Metaheuristic Approach to Probabilistic Aircraft Conflict Detection and Resolution Considering Ensemble Prediction Systems

Eulalia Hernández-Romero¹, Alfonso Valenzuela¹, Damián Rivas Rivas¹, and Daniel Delahaye²

¹ Department of Aerospace Engineering. University of Seville, Spain.
² Laboratoire de Mathématiques Appliquées Informatique et Automatique pour l'Aérien (MAIAA). Ecole Nationale de l'Aviation Civile (ENAC), France.
Introduction
Ensemble Prediction Systems
Problem formulation
Results
Summary
Introduction

Ensemble Prediction Systems

Problem formulation

Results

Summary
Introduction

MOTIVATION AND OBJECTIVES

• The development of **automated decision support tools** is key in the future of **Air Traffic Management (ATM)** system. These tools must integrate and manage **uncertainty** present in the ATM.

• Sources of uncertainty:
 • Uncertainty in data and sensors.
 • Decisions taken by individuals.
 • **Weather uncertainty.**

• It is expected that by considering the weather prediction uncertainty, the **safety** and **efficiency** of the air traffic may be improved.

Objective:

• **Expand the time horizon** of CD tools currently in used in Europe (STCA, MTCD).

 Strategic Conflict Detection and Resolution (CD&R) methodology that considers **wind and temperature uncertainties** for hundreds of aircraft, and a **time horizon of 60 minutes**.
Introduction

APPROACH

Uncertainty source: wind and temperature

Ensemble Prediction Systems

COSMO-D2-EPS

Flight plans

Ensemble trajectory prediction

Time horizon: 60 min

N Aircraft

20 trajectory members

Probabilistic conflict detection (CD)

\(P_{\text{con}} \)

Grid-based conflict detection

Probabilistic conflict resolution (CR)

• Lower the prob. of conflict
• Vectoring
• Minimise deviation
• Simulated annealing
Introduction

Ensemble Prediction Systems

Problem formulation

Results

Summary
Ensemble Prediction Systems

ENSEMBLE PREDICTION SYSTEMS

• An ensemble weather forecast is a collection of members that constitute a representative simple of the potential states of the weather outcome.

• Using EPS for trajectory prediction:
 • Transformation approach.
 • Ensemble approach.
Ensemble Prediction Systems

COSMO 2D-EPS

- Developed and operated by the German Weather Service.
- 20 members.
- Horizontal resolution: 2.2km.
- Vertical resolution: 65 atmosphere levels.
- 27 hour forecast every 3 hours.
Introduction

Ensemble Prediction Systems

Problem formulation

Problem formulation

Results

Summary
Problem formulation

ENSEMBLE TRAJECTORY PREDICTION: ASSUMPTIONS

- **N aircraft** flying in the same airspace and altitude.
- Multisegmented 2D trajectories defined by **waypoints**.
- **Initial positions are certain and known**.
- **Constant Mach** number, certain and known.
- The aircraft are affected by **horizontal uncertain winds** \((w_\lambda, w_\varphi)\), and **air temperature** \(\Theta\).
- Spherical, non-rotating Earth model.
- Aircraft motion: point mass with three degrees of freedom.
- Constant radius turns, with no turns at the origin and destination waypoints.
- Quasi-steady state, temporal derivatives of wind and temperature are negligible.
Problem formulation
ENSEMBLE TRAJECTORY PREDICTION: EQUATIONS OF MOTION

• Equations of motion of aircraft i:

\[
\begin{align*}
\frac{d\varphi_i}{dt} &= \frac{1}{R + h} V_{g,i} \cos \psi_i \\
\cos \varphi_i \frac{d\lambda_i}{dt} &= \frac{1}{R + h} V_{g,i} \sin \psi_i \\
\frac{dr_i}{dt} &= \frac{R}{R + h} V_{g,i} \\
\frac{d\psi_i}{dt} &= \frac{1}{R_i} \frac{dr_i}{dt}
\end{align*}
\]

\[
V_{g,i} = \sqrt{V_i^2 - w_{XT,i}^2} + w_{AT,i} \\
V_i = M_i \sqrt{\gamma g R \Theta}
\]
Problem formulation
ENSEMBLE TRAJECTORY PREDICTION: EQUATIONS OF MOTION

• Equations of motion of aircraft i:

\[
\begin{align*}
\frac{d\varphi_i}{dt} &= \frac{1}{R_E + h} V_{g,i} \cos \psi_i \\
\cos \varphi_i \frac{d\lambda_i}{dt} &= \frac{1}{R_E + h} V_{g,i} \sin \psi_i \\
\frac{dr_i}{dt} &= \frac{R_E}{R_E + h} V_{g,i} \\
\frac{d\psi_i}{dt} &= \frac{1}{R_i} \frac{dr_i}{dt}
\end{align*}
\]
Problem formulation
CONFLICT DETECTION

• A conflict exists between two aircraft, \(i\) and \(j\), when their distance of closest approach, \(d_{ij}\), is predicted to be less than a given set of separation minima \((D = 5\text{NM})\).

