Trajectory APproach AnalysiS: a post-operational aircraft approach analysis tool

Gabriel JARRY, Daniel DELAHAYE, Eric FERON

ENAC, French Civil Aviation University, Toulouse France

Wednesday, December 4th, 2019
Content

1. Introduction

2. Software

3. Study

4. Conclusions
Content

1. Introduction

2. Software

3. Study

4. Conclusions
Safety Context

- Traffic Growth (7.8 billion in 2036)
- Approach and landing accidents (47% of the total number of accident)
- Identify, detect, and manage safety event precursors
Non Stabilized Approaches (NSA)

Figure: Stabilized vs Non Stabilized Approach
Non Compliant Approaches (NCA)

Figure: Compliance Criteria
Operational Context

French Safety State Programme (SSP):

- NCA identified as undesirable events.
- Approach path management.

Accidents Study - DGAC 2015:

- 57% NSA with 74% of them in NCA
- While stabilized 84% compliant
- 74% bad weather condition, 15% final approach tailwind
Glide Interception From Above detection tool at CDG Airport

Figure: GIFA detection tool using the APW at CDG Airport
Ideas

- No or few speed monitoring from ground side
- Airline safety offices focus on the last 5NM
- Approach path management, atypical total energy detection
Our Methodology

- Functional Principal Component Analysis
 \[\gamma(t) = \sum_{0}^{K} \alpha_k \cdot \phi_k(t), \text{ (K min)} \]
- Sliding Window
- Total Specific Energy (from radar equivalent parameters):
 \[E_t = E_c + E_p = \frac{1}{2} \cdot V^2 + g \cdot h \text{ (J/kg)} \]
- Localization of atypical energy behaviors, categorization with threshold (typical, atypical)
Algorithm

Figure: Atypical Scoring Algorithm
Objectives

- Trajectory APproach AnalysiS (TAPAS) a post-operational approach analysis software
- Validation with FDM data and safety office analysis
- Providing non-monitored flights, potential safety precursors, can help enhancing safety
Content

1. Introduction

2. Software

3. Study

4. Conclusions
Data Section

TAPAS - Trajectory APproach AnalySiS

Aircraft Types

- A330: 2.7 (387)
- A320: 11.4 (1651)

Airports

- DAAE: 4.3 (628)
- DAON: 3.2 (457)
- LFPO: 52.4 (7590)
- DAAG: 28.8 (4170)
- LFLL: 11.4 (1651)

Runways

- DAAE-RW26: 4.3 (628)
- DAON-RW25: 3.2 (457)
- LFPO-RW08: 2.8 (400)
- LFPO-RW26: 31.8 (4605)
- DAAG-RW27: 12.4 (1798)
- DAAG-RW23: 7.5 (1093)
- DAAG-RW09: 8.8 (1279)
- LFLL-RW17R: 1.7 (250)
- LFLL-RW17L: 2.4 (349)
- LFLL-RW35R: 4.0 (583)
- LFLL-RW35L: 3.2 (469)
TAPAS - Trajectory APproach Analysis

Data

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Events</th>
<th>Flight Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Compliant</td>
<td>Non Compliant</td>
</tr>
</tbody>
</table>

Phase: 25NM-THR

Airport: All

Runway: All

Aircraft: All

Compliance Criteria

- Too Low: 15.7 (2270)
- Lateral Deviation: 36.0 (5218)
- Glide Deviation: 23.2 (3360)
- Too High: 22.6 (3273)
- Compliant: 48.5 (7025)

Operational Limits

- Critical: 9.3 (1351)
- Warning: 39.0 (5649)
- Nominal: 51.7 (7496)

Energy Results

- Atypical: 2.1 (308)
- Typical: 56.0 (8849)

Event Phase

- Go Around: 9 (57)
- Descent: 7.6 (1098)
- Approach: 32.2 (4671)
- Final Approach: 50.6 (7338)
- Landing: 55.0 (7966)

Event Number

- More than three: 8.7 (973)
- Three Events: 10.3 (1488)
- Two Events: 24.0 (3473)
- One Event: 34.5 (5004)
- No Events: 24.5 (3558)

Event Level

- Inf: 1.9 (277)
- High: 20.4 (2963)
- Medium: 54.4 (7884)
Event Section

TAPAS - Trajectory APproach Analysis

Event List

<table>
<thead>
<tr>
<th>Event</th>
<th>Number of occurrences per 100 flights</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Speed below 0500</td>
<td>26.4 (3827)</td>
</tr>
<tr>
<td>Height High THR</td>
<td>24.2 (3504)</td>
</tr>
<tr>
<td>Long Touchdown</td>
<td>20.1 (2907)</td>
</tr>
<tr>
<td>Short Flare</td>
<td>19.6 (2839)</td>
</tr>
<tr>
<td>Late Setting Landing Conf</td>
<td>8.3 (1205)</td>
</tr>
<tr>
<td>High ACC LDG</td>
<td>8.2 (1184)</td>
</tr>
<tr>
<td>Low Thrust below 0500</td>
<td>4.3 (622)</td>
</tr>
<tr>
<td>High ACC Flight</td>
<td>3.6 (519)</td>
</tr>
<tr>
<td>Significant Tail Wind LDG</td>
<td>2.6 (412)</td>
</tr>
<tr>
<td>DSI Dual Stick Input</td>
<td>2.8 (399)</td>
</tr>
<tr>
<td>High Rate Dec 3000 1000</td>
<td>1.7 (250)</td>
</tr>
<tr>
<td>Late Flare</td>
<td>1.6 (232)</td>
</tr>
<tr>
<td>Late Thrust Reduction LDG</td>
<td>1.5 (215)</td>
</tr>
<tr>
<td>Degraded Flight</td>
<td>1.5 (215)</td>
</tr>
<tr>
<td>High Speed 0500</td>
<td>1.3 (192)</td>
</tr>
<tr>
<td>TCAS</td>
<td>1.3 (185)</td>
</tr>
<tr>
<td>Level Bust Suspicion</td>
<td>1.3 (185)</td>
</tr>
<tr>
<td>High Speed below 8000 Descent</td>
<td>1.2 (178)</td>
</tr>
<tr>
<td>Height Low THR</td>
<td>1.1 (165)</td>
</tr>
</tbody>
</table>

