The New Flight Efficiency Performance Approach

Partitioned Efficiency Indicator

Antonio Lazarovski
“If you can’t measure it, you can’t improve it.”

– Peter Drucker
Background

“The consequences of the air traffic growth on the environment have been recognized as a key challenge in aviation today.”

- The WPG on the Future of the Single European Sky

Inventing new approaches for measuring environment impact requires to identify abnormal behaviour and concealed influences
The Single European Sky Performance Framework

EU Regulation no. 549/2004 defining the framework for Single European Sky (SES), with a goal to enhance Air Traffic Management (ATM) performance related to: safety, environment, cost-efficiency and capacity in the EU

• Followed by:

 Implementing Regulation no. 691/2010
 Implementing Regulation no. 390/2013
 Implementing Regulation no. 317/2019
Current environment KPI

Established KPI for environmental performance in the horizontal plane is the En-route Horizontal Flight Efficiency, defined as: “comparison between the length of a trajectory and the shortest distance between its endpoints”

\[HFE = \left(1 - \left(\frac{NX}{\frac{1}{2} * (a + r)} - 1 \right) \right) * 100\% \]

- \(HFE \) – horizontal flight efficiency
- \(NX \) – flight segment
- \(a \) - achieved approach
- \(r \) – achieved remoteness
- \(O \) – origin
- \(D \) - destination
The elementary building block of PEI
- Normal decomposition of a vector

Vector decomposition is the general process of breaking one vector into two or more vectors that add up to the original vector.
The elementary building block of PEI
- Normal decomposition of a vector

Origin – position that we consider the beginning of a flight

Destination – position that we consider the end of a flight

Absolute Optimal Path (AOP) – the great circle line connecting your origin and destination

Instant Optimal Path (IOP) – the great circle line connecting your current position and your final destination

Approach – moving towards your final destination along the AOP (further denoted as “Px”)

Deviation – moving away from the IOP along axis perpendicular to AOP (further denoted as “Py”)

Origin
- position that we consider the beginning of a flight

Destination
- position that we consider the end of a flight

Absolute Optimal Path (AOP)
- the great circle line connecting your origin and destination

Instant Optimal Path (IOP)
- the great circle line connecting your current position and your final destination

Approach
- moving towards your final destination along the AOP (further denoted as “Px”)

Deviation
- moving away from the IOP along axis perpendicular to AOP (further denoted as “Py”)

Origin
- position that we consider the beginning of a flight

Destination
- position that we consider the end of a flight

Absolute Optimal Path (AOP)
- the great circle line connecting your origin and destination

Instant Optimal Path (IOP)
- the great circle line connecting your current position and your final destination

Approach
- moving towards your final destination along the AOP (further denoted as “Px”)

Deviation
- moving away from the IOP along axis perpendicular to AOP (further denoted as “Py”)

PEI Methodology Network Partitioned Efficiency Indicator

Area of interest

Px – approach towards destination
Py – deviation from optimal trajectory

\[\text{NPEI} = \frac{\sum P_y}{\sum P_x} \times 100\% \]
Comparison of the old and new approaches

<table>
<thead>
<tr>
<th></th>
<th>HFE[%]</th>
<th>NPEI[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S21</td>
<td>78</td>
<td>50</td>
</tr>
<tr>
<td>S22</td>
<td>73</td>
<td>100</td>
</tr>
<tr>
<td>S23</td>
<td>44</td>
<td>50</td>
</tr>
</tbody>
</table>
PEI application Using a user preferred reference

Define your optimal trajectory based on fuel consumption, distance, time or other parameters.

Calculate the partitioned efficiency of your flight using the reference you established.
PEI application on measuring local efficiency

\[L_{PEI_A} = \frac{\sum P_y}{\sum P_x} \times 100\% \]

Calculate the local efficiency of an area by taking into account all segments within.
PEI Methodology efficiency transfer (chain of events)

- Previous area
- Area of interest
- Following area

- Something happened?
- Could the occurrence in the previous area affect operations here?
- Could the occurrence in the area of interest and in the previous area affect operations here?
PEI application measuring efficiency transfer (chain of events)

\[Gy \] – the deviation the current area created and sent to next area

\[Ty \] – deviation from previous area that is transferred to next area

\[Ay \] – deviation from previous area that is absorbed in the current area and not sent to the next area

\[Cy \] – deviation from AOP to real trajectory point

\[Ly \] – deviation that comes from the previous area to the current area

\[
ADEV = \frac{\sum Ay}{\sum Cy} \times 100\%
\]

\[
GDEV = \frac{\sum Gy}{\sum Cy} \times 100\%
\]

\[
TDEV = \frac{\sum Ty}{\sum Cy} \times 100\%
\]
Case study parameters

Data sources

• PRUs Github portal for Reference trajectory
 • 3 days of trajectories freely available (from 2017-08-01 to 2017-08-03)
• ICAO API
 • worldwide airports (over 1485)
 • countries spatial information

Geographical scope: EUROCONTROL Member States*

*only flights crossing at least 10 countries
Case study: HFE and NPEI per country

Differences in rank appear for almost all countries

*AUG 2017 (3 day subsample)
Case Study Transfer of inefficiencies

Do I perform well and also absorb the deviation that I receive from other areas before me?
Benefits summary of the new PEI approach

- PEI can measure performance considering multiple user requirements
- PEI can help us understand how inefficiency is transferred from one area to another
- PEI addresses both the currently measurable (e.g. HFE) and overlooked parts of the current ANS performance framework
- PEI offers possibilities of measuring efficiency in terms of distance, emissions or time
- PEI can measure at sector, country, FAB, ICAO region or any other user defined region, taking into account local or network components
Next steps

Further research:

- applying PEI on a larger set of data (preferably with an operational partner such as the Network Manager, ANSP, FAB ...)
- application of PEI:
 a) to develop PEI functionality to measure the units of CO2
 b) to assess vertical efficiency
 c) to merge horizontal and vertical into a 3D efficiency indicator
 d) to specific user defined baseline (wind or price optimal route..)
Thank you!

Antonio.lazarovski1@gmail.com