COTTON
Capacity management: Optimization for Trajectory Based Operations

COTTON Objectives:
- Development of a complexity metric score suitable to Dynamic Airspace Configuration (DAC) and Flight Centric ITC (FCA) modes of operations.
- Optimized capacity management by incorporating Trajectory Uncertainty into their demand and capacity balancing (DCB) tools.
- Explorative integration of DAC and FCA solutions and the operational requirements for their common implementation.

COTTON Enhanced Complexity Metrics

- Solution space
- Cognitive
- Geometric
- Aircraft
- Workload

COTTON Enhanced Capacity Management Use Cases (UCs)

- Integration with DAC/FLC zones
- Simulation workflow
- Load balancing based on percentiles of the predicted probabilistic complexity
- DAC/FLC boundary delineation with the support of COTTON enhanced complexity defined with sufficient level of detail to demonstrate technical and operational feasibility and demonstrated reduction of overload.

COTTON Validations

- FCA in the Short-term
 Impact of trajectory uncertainty in FCA short-term planning phase, using Geometrical Complexity (UCs 4 and 5).

- DAC in the Short-term
 Optimisation of airspace configuration process in the short-term, using Cognitive Complexity (UCs 11 and 12).

- DAC in the Medium-term
 Optimisation of airspace configuration process in the medium-term, using Geometrical Complexity (UCs 13, 14, 15, 16, 17, 18, 19).

- Integrated DAC/FLC
 Complexity-based sector configuration

Validation Results

- FCA
 Allocation strategies based on COTTON Enhanced Complexity have showed better balance of ATC workload.

- DAC
 DAC shows that the application of complexity metrics better adapt to trajectory-based environmental allowances sector configuration plan more adaptability to traffic demand, reducing the risk of imbalance.

- Integrated DAC/FLC
 DAC/FLC boundary delineation processes with the support of COTTON enhanced complexity is defined with sufficient level of detail to demonstrate technical and operational feasibility and demonstrated reduction of overload.

Project Coordinator: Eva Purrero - epurrero@crida.es

This project has received funding from the SESAR Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 783222

2 – 6 December 2019
Athens, Greece

founding members

EUROCONTROL
DEMADEITOS
CRIDA
funda

The project has received funding from the SESAR Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 783222.