Probabilistic Aircraft Conflict Detection Considering Ensemble Weather Forecast

E. Hernández A. Valenzuela D. Rivas

Department of Aerospace Engineering
Universidad de Sevilla
Spain

The Sixth SESAR Innovation Days
SIDs 2016
Delft, Netherlands, November 08 - 10, 2016
Outline

1. Introduction
2. Problem Formulation
3. Results
4. Summary
Outline

1. Introduction
2. Problem Formulation
3. Results
4. Summary
Motivation

A promising approach to improve current prediction and optimisation mechanisms towards meeting Single European Sky goals is the modelling, analysis, and management of the uncertainty present in ATM.

One of the main sources of uncertainty that affect the ATM system, as identified by the ComplexWorld Research Network, is weather uncertainty.

The objective of this work is to analyze the effects of wind uncertainty on conflict detection.
Approach I

- **Wind uncertainty**: provided by *Ensemble Weather Forecasts*; typically, a collection of 10 to 50 forecasts.

According to the IMET project, there are **two approaches** for trajectory prediction:

- Ensemble trajectory prediction
- Probabilistic trajectory prediction
Wind uncertainty: provided by *Ensemble Weather Forecasts*; typically, a collection of 10 to 50 forecasts.

According to the IMET project, there are **two approaches** for trajectory prediction:

Ensemble trajectory prediction

Probabilistic trajectory prediction

Approach I

- **Wind uncertainty:** provided by *Ensemble Weather Forecasts*; typically, a collection of 10 to 50 forecasts.

According to the IMET project, there are **two approaches** for trajectory prediction:

Ensemble trajectory prediction

Probabilistic trajectory prediction
Approach II

- **Conflict detection:** between two aircraft, both flying at constant airspeed, course and altitude.

 The conflict is characterized by:
 - minimum distance \((d_{\text{min}})\),
 - time to minimum distance \((t_{d_{\text{min}}})\),
 - probability of conflict \((P_{\text{con}})\).

- **Analysis:** based on the **Transformation of Random Variables**, the wind probability density functions (PDFs) are evolved to obtain the PDFs and values of the conflict indicators.
Applicability

- Air-traffic **safety and efficiency** may benefit from the inclusion of weather uncertainty in automated conflict detection at all levels:

 - **Long range** (time horizon of several hours)
 Trajectories may be **strategically deconflicted** even prior to the take-off.

 - **Mid** (tens of minutes) and **short range** (seconds to minutes)
 Decision support tools and safety nets (e.g. MTCD and STCA) may notify the conflicts to the ATCOs according to their probability of occurrence, thus reducing the number of missed and false alerts.
Outline

1. Introduction
2. Problem Formulation
3. Results
4. Summary
Assumptions

- A **North-East reference system** is used.
- Both aircraft, A and B, are affected by the **same wind** (\vec{w}).
- The wind components (w_x and w_y) are **uncertain and statistically independent**.
- Both aircraft fly at **constant airspeed** (V_A and V_B), **constant course** (ψ_A and ψ_B), and the same **constant altitude**.
- The **initial positions** (\vec{s}_0,A and \vec{s}_0,B), **airspeeds** and **courses** are **perfectly known**.
- The **initial separation** between aircraft is **greater than a separation requirement** D (e.g., 5 NM) and **they are approaching**.
Assumptions

- A **North-East reference system** is used.
- Both aircraft, A and B, are affected by the **same wind** (\vec{w}).
- The **wind components** (w_x and w_y) are uncertain and statistically independent.
- Both aircraft fly at **constant airspeed** (V_A and V_B), **constant course** (ψ_A and ψ_B), and the same **constant altitude**.
- The **initial positions** ($\vec{s}_{0,A}$ and $\vec{s}_{0,B}$), **airspeeds** and **courses** are perfectly known.
- The **initial separation** between aircraft is greater than a separation requirement D (e.g., 5 NM) and they are approaching.
Assumptions

- A **North-East reference system** is used.
- Both aircraft, A and B, are affected by the **same wind** \(\vec{w} \).
- The **wind components** \(w_x \) and \(w_y \) are **uncertain and statistically independent**.
- Both aircraft fly at **constant airspeed** \(V_A \) and \(V_B \), **constant course** \(\psi_A \) and \(\psi_B \), and the same **constant altitude**.
- The **initial positions** \(\vec{s}_{0,A} \) and \(\vec{s}_{0,B} \), **airspeeds** and **courses** are **perfectly known**.
- The **initial separation** between aircraft is **greater than a separation requirement** \(D \) (e.g., 5 NM) and they are **approaching**.
Assumptions

