f, r_f^a</td>
<td>$n < p_a^f$</td>
<td>t_f, v_f, r_f^a, p_f</td>
</tr>
<tr>
<td>$n > p_a^f$</td>
<td>t_f, v_f, r_f^a</td>
<td>$n < p_a^f$</td>
<td>t_f, v_f, r_f^a, p_f</td>
</tr>
</tbody>
</table>
Content

1. Background and problem description
2. Problem modeling
3. Solution approach
4. Results
5. Conclusion and perspective
Case study

- Paris-CDG airport, real data of 18th February 2016 from 7:00 AM to 9:40 AM.
- Heavy and medium flights with a mix ratio of $23\% : 77\%$.

![Graph showing flight paths and distances from BANOX to OKIPA, with points marked at MOPAR, Rwy27R, IF27R, PG562, PG564, LORNI, RWY26L.](image-url)
Link and node optimization results

Link optimization results

Node optimization results

![Graphs showing link and node optimization results.](image-url)
Runway optimization results

- **27R**: Initial E_r, Optimized E_r, Imposed capacity
- **26L**: Initial E_r, Optimized E_r, Imposed capacity
- **27L**: Initial E_r, Optimized E_r, Imposed capacity
- **26R**: Initial E_r, Optimized E_r, Imposed capacity

Number of flights entering the runway / 10 mins
Terminal and taxiway occupancy

Taxiway

```
Number of flights  Time
0 5 10 15 20 25 30
7:00 7:20 7:40 8:00 8:20 8:40 9:00 9:20 9:40
```

Terminal 2

```
Number of flights  Time
80 90 100 110 120 130 140
7:00 7:20 7:40 8:00 8:20 8:40 9:00 9:20 9:40
```
Robustness test

- Reference case: flight by flight conflicts evaluation.
- Perturbations are implemented on TMA entry time.
- Average values of objective and sub-objectives of each model.

<table>
<thead>
<tr>
<th></th>
<th>Traffic flow-based model</th>
<th>Flight by flight conflict evaluation model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Perturbations</td>
<td>Perturbations</td>
</tr>
<tr>
<td>Average congestion</td>
<td>± 0.5min</td>
<td>±1min</td>
</tr>
<tr>
<td>conflicts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node</td>
<td>6.585</td>
<td>10.1</td>
</tr>
<tr>
<td>Link</td>
<td>0.474</td>
<td>0.963</td>
</tr>
<tr>
<td>Runway</td>
<td>0</td>
<td>0.064</td>
</tr>
<tr>
<td>Taxiway</td>
<td>0</td>
<td>0.00134</td>
</tr>
<tr>
<td>Terminal</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>7.06</td>
<td>11.136</td>
</tr>
</tbody>
</table>
Content

1. Background and problem description

2. Problem modeling

3. Solution approach

4. Results

5. Conclusion and perspective
Conclusions

An optimization approach to solve the integrated management problem of airport and terminal area on macroscopic level.

- Network abstraction.
- Traffic flow-based model.
- Adapted simulated annealing algorithm.

Mitigating the network congestion as well as the potential conflicts resolution workload in TMA.
Perspectives

▶ Test more scenarios with the proposed model.

▶ Extend the approach to multiple airports.
Thank you for your attention!