Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Application to the French airspace LFEE (Reims)

Judicaël Bedouet, Thomas Dubot, Luis Basora
FirstName.LastName@onera.fr

ONERA, the French Aerospace Lab

6th SESAR Innovation Days
November 10th 2016, TU Delft
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents

1 Introduction

2 Model

3 Optimisation
 - Initialising
 - Assessing
 - Refining
 - Stabilising

4 Results

5 Conclusion
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Model</td>
</tr>
<tr>
<td>3</td>
<td>Optimisation</td>
</tr>
<tr>
<td>4</td>
<td>Results</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents
Introduction
Model
Optimisation
Initialising
Assessing
Refining
Stabilising
Results
Conclusion

Sectorisation problem

I'm a FMP. I group elementary sectors (ES) to form control sectors (CS).

► FMP: Flow Management Position
► From Short-Term Planning to Pre-Tactical
► Sector configuration = set of CS for a given period of time.
Motivation

Tch, tch ! These same old manual methods from the 20th century...

What about flexible and modular dynamic airspace configurations?
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents
Introduction
Model
Optimisation
Initialising
Assessing
Refining
Stabilising
Results
Conclusion

Ambitions

Hi, I have plenty of scientific methods to help you.

Hmm... OK, but I want conventional sectors and stability over time!

SESAR
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents

Introduction

Model

Optimisation

Results

Conclusion
Model - Graph $G = (V, E)$

- V the set of building blocks
- E the set of edges (direct trajectories between two blocks)
- $D_v(\delta t)$ density for vertex v during δt
- $C_e(\delta t)$ coordination for edge e during δt
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents

Introduction

Model

Optimisation

Initialising

Assessing

Refining

Stabilising

Results

Conclusion

Partition and constraints

\[P_k(\delta t) = S_1, \ldots, S_k \]

\[S_1 = LFEHHBN = \{LFEUB, LFEHN\}, S_2 = \ldots \]

\[\forall i \in 1, \ldots, k, S_i \neq \emptyset \]

\[\forall i, j \in 1, \ldots, k, i \neq j, S_i \cap S_j = \emptyset \]

\[\bigcup_{i \in 1, \ldots, k} S_i = E \]

\[\forall i \in 1, \ldots k, S_i \text{ satisfies the } \textit{connectivity} \text{ constraint} \]
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents

Introduction
Model
Optimisation
Initialising
Assessing
Refining
Stabilising
Results
Conclusion

Balance objective

Balance objective:

\[
\text{balance}(P_k(\delta t)) = \sum_i D_{S_i}(\delta t) - \frac{\sum_i D_{S_i}(\delta t)}{k}
\]

where \(D_{S_i}(\delta t) = \sum_{v \in S_i} D_v(\delta t)\)

\[
\sum_i D_{S_i}(\delta t) = 7.3
\]

balance(\(P_6\)) = 15.7

Definitions:

- Balance objective
- Shortest path problem
- Multi-objective optimization
- Genetic algorithm
- Sectorisation
- Deterministic partitioning
- Stochastic partitioning

Table of contents:

1. Introduction
2. Model
3. Optimisation
 - Initialising
 - Assessing
 - Refining
 - Stabilising
4. Results
5. Conclusion
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents
Introduction
Model
Optimisation
Initialising
Assessing
Refining
Stabilising
Results
Conclusion

Cut objective

Definition

\[
cut(P_k(\delta t)) = \sum_{i<j} \text{cut}(\delta t, S_i, S_j)
\]

where

\[
\text{cut}(\delta t, S_i, S_j) = \sum_{v_1 \in S_i, v_2 \in S_j} C(v_1, v_2)(\delta t)
\]
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents
Introduction
Model
Optimisation
Initialising
Assessing
Refining
Stabilising
Results
Conclusion

Compactness objective

![Image of sectorisation]

Definition

\[
\text{compactness}(P_k(\delta t)) = \prod_i \text{compactness}(S_i)
\]

where \(\text{compactness}(S_i) = \frac{\sum j \text{ prisms of } S_i \text{ volume}(j)}{\text{volume}(\text{cover}(i) \cap \text{ACC})} \)

\(\text{cover}(i) \) is the smallest prism which includes all the prisms of \(i \)
Other objectives that may be considered

- the total number of re-entries
- the total number of short transits
- the total number of overloads
- ...