- A **North-East reference system** is used.
- Both aircraft, A and B, are affected by the **same wind** (\vec{w}).
- The **wind components** (w_x and w_y) are **uncertain and statistically independent**.
- Both aircraft fly at **constant airspeed** (V_A and V_B), **constant course** (ψ_A and ψ_B), and the same **constant altitude**.
- The initial positions ($\vec{s}_{0,A}$ and $\vec{s}_{0,B}$), **airspeeds and courses** are perfectly known.
- The initial separation between aircraft is **greater than a separation requirement** D (e.g., 5 NM) and they are approaching.
Assumptions

- A **North-East reference system** is used.
- Both aircraft, A and B, are affected by the **same wind** (\vec{w}).
- The **wind components** (w_x and w_y) are **uncertain and statistically independent**.
- Both aircraft fly at **constant airspeed** (V_A and V_B), **constant course** (ψ_A and ψ_B), and the same **constant altitude**.
- The **initial positions** ($\vec{s}_{0,A}$ and $\vec{s}_{0,B}$), **airspeeds** and **courses** are **perfectly known**.
- The initial separation between aircraft is greater than a separation requirement D (e.g., 5 NM) and they are approaching.
Assumptions

- A **North-East reference system** is used.
- Both aircraft, A and B, are affected by the **same wind** (\vec{w}).
- The **wind components** (w_x and w_y) are **uncertain and statistically independent**.
- Both aircraft fly at **constant airspeed** (V_A and V_B), **constant course** (ψ_A and ψ_B), and the same **constant altitude**.
- The **initial positions** ($\vec{s}_{0,A}$ and $\vec{s}_{0,B}$), **airspeeds** and **courses** are **perfectly known**.
- The **initial separation** between aircraft is **greater than a separation requirement** D (e.g., 5 NM) and they are approaching.
Absolute motion of each aircraft

- **Position of each aircraft** at any time t:
 \[\vec{s}_A(t) = \vec{s}_{0,A} + \vec{V}_{g,A} t, \]
 \[\vec{s}_B(t) = \vec{s}_{0,B} + \vec{V}_{g,B} t. \]

- **Groundspeeds** $\vec{V}_{g,A}$ and $\vec{V}_{g,B}$ are obtained from the wind triangles:
 \[\vec{V}_{g,A} = \vec{V}_A + \vec{w} = V_A \begin{bmatrix} \cos (\psi_A - \arcsin (w_{c,A}/V_A)) \\ \sin (\psi_A - \arcsin (w_{c,A}/V_A)) \end{bmatrix} + \begin{bmatrix} w_x \\ w_y \end{bmatrix}, \]
 \[\vec{V}_{g,B} = \vec{V}_B + \vec{w} = V_B \begin{bmatrix} \cos (\psi_B - \arcsin (w_{c,B}/V_B)) \\ \sin (\psi_B - \arcsin (w_{c,B}/V_B)) \end{bmatrix} + \begin{bmatrix} w_x \\ w_y \end{bmatrix}. \]

Crosswinds $w_{c,A}$ and $w_{c,B}$ are positive if they are from the left wing:
 \[w_{c,A} = w_y \cos \psi_A - w_x \sin \psi_A, \quad w_{c,B} = w_y \cos \psi_B - w_x \sin \psi_B. \]
Absolute motion of each aircraft

- **Position of each aircraft** at any time t:

 $$\vec{s}_A(t) = \vec{s}_{0,A} + \vec{V}_{g,A}t,$$
 $$\vec{s}_B(t) = \vec{s}_{0,B} + \vec{V}_{g,B}t.$$

- **Groundspeeds** $\vec{V}_{g,A}$ and $\vec{V}_{g,B}$ are obtained from the wind triangles:

 $$\vec{V}_{g,A} = \vec{V}_A + \vec{w} = V_A \begin{bmatrix} \cos (\psi_A - \arcsin (w_{c,A}/V_A)) \\ \sin (\psi_A - \arcsin (w_{c,A}/V_A)) \end{bmatrix} + \begin{bmatrix} w_x \\ w_y \end{bmatrix},$$
 $$\vec{V}_{g,B} = \vec{V}_B + \vec{w} = V_B \begin{bmatrix} \cos (\psi_B - \arcsin (w_{c,B}/V_B)) \\ \sin (\psi_B - \arcsin (w_{c,B}/V_B)) \end{bmatrix} + \begin{bmatrix} w_x \\ w_y \end{bmatrix}.$$