Filter Options

- **Phase**: 25NM-THR
- **Airport**: All
- **Runway**: All
- **Aircraft**: All
Flight Study Section

TAPAS - Trajectory APproach Analysis

<table>
<thead>
<tr>
<th>Data</th>
<th>Statistics</th>
<th>Events</th>
<th>Flight Study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compliant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-Compliant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atypical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Typical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase
- Z3NM-THR

Airport
- LFPO

Runway
- All

Aircraft
- All

Flight Study

Trajectory Information
- Traj Id: 128681

Compliance
<table>
<thead>
<tr>
<th>Compliance</th>
<th>Atypical</th>
<th>Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>2NM - 10NM</th>
<th>15NM - 30NM</th>
<th>35NM - THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atypical</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Operational</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gs</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CAS</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>All</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Content

1. Introduction

2. Software

3. Study

4. Conclusions
Case Study

- 16471 flights approach at LFPO, LFFF, LFML, DAON, DAAE and DAAG
- A320
- 25NM to runway threshold (25NM-15NM-5NM-THR)
- FDM events (low, medium, high)
Safety Event Analysis

Strong correlation between atypical flights and safety events number/intensity

- No safety event ratio: 27.8% -> 9.7%
- More than 3 safety events ratio: 5.4% -> 30.6%
- high-intensity events per 100 flights: 18.5 -> 92.7
- Long Touchdown ratio: 4.3% -> 7.5%
- Unstabilized Approach Low: 2.9% -> 18.6%
- Unstabilized Approach High: 0.3% -> 2.7%
Atypicality Appearance Phase Analysis

![Diagram showing atypicality appearance phase analysis with counts and percentages for different phases: 25NM to 15NM (138, 100.0%), 15NM to 5NM (117, 48.3%), 5NM to THR (85, 55.2%), and 5NM to THR (57, 37.0%).]
Inappropriate Control Inputs

A320 - Flaps Configuration Time Distribution and Atypical Ratio (16471 flights)

- Atypical Ratio

Time (s)

Number of trajectories

0 60 120 180 240 300 360 420 480

Atypical Ratio (%)

3.7 % 1.8 % 1.3 % 1.3 % 2.2 % 1.4 % 0.9 % 15.2 %
Inappropriate Control Inputs

A320 - Gear Down Configuration and Atypical Ratio (16471 flights)

- 28.6 %
- 9.1 %
- 1.2 %
- 0.9 %
- 0.0 %

Number of trajectories

Flaps Configuration

Atypical Ratio (%)
Example 1

TAPAS - Trajectory Approach Analysis

Data	Statistics	Events	Flight Study

Phase: 25NM-THR | Airport: All | Runway: All | Aircraft: All

Limits: Operational 16670 | Traj Id: 16670 | Traj # (over 13409): 5444

Origin Airport | Destination Airport | Destination Runway | Registration | Type | Compliance | Atypical | Operational | Too High | Glide Deviation | Too Low | Lateral Deviation | 0 | 1 | 2 | 1 | 1 | 0 | 1

Latitude | Longitude
2.8 | 2.9 | 3.0 | 3.1 | 3.2 | 3.3 | 3.4 | 3.5

Altitude | Distance to Threshold (NM)
0 | 25 | 50 | 75 | 100

Atypical | Operational | GS | CAS | Ait | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 0

Parameters	25NM - 15NM	15NM - 5NM	5NM - THR

Ground Speed | Computed Air Speed
0 | 100 | 200 | 300

Left Engine | Right Engine | Speed Brakes
Gears | FULL | 2 | 3 | FULL | Gears

Engage

Founding Members
Example 2

TAPAS - Trajectory APpraoch Analysis

Data Statistics Events Flight Study

- Phase: 25NM-THR
- Airport: All
- Runway: All
- Aircraft: All

Limits:
- Operational: 28358
- Traj Id: 28356
- Traj Id: 13409: 12427

Compliance Atypical Operational
- Too High: 0
- Glide Deviation: 0
- Too Low: 0
- Lateral Deviation: 0

Parameters
- 25NM - 10NM: 0
- 10NM - 5NM: 2
- 5NM - THR: 2

- Atypical
- Operational
- GS: 0
- CAS: 0
- Alt: 0

Engage

founding members
Content

1. Introduction

2. Software

3. Study

4. Conclusions
Conclusions

▶ Relevant atypical energy behaviours detection based on ground data available parameters and confirmed by FDM data

▶ Pedagogical tool highlighting non monitored behaviors and potential threats

▶ Off-line analysis software, complementary to FDM monitoring analysis
Perspectives and future works

- Other aircraft types (B737)
- Real time extension to ground and on-board tools (research)
- Aircraft landing configuration detection
- Discussions with FDM analysis software providers
Questions

Thank you for your attention, any questions?