TriControl
A Multimodal Air Traffic Controller Working Position

The Sixth SESAR Innovation Days, Delft, The Netherlands

Oliver Ohneiser, Malte Jauer
German Aerospace Center (DLR)
Institute of Flight Guidance
Controller Assistance
Braunschweig, Germany
Motivation and Concept

Controller Communication (Current):

- Potential communication bottleneck
- Suitability of current modalities?

Controller Communication (TriControl):

- Principles of inter-human communication
- Goal: quicker and more intuitive interaction

Fall-back: Radio Telephony
Previous Work

• Today many different interaction modalities available in various domains

• Investigations (see references in paper)
 • Technology screening (SESAR 10.10.02)
 • Multi-touch (SESAR 10.10.02)
 • Eye tracking (internal)
 • Speech recognition (AcListant® project)

• Development of unimodal prototypes and performance assessment (internal)
 • Mouse
 • Multi-touch
 • Speech recognition
Previous Work – Eye Tracking

• ATC usage possibilities
 • Mental workload and fatigue assessment
 • Input device
 • **Hands-free** interaction (manipulation of radar labels or electronic flight strips)
 • **Fast and natural** (e.g. compared to mouse)
 • Efficient pointing device

• Development of research prototype
 • Eye tracking device (Tobii)
 • Evaluated as suitable for callsign selection
Previous Work – Speech Recognition

- Automatic speech recognition (ASR) of controller-pilot communication
- DLR Development of an Active Listening Assistant in cooperation with Saarland University
- With context knowledge ➔ **Command error rate < 2%**
- Reducing controller workload by automating flight strip management
 - **Flight strips are integrated** into radar labels
 - Controller commands are **automatically inserted**
 - Time reduction for radar label maintenance **by a factor of 3**
Previous Work – Multi-Touch

• Unimodal prototype development in SESAR 10.10.02 (DLR, DFS)
• Investigation of usability
• Direct multi-touch manipulation of aircraft on radar screen
• Gestures
 • Altitude (vertical)
 • Speed (horizontal)
 • Headings (rotational)
 • Distance measuring (two fingers)
• Evaluation with 14 air traffic controllers:
 • Fast and efficient
 • Conceivable at CWPs
 • Error tolerant
 • Not a show-stopper due to safety issues
TriControl – Idea

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLH001</td>
<td>DESCEND</td>
<td>FL 70</td>
</tr>
</tbody>
</table>

- Aircraft identifier selected by eye gaze
- Command type selected via multi-touch gestures
- Command value is spoken
- Insertion of elements consecutively or simultaneously
TriControl – Set-up

- Standard display for radar and flight strip information
- Headset with “push-to-talk” via foot switch
- Contactless eye-tracking device
- Multi-touch device for gesture input
- No "head-down" time required
TriControl – Workflow

Automatic Speech Recognition

Eye Tracking Device

Multi-touch Display

Command

DLH001
descend
FL 70
TriControl – Gestures

- Operated intuitively and blindly
- Additional gestures for zooming, panning
TriControl – „RadarVision“ Flight Strip Integration

- Five grey cells in label
 - Command types

<table>
<thead>
<tr>
<th>DLR001 (H)</th>
<th>FL</th>
<th>Altitude</th>
<th>KT</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heading / Waypoint</td>
<td>Rate of Descent</td>
<td>Miscellaneous</td>
<td></td>
</tr>
</tbody>
</table>

- Empty Commands

<table>
<thead>
<tr>
<th>DLR001 (H)</th>
<th>F121</th>
<th>---</th>
<th>29</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td></td>
</tr>
</tbody>
</table>
TriControl – „RadarVision“ Flight Strip Integration

• Cancel command with single touch → white old value

• Newly inserted commands → yellow value

• Correction always possible → insert new command

• Acknowledge command with single touch → white new value
Preliminary Evaluation

- Structured feedback (12 people, many ATCOs) at World ATM Congress 2016
- System Usability Scale questionnaire (SUS)

- Average SUS score: 79 → Good usability of whole multimodal CWP
- “Frequent Use” only rated 2.9 → Eye tracking issues (glasses, contact lenses)?
- Simplicity rated best (3.3) → Clarity and intuitiveness of multimodal concept
- All other item ratings between 3.0 and 3.3 → Good usability of different aspects
Demonstration

Eye-Tracking

Multi-Touch

Speech Recognition

BER8411
A41 40 20 19
200 ---- ----
180 F100
Conclusion and Future Work

• **TriControl**: first multimodal air traffic CWP prototype with potential benefits:
 • Natural, intuitive, and efficient interaction to reduce mental workload
 • Speed gain through three parallel modalities (comparing conventional systems)

• **Other combinations** of interaction modalities / other devices (to be compared)

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

• User should choose **individually preferred modality**

• Implement contextual correction, automatically correct implausible commands

• Studies on operational feasibility, suitability, user acceptance, usability, operational improvements, capacity, and safety
Thank you for your attention!

Oliver Ohneiser, Malte Jauer
DLR, Institute of Flight Guidance
Controller Assistance

Oliver.Ohneiser@DLR.de
Phone: +49 531 295-2566

Malte-Levin.Jauer@DLR.de
Phone: +49 531 295-3021