Delay assignment optimization strategies at pre-tactical and tactical levels

A. Montlaur and L. