Integrated Optimization of Terminal Maneuvering Area and Airport

Ji MA, Daniel DELAHAYE, Mohammed SBIHI, Marcel MONGEAU

ENAC – École Nationale de l’Aviation Civile

SESAR Innovation Days, November 10, 2016
Outline

1. Background and problem description
2. Problem modeling
3. Solution approaches
4. Simulation results
5. Conclusions and perspectives
According to Airbus global market forecast 2015-2034, air traffic will double in the next 15 years.

39 out of the 47 aviation mega cities are largely congested today.

- airport infrastructure is adequate
- airports with potential for congestion
- airports where conditions make it impossible to meet demand
Airport and surrounding terminal airspaces control is a complex problem.
Current research

- **Arrival Management Problem**
 - Landing sequencing
 - Ensure proper separation

- **Surface Management Problem**
 - Arriving aircraft taxi-in
 - Departing aircraft taxi-out

- **Departure Management Problem**
 - Take-off times and sequences for departing flights
 - Ensure proper separation
Outline

1. Background and problem description
2. Problem modeling
3. Solution approaches
4. Simulation results
5. Conclusions and perspectives
Given data (1/3)

TMA arrival route network

- **Node-link graph**: $G(\mathcal{N}, \mathcal{L})$, \mathcal{N} node set and \mathcal{L} link set;
- One route is composed of several links, the first one starts from the entering point and the last link ends at the runway threshold.
Network abstraction

- **Overall terminal capacity**: number of gates
- **Taxi network capacity**: threshold of total allowed number of taxi-in and taxi-out aircraft
- **Runway type**: landing only, departure only, mixed mode
Given data (3/3)

Given a set of flights, $\mathcal{F} = \{1, \ldots, N_f\}$. Each flight can be in one of three operations: $\mathcal{F} = \mathcal{A} \cup \mathcal{D} \cup \mathcal{AD}$, where \mathcal{A} stands for arrival, \mathcal{D} for departure and \mathcal{AD} for arrival-departure.

Table: Given information for each operation type

<table>
<thead>
<tr>
<th>Operation type</th>
<th>\mathcal{A}</th>
<th>\mathcal{D}</th>
<th>\mathcal{AD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wake turbulence category</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Assigned terminal number</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Entering waypoint</td>
<td>√</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>Initial entry time at TMA</td>
<td>√</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>Initial speed at TMA</td>
<td>√</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>Taxi-in duration</td>
<td>√</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>Earliest off-block time</td>
<td>×</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Taxi-out duration</td>
<td>×</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Departure runway number</td>
<td>×</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
Decision variables

- \(t_f \in T_f \) entering time at TMA of flight \(f \in A \cup AD \), where

\[
T_f = \{ T_f^0 + j \Delta T \mid \Delta T_{\text{min}} / \Delta T \leq j \leq \Delta T_{\text{max}} / \Delta T, \ j \in \mathbb{Z} \}
\]

- \(v_f \in V_f \) entering speed at TMA of flight \(f \in A \cup AD \), where

\[
V_f = \{ V_f^{\text{min}} + j \Delta v_f \mid j \leq (V_f^{\text{max}} - V_f^{\text{min}}) / \Delta v_f, \ j \in \mathbb{N}, \}
\]

- \(r_f^a \in R_f \) landing runway of flight \(f \in A \cup AD \), where

\[
R_f = \text{Set of landing runways}
\]
Decision variables

- $t_f \in \mathcal{T}_f$ entering time at TMA of flight $f \in \mathcal{A} \cup \mathcal{AD}$, where

$$\mathcal{T}_f = \{T_f^0 + j\Delta T \mid \Delta T_{\text{min}} / \Delta T \leq j \leq \Delta T_{\text{max}} / \Delta T, \ j \in \mathbb{Z}\}$$

- $v_f \in \mathcal{V}_f$ entering speed at TMA of flight $f \in \mathcal{A} \cup \mathcal{AD}$, where

$$\mathcal{V}_f = \{V_f^{\text{min}} + j\Delta v_f \mid j \leq (V_f^{\text{max}} - V_f^{\text{min}}) / \Delta v_f, j \in \mathbb{N}, \}$$

