The Semantic Container Approach

Techniques for ontology-based data description and discovery in a decentralized SWIM knowledge base

E. Gringinger1*, C. Fabianek1*, C. Schuetz2*, B. Neumayr2*, M. Schrefl2*, A. Vennesland3*, S. Wilson4*

1*FREQUENTIS AG, Vienna, Austria
2*Johannes Kepler University Linz, Linz, Austria
3*SINTEF, Trondheim, Norway
4*EUROCONTROL, Brussels, Belgium
BEST Project

- SESAR 2020 exploratory research project (TRL 1)
- June 2016 – June 2018

BEST applies semantic technologies for:

- **Description** of the data you want/have
- **Discovery** of the information you are seeking
- **Filter** information
- **Value-added** information
Semantic Containers in SWIM

Database

Knowledge base

Semantic Container

Semantic Container

Information Service

Information

Technical Infrastructure (BP/YP)
Semantic Containers in SWIM

Query → Result

SWIM Enabled Application

+BEST

Database

Knowledge base

Semantic Container

Semantic Container

Information Service

Information

Technical Infrastructure (BP/YP)

Technical Infrastructure (BP/YP)

Technical Infrastructure (infrastructure)

IP-Based Network
The semantic container approach considers packages of ATM information, which SWIM services store in a repository and retrieve as needed.

- For example, a SWIM service filters and prioritizes METARs & TAFs for individual flights.
- From that SWIM service, a briefing application requests all METARs & TAFs relevant for flight \(<\text{IAD-FRA, 2018-02-23}>\).
- The SWIM service returns a semantic container with exactly that information.
- The semantic container can then be redundantly allocated at multiple sites, e.g., inside the aircraft or on airport servers, for improved availability.
- The SWIM service, knowing that many applications request MET Airport Container relevant to the flight from Washington to Frankfurt, may keep a semantic container with all METARs & TAFs relevant for the route in cache.
Semantic Container

- **Membership condition**
 - Description of the content
 - The semantic container comprises all data items that fulfil the membership condition
 - Serves to find containers that satisfy application’s information need

- **Administrative metadata**
 - Technical metadata (format, encoding, etc.)
 - Quality metadata (last update, last check, etc.)
 - Provenance metadata (What SWIM service produced the container?)

- **Content**
 - The actual ATM information
 - A set of data items, where each data item fulfils the membership condition
 - Can be materialized or just a pointer

Membership Condition

Data item type: METAR
Origin: DWD
Location: FRA
Time: 2018-02-23

Administrative Metadata

Data format: XML
Last change: 2018-02-23T11:00:00

Content

METARs<FRA, 23/2/2018>

--- Membership Condition ---
Data item type: METAR
Origin: DWD
Location: FRA
Time: 2018-02-23

--- Administrative Metadata ---
Data format: XML
Last change: 2018-02-23T11:00:00

Content

METAR

<raw_text>
PHTO 161053Z
24005KT 10SM
FEW027 BKN070 20/18
A3013 RMK AO2
RAB21E46 SLP201
P0000 T02000178
</raw_text>

...
Semantic Containers and Ontologies

(a) Semantic containers

(b) Concepts in Ontology
Semantic Containers and Ontologies

(a) Semantic containers

(b) Concepts in Ontology
Semantic Containers and Ontologies

(a) Semantic containers

(b) Concepts in Ontology
Semantic Containers and Ontologies

(a) Semantic containers

(b) Concepts in Ontology

METARs <FixedWingAircraft>
--- Membership Condition ---
Data item type: METAR
Aircraft: FixedWingAircraft
--- Administrative Metadata ---
...

narrower

METARs <RotaryWingAircraft>
--- Membership Condition ---
Data item type: METAR
Aircraft: RotaryWingAircraft
--- Administrative Metadata ---
...

METARs <SeaPlane>
--- Membership Condition ---
Data item type: METAR
Aircraft: SeaPlane
--- Administrative Metadata ---
...

Aircraft

FixedWingAircraft

SeaPlane

Helicopter

RotaryWingAircraft
Semantic Container Derivation Chains

Combine
- E1<f1>
- E1<f2>
- E1<f3>

Combine
- E1<f1> U f2 U f3

Compose
- E1<f1>
- E2<f2>
- A1<f3>

Compose
- E1<f1> > U E2<f2> > U A1<f3>

Filter
- E1<f1>

Filter
- E1<f2>

Constraint: f2 subsumed by f1

Derive
- E1<f1>

Derive A1<f2>
- A1<f2>

Constraint: f2 subsumed by f1
Combine METARs for Specific Areas

METARs <Region 1>
Provider 1

METARs <Region 2>
Provider 2

METARs <Region 3>
Provider 3

...

Combine TAFs for Specific Areas

TAFs <Region 1>
Provider 1

TAFs <Region 2>
Provider 2

TAFs <Region 3>
Provider 3

...

Filter METARs for <ADEP - ADES, Date>

Filter TAFs for <ADEP - ADES, Date>

AERODROMEs
<relevant for ADEP - ADES, Date>

METAR Container
<ADEP - ADES, Date>

TAF Container
<ADEP - ADES, Date>
Combine METARs for Specific Areas
Filter METARs for <ADEP - ADES, Date >

Combine TAFs for Specific Areas
Filter TAFs for <ADEP - ADES, Date >

AERODROMEs <relevant for ADEP - ADES, Date >

METAR Container <ADEP - ADES, Date >
METARs <Region 1 and ADEP - ADES, Date >
METARs <Region 2 and ADEP - ADES, Date >
METARs <Region 3 and ADEP - ADES, Date >

TAF Container <ADEP - ADES, Date >
TAFs <Region 1 and ADEP - ADES, Date >
TAFs <Region 2 and ADEP - ADES, Date >
TAFs <Region 3 and ADEP - ADES, Date >

Compose & Filter METAR/TAF for a specific <Flight Number, Aircraft Type, Date>
Rules relevant for a specific <Aircraft Type>

Enriched MET Airport Container <Flight Number, Date, Aircraft Type>
MetAR <Region 1 and Flight Number, Date, Aircraft Type>
MetAR <Region 2 and Flight Number, Date, Aircraft Type>

TAF Annotation Container <Flight Number, Date, Aircraft Type>
TAF <Region 1 and Flight Number, Date, Aircraft Type>
TAF <Region 2 and Flight Number, Date, Aircraft Type>
Scenario: Semantic Container & SWIM

Semantic Container Management System

Database

Knowledge base

Semantic Container

Semantic Container

BEST Services

SWIM Registry

SWIM Network

Organization

+BEST Services

SWIM Integration Platform

+BEST

SWIM Enabled Application

+BEST

SWIM Enabled Application

+BEST

SWIM Enabled Application
Mcsr
Frequentis Semantic Container - Service Registry

If you want to sign in, you can try the default accounts:
- Administrator (login="admin" and password="admin")
- User (login="user" and password="user").

You don't have an account yet? Register a new account

For more information check out the following resources:
- Container Management
- API Management
- Electronic Flight Briefing
- Service Registry bug tracker
Scenario: Semantic Container & SWIM

Semantic Container Management System

Database

Knowledge base

Semantic Container

Semantic Container

BEST Services

SWIM Registry

Organization

+BEST Services

SWIM Integration Platform

+BEST

SWIM Enabled Application

+BEST

SWIM Enabled Application

+BEST

SWIM Enabled Application

SWIM Network
Benefits

Value-added Information like semantic, temporal and spatial facets and technical, quality and provenance metadata leads to the following benefits:

▪ **Defined Quality of Information**
 - freshness
 - provenance
 - quality

▪ **High Availability of Information**
 - better reliability through decentralized information

▪ **Decreased Network Load**
 - performant SWIM
Future Work

- Real SWIM services are needed to validate the concept (TRL 5-7).
 - Especially to validate freshness and distribution possibilities.

- Knowledge Graph instead of Ontologies

- Integration into the SESAR world and beyond
 - SWIM real-time Registry
 - SWIM Integration Platform
 - SWIM Applications

- Joint Undertaking with NASA/FAA to compare the semantics
Techniques for ontology-based data description and discovery in a decentralized SWIM knowledge base:
The Semantic Container Approach

www.project-best.eu