Drone Information Service Requirements for U-Space

Prof.dr.ir. Jacco Hoekstra

Paper authors:
Ir. Malik Doole, Dr.ir. Joost Ellerbroek,
Prof.dr.ir. Jacco Hoekstra, Alberto Mennella, Manuel Onate
1910: Car introduction
1. Automobiles traveling on country roads at night must **send up a rocket every mile**, then **wait ten minutes** for the road to clear. The driver may then proceed, with caution, blowing his horn and **shooting off Roman candles**, as before.

2. If the driver of an automobile sees a team of horses approaching, he is to stop, pulling over to one side of the road, and **cover his machine with a blanket or dust cover which is painted or colored to blend into the scenery**, and thus render the machine less noticeable.

3. In case a horse is unwilling to pass an automobile on the road, the driver of the car must **take the machine apart as rapidly as possible** and conceal the parts in the bushes.
Contents

- Goal
- Method
- Gap identification
- Proposed solutions

Goal

To identify the gaps that have to be filled to provide drone operators/users with

comprehensive information services

to conduct

safe flights in VLL airspace.

(DREAMS, Grant Agreement 2017)
Method used

Recommendations

- U-Space
- High Level Services
- Survey
- Scenarios
- Drone Op/User Requirements
- Gap Analysis
- Proposed Solutions

Current UTM Service Providers

Manned Aviation SWIM Services

Existing manned/unmanned aviation information services
On-line Web Survey

Questions on:

1. Typical Drone Applications
2. Typical Operational Altitude
3. Urban Environment Flights
4. Flight Operations data
5. Flight Operational Risks
6. Time demanding pre-flight phase activities
7. Real-time info for BVLOS flights
8. Mandatory BVLOS flight planning data

Two cohorts:

1. Drone Operator & User (n=108)
2. Manned Aircraft pilots & authorities (n=45)
Scenarios identification

1. Electronic registration
2. Concurrent operations
3. Territory control
4. Cooperative geo-tagging
5. Controlled traffic zone crossing
6. Long-range operations (BVLOS)
7. De-confliction management
8. Emergency management
9. Capacity management
10. Reconnaissance and personal mobility
Existing manned/unmanned aviation services

Relevant manned aviation information services:

- **Airport information** services
- **Planning**, performance monitoring and analysis information
- **Flow and capacity management**
- **Flight data** services (real-time)
- **Flight planning** information
- **Communication/Surveillance** services

Unmanned aviation information services:

- **Flight planning** and validation
- **Local weather** information
- **Mission planning**
- **Geofencing**
- **NOTAM** advisory
- **Local rules and regulation** awareness
- **Remote identification**
- **Geospatial** data
- **Real-time tracking** and monitoring of unmanned traffic
Gap Identification & Analysis

Seven key information categories:

1. Flow management
2. Meteorological
3. Environment
4. Flight data
5. Communication
6. Surveillance
7. Drone
1. Flow management information

- De-confliction management
- Congestion management
- Hyperlocal airspace data
- Dynamic geofencing
- Urban airspace capacity management
- High-density traffic management
- Urban airspace conflict risk mitigation
- First/last 50ft of operations guidance
1. Flow management information

- De-confliction management
- Congestion management
- Hyperlocal airspace data
- Dynamic geofencing
- Urban airspace capacity management
- High-density traffic management
- Urban airspace conflict risk mitigation

Geofencing

Limit 3D position

Geocaging

Limit 3D position

Geovectoring

Limit 3D speed vector

Dynamic & static

Geovectoring (ICRAT)

Capacity management
Proposed solutions: *Bridging the gap*

1. Flow management

Flow management gap:
- De-confliction management
- Congestion management
- Urban airspace intrinsic and strategic conflict risk assessment
- Urban airspace capacity management
- High-density traffic management
- First/last 50ft of operations guidance
- Hyperlocal airspace data
- Dynamic geofencing

Proposed solutions
- Tactical *Conflict Detection & Resolution* (de-centralized)
- Introduce surge/*dynamic pricing*
- Use *geovectoring* to manage high-density traffic
- Use intrinsic *airspace constraints* for first/last 50ft of operations
- Use *dynamic geovectoring* for first/last 50ft of operations
- *Google street view concept to 500 ft & augment*
- Manage *hyperlocal airspace* data
- Geo-tagging and geo-marking *dynamic obstacles*
2. Meteorological information

- **Past, present and future** hyperlocal weather information;
- Sudden atmospheric warnings based on observations: e.g. hyperlocal **wind gusts** in urban environments.