Table of contents

Introduction
Model
Optimisation
 Initialising
 Assessing
 Refining
 Stabilising
Results
Conclusion
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents

Introduction

Model

Optimisation
 • Initialising
 • Assessing
 • Refining
 • Stabilising

Results

Conclusion
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents

Introduction
Model
Optimisation
Initialising
Assessing
Refining
Stabilising
Results
Conclusion

Determining all conventional solutions

Exhaustive search tree

- Combining conventional sectors
- Use of cut rules to rapidly explore the tree
 - \(\exists i, j \in 1, \ldots, k, S_i \cap S_j \neq \emptyset \)
 - \(\bigcup_{i \in 1, \ldots, k} S_i = E \)
 - Remaining nodes will not ensure \(\bigcup_{i \in 1, \ldots, k} S_i = E \)

Applications

- Reims (LFEE) - 21 ES - 58 CS - 17 positions - \(1.8 \times 10^5 \) conventional sector configurations / \(4.7 \times 10^{14} \)
- Brest (LFRR) - 32 ES - 114 CS - 18 positions - \(1.9 \times 10^8 \) conventional sector configurations / \(1.3 \times 10^{26} \)
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents
Introduction
Model
Optimisation
Initialising
Assessing
Refining
Stabilising
Results
Conclusion

Assessing configurations - Pareto-optimal solutions

We keep solutions from the first Pareto fronts.
Now, can I also propose non conventional sectors?

OK, but only if I can decide to integrate them or not in my catalogue.
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents

Introduction
Model
Optimisation
Initialising
Assessing
Refining
Stabilising
Results
Conclusion

Simulated Annealing optimisation

Disorganising

\[
\min \left(\alpha \text{cut}(P_k) + \beta \text{balance}(P_k) + \frac{1}{\text{compactness}^2(P_k)} \right)
\]

Reforming

\[
\min \left(\frac{1}{\text{compactness}(P_k)} \right)
\]

such that \(\text{balance}(P_k) \leq \text{balance}(P_{k,\text{initial}}) \)

\(\text{cut}(P_k) \leq \text{cut}(P_{k,\text{initial}}) \)
Stabilising over time

And we favor collapsing / decollapsing operations.
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents

Introduction
Model
Optimisation
Results
Conclusion
Comparison to the sector configuration plan of a very busy day of traffic (2015, June 26th).
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents
Introduction
Model
Optimisation
Initialising
Assessing
Refining
Stabilising
Results
Conclusion

An initial solution and its refinement

Conventional sector configuration

Balance: 16.02
Cut: 121.03

→ 8.434
→ 111.28

Refined sector configuration
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents

Introduction
Model
Optimisation
Initialising
Assessing
Refining
Stabilising
Results
Conclusion

Balance along the day

Average gain : 12.9%
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents

Introduction

Model

Optimisation

Initialising

Assessing

Refining

Stabilising

Results

Conclusion

Cut along the day

Average gain : 3.4%
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents
Introduction
Model
Optimisation
Initialising
Assessing
Refining
Stabilising
Results
Conclusion

Cell-based distance along the day

Cell-based distance along the day

OperationalPlan_m1
OptimizedPlan_bestBalance_m1
OptimizedPlan_smooth_m1

Value
0 5 10 15 20 25 30 35 40 45 50 55 60

Time
Towards an Operational Sectorisation based on Deterministic and Stochastic Partitioning Algorithms

Judicaël Bedouet

Table of contents

Introduction

Model

Optimisation

Results

Conclusion
Conclusion and perspectives

- We can improve the workload distribution while
 - keeping compact sectors
 - ensuring stability over time

- Integrated to a decision support tool

Perspectives:

- Improving objectives such as
 - workload distribution
 - overloads

- Determining the opening times
- Increasing the number of blocks
- Using multi-objective techniques to refine
Questions?

Judicael.Bedouet@onera.fr
http://www.onera.fr/en/staff/judicael-bedouet