- $r^a_f \in R_f$ landing runway of flight $f \in \mathcal{A} \cup \mathcal{AD}$, where

$$R_f = \text{Set of landing runways}$$

- $p_f \in \mathcal{P}_f$ pushback delay of flight $f \in \mathcal{D} \cup \mathcal{AD}$, where

$$\mathcal{P}_f = \{P_f^0 + j\Delta T \mid 0 \leq j \leq \Delta T^p_{\text{max}} / \Delta T, \ j \in \mathbb{N}\}$$
Decision variables

- \(t_f \in T_f \) entering time at TMA of flight \(f \in A \cup AD \), where
 \[
 T_f = \left\{ T_f^0 + j\Delta T \mid \Delta T_{\text{min}}/\Delta T \leq j \leq \Delta T_{\text{max}}/\Delta T, \quad j \in \mathbb{Z} \right\}
 \]

- \(v_f \in V_f \) entering speed at TMA of flight \(f \in A \cup AD \), where
 \[
 V_f = \left\{ V_f^{\text{min}} + j\Delta v_f \mid j \leq (V_f^{\text{max}} - V_f^{\text{min}})/\Delta v_f, \quad j \in \mathbb{N} \right\}
 \]

- \(r^a_f \in R_f \) landing runway of flight \(f \in A \cup AD \), where
 \[R_f = \text{Set of landing runways} \]

- \(p_f \in P_f \) pushback delay of flight \(f \in D \cup AD \), where
 \[
 P_f = \left\{ P_f^0 + j\Delta T \mid 0 \leq j \leq \Delta T_{\text{max}}^p/\Delta T, \quad j \in \mathbb{N} \right\}
 \]

Decision vector:

\[\mathbf{x} = (t, v, r, p) \]
Separation requirements

- Minimum horizontal separation of 3 NM in TMA
- Wake turbulence separation

<table>
<thead>
<tr>
<th>Category</th>
<th>Leading Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heavy</td>
</tr>
<tr>
<td>Heavy</td>
<td>4</td>
</tr>
<tr>
<td>Trailing Aircraft</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Light</td>
</tr>
</tbody>
</table>

Table: Separation minima for two successive aircraft, in NM

- Single-runway separation requirements
Wake turbulence separation:
- **Link conflict**
 - Node u
 - Link \(l = (u, v) \)
 - Node v
 - Flight \(f \)
 - Flight \(g \)

Minimum horizontal separation:
- **Node conflict**
 - Node n
 - Detection zone
 - Flight \(f \)
 - Flight \(g \)
Runway overload evaluation

We note the **accumulated time of separation violation** for all pairs of aircraft as an indicator for our runway evaluation.

Landing minimum separation times (in seconds)

<table>
<thead>
<tr>
<th>Pred.\Succ.</th>
<th>Heavy</th>
<th>Medium</th>
<th>Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy</td>
<td>96</td>
<td>157</td>
<td>207</td>
</tr>
<tr>
<td>Medium</td>
<td>60</td>
<td>69</td>
<td>123</td>
</tr>
<tr>
<td>Light</td>
<td>60</td>
<td>69</td>
<td>82</td>
</tr>
</tbody>
</table>

Take-off minimum separation times (in seconds)

<table>
<thead>
<tr>
<th>Pred.\Succ.</th>
<th>Heavy</th>
<th>Medium</th>
<th>Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy</td>
<td>96</td>
<td>111</td>
<td>120</td>
</tr>
<tr>
<td>Medium</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Light</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>
We measure the maximum overload number and the total amount of time during which aircraft experience congestions.
Objective function

We minimize

\[\gamma_a A(x) + \gamma_s S(x) \]

where

- \(A(x) \): the total number of conflicts in airspace, including:
 - Node conflicts
 - Link conflicts

- \(S(x) \): the airside capacity overload, including:
 - Runway overload
 - Terminal overload
 - Taxi network overload

- Weighting coefficients \(\gamma_a, \gamma_s \)
1. Background and problem description

2. Problem modeling

3. Solution approaches

4. Simulation results

5. Conclusions and perspectives
Solution approaches

Using time decomposition approach combined with heuristic algorithm.