Crosswinds $w_{c,A}$ and $w_{c,B}$ are positive if they are from the left wing:

$$w_{c,A} = w_y \cos \psi_A - w_x \sin \psi_A, \quad w_{c,B} = w_y \cos \psi_B - w_x \sin \psi_B.$$
Absolute motion of each aircraft

- **Position of each aircraft** at any time t:
 \[\vec{s}_A(t) = \vec{s}_{0,A} + \vec{V}_{g,A}t, \]
 \[\vec{s}_B(t) = \vec{s}_{0,B} + \vec{V}_{g,B}t. \]

- **Groundspeeds** $\vec{V}_{g,A}$ and $\vec{V}_{g,B}$ are obtained from the wind triangles:
 \[\vec{V}_{g,A} = \vec{V}_A + \vec{w} = V_A \begin{bmatrix} \cos(\psi_A - \arcsin(w_{c,A}/V_A)) \\ \sin(\psi_A - \arcsin(w_{c,A}/V_A)) \end{bmatrix} + \begin{bmatrix} w_x \\ w_y \end{bmatrix}, \]
 \[\vec{V}_{g,B} = \vec{V}_B + \vec{w} = V_B \begin{bmatrix} \cos(\psi_B - \arcsin(w_{c,B}/V_B)) \\ \sin(\psi_B - \arcsin(w_{c,B}/V_B)) \end{bmatrix} + \begin{bmatrix} w_x \\ w_y \end{bmatrix}. \]

Crosswinds $w_{c,A}$ and $w_{c,B}$ are positive if they are from the left wing:
\[w_{c,A} = w_y \cos(\psi_A) - w_x \sin(\psi_A), \quad w_{c,B} = w_y \cos(\psi_B) - w_x \sin(\psi_B). \]

The courses are known, but **the magnitudes of the groundspeeds are uncertain**.
Relative motion between the aircraft

- The conflict indicators of this work only depend on the relative motion between the two aircraft.

- Relative position between the two aircraft at any time t:

 \[
 \vec{s}(t) = \vec{s}_B(t) - \vec{s}_A(t) = \vec{s}_0 + \vec{V}_g t,
 \]

 where

 \[
 \vec{s}_0 = \vec{s}_{0,B} - \vec{s}_{0,A},
 \vec{V}_g = \vec{V}_{g,B} - \vec{V}_{g,A}.
 \]

 and the relative groundspeed \vec{V}_g is given by:

 \[
 \vec{V}_g = V_B \begin{bmatrix} \cos(\psi_B - \arcsin(wc,B/V_B)) \\ \sin(\psi_B - \arcsin(wc,B/V_B)) \end{bmatrix} - V_A \begin{bmatrix} \cos(\psi_A - \arcsin(wc,A/V_A)) \\ \sin(\psi_A - \arcsin(wc,A/V_A)) \end{bmatrix}.
 \]
Relative motion between the aircraft

- **The conflict indicators** of this work only depend on the relative motion between the two aircraft.

- **Relative position** between the two aircraft at any time t:
 \[
 \vec{s}(t) = \vec{s}_B(t) - \vec{s}_A(t) = \vec{s}_0 + \vec{V}_g t,
 \]
 where
 \[
 \vec{s}_0 = \vec{s}_{0,B} - \vec{s}_{0,A},
 \vec{V}_g = \vec{V}_{g,B} - \vec{V}_{g,A}.
 \]
 and the **relative groundspeed** \vec{V}_g is given by:
 \[
 \vec{V}_g = V_B \left[\cos \left(\psi_B - \arcsin \left(\frac{w_{c,B}}{V_B} \right) \right) \right] - V_A \left[\cos \left(\psi_A - \arcsin \left(\frac{w_{c,A}}{V_A} \right) \right) \right] - V_A \left[\sin \left(\psi_B - \arcsin \left(\frac{w_{c,B}}{V_B} \right) \right) \right].
 \]

The magnitude and direction of the relative groundspeed are uncertain and, under the hypotheses of this work, only affected by the crosswinds.
Conflict indicators

The distance between the two aircraft at any time, \(d(t) \), is the magnitude of the relative position:

\[
d(t) = \| \vec{s}(t) \| = \sqrt{s_0^2 + 2 \vec{s}_0 \vec{V}_g t + V_g^2 t^2}.
\]

- Minimum distance:
 \[
d_{\text{min}} = \sqrt{s_0^2 - (\vec{s}_0 \vec{V}_g)^2} / V_g^2.
\]