• The probability of conflict between \(i\) and \(j\), \(P_{\text{con},ij}\), is computed as:

\[
P_{\text{con},ij} = \frac{1}{20} \sum_{m=1}^{20} c_{ij,m}, \quad c_{ij,m} = i, ji, \begin{cases} 1 & \text{if } d_{ij,m} \leq D \\ 0 & \text{if } d_{ij,m} > D \end{cases}
\]
Problem formulation
CONFLICT DETECTION

- **A grid-based approach** is used: the distance between aircraft is only computed if two aircraft are in the same or adjacent cells.
- **Reduce the computational cost** at the expense of additional required **computer memory**.
- **Hash table**: reduce memory requirement.
Problem formulation

CONFLICT RESOLUTION

• Resolution maneuver: vectoring.

• The CR is formulated as an optimization problem:
 • Lower the probabilities of the conflicts.
 • Minimise the deviation from the nominal paths.
 • Control variables: coordinates of the trajectory waypoints.

\[
\begin{align*}
\mathbf{u} &= \{u_1, u_2, ..., u_i, ..., u_N\} \\
\Phi &= \sum_{i=1}^{N} \Phi_i = \sum_{i=1}^{N} \left(\sum_{j=1, j \neq i}^{N} (C_{ij} - \delta_{ij}) + a \frac{A_i}{L_{0,i}} \right)
\end{align*}
\]

• Simulated Annealing.
Problem formulation

CONFLICT RESOLUTION: OBJECTIVE FUNCTION AND CONSTRAINTS

- **Objective function:**
 \[
 \Phi = \sum_{i=1}^{N} \Phi_i = \sum_{i=1}^{N} \left(\sum_{j=1, j \neq i}^{N} (C_{ij} + \delta_{ij}) + a \frac{A_i}{L_{0,i}} \right)
 \]

- **Conflict probability**
 \[
 C_{ij} = \begin{cases}
 P_{\text{con},ij} & \text{if } P_{\text{con},ij} \geq P_\tau \\
 0 & \text{if } P_{\text{con},ij} < P_\tau
 \end{cases}
 \]
 (high prob.)

- **Constraints:**
 - Minimum segment length.
 - Maximum waypoint lateral deviation.
 - Objective function:
 - Conflict probability
 - Loss of separation at the starting point → **tactically solved.**
 - Deviation from the nominal trajectories.
Problem formulation
CONFLICT RESOLUTION: SIMULATED ANNEALING

• **Neighbourhood function:** Starting from a current state u_c and cost Φ_c, it generates a neighbour state u_n and cost Φ_n.
 1. Randomly chose aircraft $i \in \{1, \ldots, N\}$.
 2. Randomly choose waypoint $k \in \{1, \ldots, K_i\}$.
 3. Coordinates of $u_{i,k}$ are randomly modified.

• **Acceptance function:** If the new cost is improved ($\Phi_n < \Phi_c$), the neighbor state is automatically accepted. Otherwise, it is accepted with a probability
 $$P_{\text{accept}} = e^{-(\Phi_n - \Phi_c)/T}$$
Introduction
Ensemble Prediction Systems
Problem formulation

Results

Summary
• Traffic in Europe inside the COSMO-D2-EPS coverage area.
• 12:00 UTC, 14th of February 2019.
• Flight plans data from Eurocontrol’s Demand Data Repository.
• Aircraft Mach number and bank angle values from BADA 3.13.
• 2 scenarios:
 • Low-density scenario: N = 92 (FL380)
 • High-density scenario: N = 214 (artificially merging FL370-FL380-FL390)
Results

EFFECTS OF THE CONFLICT RESOLUTION METHODOLOGY

- Distance between two aircraft over time.
- 5NM: minimum separation requirement.
- Before CR: $P_{con} = 80\%$.
- After CR: $P_{con} = 0\%$.
Results

LOW-DENSITY SCENARIO

- Number of low prob. conflicts: 2
- Number of high prob. conflicts: 11
- $\Phi = 9.9$

- Number of low prob. conflicts: 0
- Number of high prob. conflicts: 5
- $\Phi = 4.5 \cdot 10^{-4}$
Results

HIGH-DENSITY SCENARIO

- Number of low prob. conflicts: 12
- Number of high prob. conflicts: 88
- $\Phi = 146.5$

- Number of low prob. conflicts: 20
- Number of high prob. conflicts: 14
- $\Phi = 4.2$
Introduction
Ensemble Prediction Systems
Problem formulation
Results
Summary
Summary

CONCLUSIONS

- A probabilistic CD&R methodology for en-route aircraft has been introduced:
 - 60 minutes time horizon.
 - Wind and temperature uncertainties, retrieved from EPS.
 - Probabilistic conflict detection:
 - Probability of conflict.
 - Ensemble trajectory prediction.
 - Probabilistic conflict resolution:
 - Lower the probabilities of conflict, while minimising deviation from nominal trajectories.
 - Tactical conflicts are omitted.
 - Resolution trajectories are generated using vectoring.

- The methodology has been successfully applied to two different en-route conflict scenarios. The number of high-probability conflicts was significantly reduced.
Summary
FUTURE WORK

2D CD&R

3D trajectories

Uncertainty sources
• Departure time
• Aircraft initial positions

EPS coverage
• Global EPS integration
• ECMFW

Control variables
• Aircraft airspeeds
• Flight level
• Departure time
THANKS FOR YOU ATTENTION