- completed
- on-going
- active
- planned
- planned

Previous time window

Current time window

Next time window

Update flights status in state space

Evaluate "Active" and "On-going" flight operations:
Airspace: nodes, links
Airport: runways, taxi network, terminals

Apply algorithms:
Simulated Annealing

24 hours
Simulated annealing

- At Init Temp: Unconditional Acceptance
- HILL CLIMBING
- Moved accepted with probability $e^{-\frac{\Delta E}{T}}$
- At Final Temp

Ma, Delahaye, Sbihi, Mongeau (ENAC)
Neighborhood selection (1/3)

Decision Changes
Airspace perfo
Runway perfo
Ground perfo

Aircraft list

\[x_1 \quad x_i \quad x_N \]

Decision Changes
Airspace perfo
Runway perfo
Ground perfo

\[A_1 \quad A_i \quad A_N \]

\[R_1 \quad R_i \quad R_N \]

\[G_1 \quad G_i \quad G_N \]
Neighborhood selection (2/3)

Example (Ground perfo):

<table>
<thead>
<tr>
<th>Flight</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground perfo</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

: Aircraft in-block time

: Aircraft off-block time

Capacity = 3
Neighborhood selection (2/3)

Example (Ground perfo):

<table>
<thead>
<tr>
<th>Flight</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground perfo</td>
<td>32</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Neighborhood selection (2/3)

Example (Ground perfo):

<table>
<thead>
<tr>
<th>Flight</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground perfo</td>
<td>32</td>
<td>47</td>
<td>47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Neighborhood selection (2/3)

Example (Ground perfo):

<table>
<thead>
<tr>
<th>Flight</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground perfo</td>
<td>32</td>
<td>47</td>
<td>47</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
Example (Ground perfo):

<table>
<thead>
<tr>
<th>Flight</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground perfo</td>
<td>32</td>
<td>47</td>
<td>47</td>
<td>23</td>
<td>0</td>
</tr>
</tbody>
</table>
Neighborhood selection (3/3)

Neighborhood

Example:

<table>
<thead>
<tr>
<th>Flight</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground perfo</td>
<td>32</td>
<td>47</td>
<td>47</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Percentage</td>
<td>21.5%</td>
<td>31.5%</td>
<td>31.5%</td>
<td>15.4%</td>
<td>0</td>
</tr>
</tbody>
</table>

- Roulette wheel selection
- change v_f or t_f if flight $f \in \mathcal{A}$
- change p_f if flight $f \in \mathcal{D}$
1. Background and problem description
2. Problem modeling
3. Solution approaches
4. Simulation results
5. Conclusions and perspectives
February 7, 2016: 562 departures, 554 arrivals.
Paris CDG airport layout
Conflicts evaluation

Node conflicts
Link conflicts

Number of conflicts

1.6499
0.2923
0.2657
0.2415

Sliding window i-1
Sliding window i
Sliding window i+1

Temperature
Initial gate occupancy for each terminal

<table>
<thead>
<tr>
<th>Terminal 1</th>
<th>Terminal 2</th>
<th>Terminal 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max gate occupancy</td>
<td>13</td>
<td>95</td>
</tr>
</tbody>
</table>

Time (in hours)

Number of flights

Terminal 1, Terminal 2, Terminal 3
Initial gate occupancy for each terminal

<table>
<thead>
<tr>
<th>Time (in hours)</th>
<th>Number of flights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Number of Flights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 1</td>
<td></td>
</tr>
<tr>
<td>Terminal 2</td>
<td></td>
</tr>
<tr>
<td>Terminal 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Max gate occupancy</th>
<th>Imposed max capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 1</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Terminal 2</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>Terminal 3</td>
<td>59</td>
<td>56</td>
</tr>
</tbody>
</table>
Figure: Comparison between initial gate occupancy and optimized one for terminal 2
Terminal overload evaluation (2/2)

(a) Terminal 1

(b) Terminal 3

Figure: Comparison between initial gate occupancy and optimized one for terminal 1 and 3
Taxi network overload evaluation

![Graph showing taxi network overload evaluation](image)

- **Initial occupancy**
- **Optimized occupancy**
- **Imposed capacity**
Outline

1. Background and problem description

2. Problem modeling

3. Solution approaches

4. Simulation results

5. Conclusions and perspectives
Conclusions

- A TMA route network structure and an abstraction model of airport components
- Time sliding-window approach combined with simulated annealing
- Reaching conflict-free solutions and mitigating the airport overload by time-slot and speed change
Perspectives

Microscopic level optimization

- Taxi In and Taxi Out routes
- Pushback Time update
- This process is repeated by the mean of a sliding time window
Thank you for your attention!