- Time to minimum distance:
 \[
t_{d_{\text{min}}} = -\left(\vec{s}_0 \vec{V}_g \right) / V_g^2.
\]

- Probability of conflict:
 \[
P_{\text{con}} = P[d_{\text{min}} \leq D].
\]
Conflict indicators

The distance between the two aircraft at any time, \(d(t) \), is the magnitude of the relative position:

\[
d(t) = \| \vec{s}(t) \| = \sqrt{s_0^2 + 2s_0 \vec{V}_g t + V_g^2 t^2}.
\]

- **Minimum distance:**
 \[
d_{\text{min}} = \sqrt{s_0^2 - \left(s_0 \vec{V}_g \right)^2 / V_g^2}.
\]

- **Time to minimum distance:**
 \[
t_{d_{\text{min}}} = -\left(s_0 \vec{V}_g \right) / V_g^2.
\]

- **Probability of conflict:**
 \[
P_{\text{con}} = P[d_{\text{min}} \leq D].
\]

These conflict indicators depend on the crosswinds through \(\vec{V}_g \) but not on the along track-winds.
Basis of the bivariate transformation:

- w_x and w_y are random variables with joint PDF $f_{w_x,w_y}(w_x, w_y)$, and R is the set in the $w_x w_y$-plane where $f_{w_x,w_y}(w_x, w_y) > 0$.
- v_1 and v_2 are two random variables whose PDFs are to be found, and $v_1 = g_1(w_x, w_y)$ and $v_2 = g_2(w_x, w_y)$ define a one-to-one transformation of R onto a set S in the $v_1 v_2$-plane.
- If $w_x = h_1(v_1, v_2)$ and $w_y = h_2(v_1, v_2)$, then the PDF of v_1 and v_2 is given by

$$f_{v_1,v_2}(v_1, v_2) = \begin{cases} f_{w_x,w_y}(h_1(v_1, v_2), h_2(v_1, v_2)) |J| & \text{if } (v_1, v_2) \in S, \\ 0 & \text{otherwise,} \end{cases}$$

where $|J|$ is the absolute value of the Jacobian determinant

$$J = \begin{vmatrix} \frac{\partial h_1(v_1, v_2)}{\partial v_1} & \frac{\partial h_1(v_1, v_2)}{\partial v_2} \\ \frac{\partial h_2(v_1, v_2)}{\partial v_1} & \frac{\partial h_2(v_1, v_2)}{\partial v_2} \end{vmatrix}.$$
In this work, v_1 is any of the indicators d_{min} or $t_{d_{min}}$, and v_2 is a dummy variable which has been chosen to be w_y.

The PDF of v_1 can be obtained by integrating f_{v_1,v_2} in v_2

$$f_{v_1}(v_1) = \int_{-\infty}^{\infty} f_{v_1,v_2}(v_1,v_2) dv_2$$

The expected value, the typical deviation and the probability of v_1 being smaller than a given value are given by

$$E[v_1] = \int_{-\infty}^{\infty} v_1 f_{v_1}(v_1) dv_1,$$

$$\sigma[v_1] = \left[\int_{-\infty}^{\infty} v_1^2 f_{v_1}(v_1) dv_1 - (E[v_1])^2\right]^{1/2},$$

$$P[v_1 < a] = \int_{-\infty}^{a} f_{v_1}(v_1) dv_1.$$
Outline

1. Introduction
2. Problem Formulation
3. Results
4. Summary
Scenario

- **Aircraft positions and speeds**
 \[\vec{s}_{0,A} = [0, 0], \vec{s}_{0,B} = [18520, 18520] \text{ m}, \]
 \[V_A = V_B = 240 \text{ m/s}, \]
 \[\psi_A = 90 \text{ deg}, \psi_B = 135 \text{ deg}, \]
 \[D = 9260 \text{ m (5 NM)}. \]

- **Wind**
 Same **uniform probability distribution** for \(w_x \) and \(w_y \)
 \[f_{w_i}(w_i) = \begin{cases}
 1/(2\delta_w) & w_i \in [\bar{w} - \delta_w, \bar{w} + \delta_w], \\
 0 & \text{otherwise},
\end{cases} \]
 where \(i \in \{x, y\}, \bar{w} \in [-20, 20] \text{ m/s}, \) and \(\delta_w \in [0, 25] \text{ m/s}. \)
 If \(\bar{w} > 0 \) the wind points Northeast and if \(\bar{w} < 0 \) it points Southwest (on average).
 Since \(w_x \) and \(w_y \) are statistically independent, the **joint PDF** is
 \[f_{w_x,w_y}(w_x, w_y) = f_{w_x}(w_x)f_{w_y}(w_y) \]

