Hot Spot Identification & Mitigation at Strategic Level by Small Changes in Aircraft Time of Arrival at Junction

Mr. Dany Gatsinzi
Prof. Francisco Javier Saez Nieto
Dr. Irfan Madani

10th November 2016

www.cranfield.ac.uk
Research Motivation

- **Challenge**: Tactical actions taken by the Air Traffic Controllers to resolve A/C potential conflicts are the main bottleneck of the current ATM system.

- **Solution**: Trajectory Based Operations (TBO) Concepts: Trajectory management at Strategic level.
Purpose of the Research

- To reduce the probability of ATCO’s tactical interventions at strategic level.

- Propose a new ATFCM metric for demand measure in order to change the current airspace capacity limiting factor, in line with TBO.
Background

- **Strategic Management Vs. Tactical Management**

 - **Involved Actors:**
 - ATFCM
 - ATC

 - **Time to React:**
 - Strategic (Pre-Flight)
 - Tactical: During Flight

 - **Relevancy**
 - Increase

 - **Objectives**
 - ATM Invariant

 - **Functions**
 - Separation Management (SM)

 - **Trajectory Based Operations**
 - DCB to Avoid Sector overload
 - Shift SM functions to Strategic Level

 - **Flight Efficiency**
 - Increase

 - **Airspace Based Operations**
Paradigm Shift: Airspace Based Ops to Trajectory Based Ops

Behavioral Change:

- **Strategic Level:** Trajectory Incompatibilities are not known in advance.
- **Tactical Level:** It is up to the ATCO to detect and resolve any potential conflicts.
- **Airspace Capacity:** Limited by ATCO tactical interventions to resolve potential conflicts in a sector.

Paradigm Shift:

- **Strategic Level:** Trajectory Incompatibilities are detected & mitigated.
- **Tactical Level:** Potential conflicts are radically reduced, ATCO monitors the traffic flow.
- **Airspace Capacity:** Is not limited by ATCO tactical interventions in a sector.
Proposed Approach

- Airspace Topology
Proposed Approach

\[\tau_0 = (TOA_i - TOA_j) \Rightarrow \text{Initial separation at Junction before TOA/Speed Changes are applied} \]

\[\tau_p = (t_i - t_j) \Rightarrow \text{Required Minimum safe time separation at Junction} \]

LP Optimisation Tool:
- Minimise total amount of Distance-weighted speed changes: \(J = \sum_i \sum_m \delta V_{im}^{m+1} \cdot d_{im}^{m+1} \)
- Speed changes are bounded below a given threshold: \(\delta V_{im}^{m+1} \leq 0.0X \cdot V_{im}^{m+1} \).
- Departure & TTA are maintained as constraints.
- The Initial Time Separation at Junction between any two successive aircraft before speed/TOA changes are randomly generated within a given time interval “\(\tau_0 \)“.
- New TOA will be issued by NM to the Aircraft to be included in the new RBT.
Proposed Approach

How to quantify "τ_p" in the presence of uncertainty in A/C’s Time of Arrival at Junction (TOA), that minimises ATC tactical Interventions?

Deviations in the A/C Time of Arrival (TOA) at Junction

<table>
<thead>
<tr>
<th>Uncertainty at the junction</th>
<th>Standard deviation specifications & Required Operation/performance conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C Lateral deviation</td>
<td>(\sigma_{T\text{l},j} = \sqrt{2} \times \frac{\sigma_{LD}}{V_{i,j} \times \sin(\alpha_j)} = 30 \text{ sec})</td>
</tr>
<tr>
<td>Initial time deviation</td>
<td>(\sigma_{T\text{2i},j} = 1 \text{ min})</td>
</tr>
<tr>
<td>Along-track time deviation</td>
<td>(\sigma_{T\text{3i},j} = \frac{d_{i,j}}{V_{i,j}^2} \times \sigma_{VI,j} = 1 \text{ min})</td>
</tr>
<tr>
<td>Combined Time Deviation</td>
<td>(\sigma_T = 1.5 \text{ min})</td>
</tr>
</tbody>
</table>
Proposed Approach

- **Minimum Time Separation** (τ_p) & **Probability Of Collision** (PC)

 $\tau_p = \sqrt{-2(\sigma_{T_i}^2 + \sigma_{T_j}^2) \ln[p_c] \sqrt{2\pi(\sigma_{T_i}^2 + \sigma_{T_j}^2)}}$

- Minimum safe separation Interval at Junction: $\tau_p \approx 9$ minutes
- Probability of collision : $PC = 10^{-5}$
- Junction inbound capacity $Q_l_m = 1/\tau_p = 6$ A/C per Hour
Example Solutions

- **Number of A/C in a Bunch that Can be Realistically De-conflicted**

 Bunch: Sequence of two or more aircraft inbound an active junction for a given period of time.

 \[\tau_0 \geq [0, 9] \Rightarrow \text{All in bound traffic in a Bunch are initially in conflict} \]

![Graph showing optimal speed changes for conflict removal at junction (A/C Normal Speed)]

- **Speed changes per aircraft for 12A/C and 15 A/C in a bunch**
Example Solutions

- Monotonic Increase of Speed/TOA changes when $\tau_0 < [0 \ 9]$
Example Solutions

- Modulation of Speed/TOA Changes & Steady State

Oscillated behavior of speed changes when $\tau_0 \geq [0-9]$

Speed changes reaches steady state when $\tau_0 \geq [0-18]$

Assumption: Free-Routing is Assumed
Conclusions

- New ATFCM metric for demand measure based on Hot Spot identification & mitigation at strategic level is proposed.

- The minimum safe separation interval at junction: $\tau_p \approx 9$ minutes that gives a probability of collision of $PC=10^{-5}$ is established.

- The mitigation actions are based on establishing new TOA at Junction computed using a basic LP optimisation.

- Monotonic increase of TOA/Speed changes for first and last aircraft in a bunch is changed by establishing specific traffic demand and operational conditions.

- Conditions under which TOA/Speed changes reach the stable state are established.

- Further Work: Run the model based on a larger actual airspace structure such as ECAC structure
THANK YOU