Source: KIT, Germany
Proposed solutions: *Bridging the gap*

2. Meteorological information

Met information needs

- Past, present, future hyperlocal Wx forecast
- Sudden warnings

Proposed solutions

- Install **hyperlocal** Met sensors for data capture
- **Drone to Everything** (D2X)
- **Crowd source** data
- Scale and extrapolate hyperlocal Wx services
3. Environment information

- Geometrical data (height, dimension, coordinates):
 - **Permanent obstacle** data
 - **Non-permanent obstacle** data
- **Population** density of overflown areas
- Advisory of uncontrolled traffic e.g. *birds*
Proposed solutions: *Bridging the gap*

3. Environmental information

Environmental data needs

- (Non)Permanent obstacles
- Geometrical data
- Population density of overflown areas
- Advisory of uncontrolled traffic

Proposed solutions

- Collaborate and coordinate w/ CityGML, 3D model and BIM communities (A. Petrovsky et al., 2018)
- Provide a tool to compute population density of overflown areas e.g. World Bank data
- **D2X concept** for bird movement
- On-board **drone imagery** devices to provide situational awareness on **non-permanent obstacles such as cranes**

* See also TU Delft MAVLab publications: http://mavlab.tudelft.nl/publications/
4. Flight information

- Flight planning assistance
- Optimal altitude allocation data
- Flight risk analysis
- Vert/horiz. separation guidance
- Real-time telemetry
- Contingency management
- Emergency management

Proposed solutions: *Bridging the gap*

4. Flight information (1/2)

Flight data needs:
- Flight planning assistance
- Optimal altitude allocation data
- Flight risk analysis
- Vert/horiz. separation guidance
- Real-time telemetry
- Contingency management
- Emergency management

Proposed solutions:
- Optimal *flight route planning* assistance
- An *optimal altitude* decision engine
- *Flight risk data*
- Dynamic Vert/Horizontal separation minima (function of airspace capacity, physical constraints & drone specs)
Proposed solutions: *Bridging the gap*
4. Flight information (2/2)

Flight data needs:
- Real-time telemetry
- Contingency management
- Emergency management

Proposed solutions:
- OEM’s, mandated to provide real-time **telemetry**: battery status, estimated endurance, min/max velocity, min/max vert speed, altitude ceiling
- Telemetry data w.r.t. potential conflicts with other traffic etc.
- **Text-based instructions** for emergency landing events
- European Drone Crisis Coordination Cell
5. Communication information

- Hyperlocal GNSS and 4G/5G coverage map
- ATC-Drone operator/user datalink
- U-Space instant message service
- High-quality video datalink
- Authorities datalink

Source: Doole, M. 2018, TU Delft
5. Communication information

Coms. Data needs
- Hyperlocal GNSS and 4G/5G coverage map
- ATC-Drone operator/user datalink
- U-Space instant message service
- High-quality video datalink
- Authorities datalink

Proposed solutions
- **GNSS availability tool** e.g. AUGUR (but for hyperlocal level)
- **Cellular network**, mandated to provide **real-time** hyperlocal coverage maps
- **Instant message** services
- Uninterrupted communication bandwidth for **video transfer**
6. Surveillance information

- Real-time unmanned traffic data
- Digital NOTAM management
- Drone incident support
- Traffic monitoring service

Source: WeTalkUAV.com
Proposed solutions: *Bridging the gap*

6. Surveillance information

Info needs:
- Real-time unmanned traffic data
- Digital NOTAM management
- Drone incident support
- Traffic monitoring service

Proposed solutions:
- Invest and install ADS-B receivers
- Mandate all aircraft (esp. at VLL) to be equipped with ADS-B transponders or similar technology*
- Govern and manage open-source surveillance data
- Investigate the use of GPS and GSM tech. for drone tracking
- Investigate the use of SASS-C tool by Eurocontrol
- Govern and manage NOTAM info

See also poster on CLASS, Surveillance of UAS Traffic ENAC, Airbus, Unifly et al
7. Drone information

- Vehicle
- Performance characteristics
- Specification data
- Serial number data
7. Vehicle information

Vehicle info needs:
- Drone performance
- Specifications
- Serial numbers

Proposed solutions:
- Mandate OEM to provide all drone performance and specification information directly to U-Space.
- Ensure integrity of data
Results & Conclusions

- Seven key information gap areas were identified
- Majority of existing information services cannot be applied for future unmanned flight
- Current U-Space services only support low densities of traffic
- Urban airspace capacity management, high-density traffic management and separation guidance are critical information services for drone operation in VLL urban airspace
This project has received funding from the SESAR Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No [number]

The opinions expressed herein reflect the author’s view only.
Under no circumstances shall the SESAR Joint Undertaking be responsible for any use that may be made of the information contained herein.

Thank you very much for your attention!