- **Results** are **validated by the Monte Carlo method** (8.4 million samples).
Minimum distance I

- Results for $\bar{w} = 0$ and $\delta_{w} = 20 \text{ m/s}$:

$$E[d_{\text{min}}] = 10012 \text{ m}$$
$$\sigma[d_{\text{min}}] = 1076 \text{ m}$$
$$P_{\text{con}} = 28.0\%$$
Results for $\bar{w} \in [-20, 20]$ and $\delta_w = 5, 10, 15, 20, 25$ m/s:

$E[d_{\text{min}}]$ does not depend on δ_w. In this scenario, it decreases as \bar{w} increases because the wind changes from pointing Southwest to pointing Northwest.

$\sigma[d_{\text{min}}]$ increases as δ_w increases. Its dependence with \bar{w} is very weak.
Time to minimum distance

- Results for $\bar{w} = 0$ and $\delta_w = 20$ m/s:

$$E[t_{d_{min}}] = 131.9 \text{ s}$$
$$\sigma[t_{d_{min}}] = 6.4 \text{ s}$$

- Results for $\bar{w} \in [-20, 20]$ and $\delta_w = 5, 10, 15, 20, 25$ m/s:

$E[t_{d_{min}}]$ is almost independent of \bar{w} and δ_w. $\sigma[t_{d_{min}}]$ increases as δ_w increases, its dependence with \bar{w} is very weak.
Probability of conflict

- Results for \(\bar{w} \in [-20, 20] \) and \(\delta_w = 0, 5, 10, 15, 20, 25 \) m/s:

The certainty that a conflict does exist or does not exist decreases as the wind uncertainty increases.
Outline

1. Introduction
2. Problem Formulation
3. Results
4. Summary
Conclusions

- A first step on the assessment of the effects of wind uncertainty on conflict detection has been presented.

- The presented approach is capable of taking as input any type of wind distribution derived from Ensemble Weather Forecasts. The determination of the PDF from the ensemble forecast is an open challenge.

- Under the hypotheses that the aircraft follow a constant course and they are affected by the same wind, it has been found that the three considered indicators depend on the crosswinds seen by both aircraft, but not on the along-track winds.

- Numerical results have been presented for a particular scenario to show the potentiality of the proposed methodology.
Conclusions

- A first step on the assessment of the **effects of wind uncertainty on conflict detection** has been presented.

- The presented approach is capable of taking as input **any type of wind distribution derived from Ensemble Weather Forecasts**. The determination of the PDF from the ensemble forecast is an **open challenge**.

- Under the hypotheses that the aircraft follow a constant course and they are affected by the same wind, it has been found that **the three considered indicators depend on the crosswinds seen by both aircraft, but not on the along-track winds**.

- **Numerical results** have been presented for a **particular scenario** to show the **potentiality of the proposed methodology**.
Conclusions

- A first step on the assessment of the effects of wind uncertainty on conflict detection has been presented.

- The presented approach is capable of taking as input any type of wind distribution derived from Ensemble Weather Forecasts. The determination of the PDF from the ensemble forecast is an open challenge.

- Under the hypotheses that the aircraft follow a constant course and they are affected by the same wind, it has been found that the three considered indicators depend on the crosswinds seen by both aircraft, but not on the along-track winds.

- Numerical results have been presented for a particular scenario to show the potentiality of the proposed methodology.
Conclusions

- A first step on the assessment of the effects of wind uncertainty on conflict detection has been presented.

- The presented approach is capable of taking as input any type of wind distribution derived from Ensemble Weather Forecasts. The determination of the PDF from the ensemble forecast is an open challenge.

- Under the hypotheses that the aircraft follow a constant course and they are affected by the same wind, it has been found that the three considered indicators depend on the crosswinds seen by both aircraft, but not on the along-track winds.

- Numerical results have been presented for a particular scenario to show the potentiality of the proposed methodology.
Future Work

- Application to other conflict indicators.
- Obtention of wind distributions from actual ensemble forecasts.
- Formulation of the problem for trajectories composed of segments with different courses.
- Aircraft affected by a different wind obtained from a statistically-correlated wind-field.
Future Work

- Application to other conflict indicators.
- Obtention of wind distributions from actual ensemble forecasts.
- Formulation of the problem for trajectories composed of segments with different courses.
- Aircraft affected by a different wind obtained from a statistically-correlated wind-field.

Thanks! Questions?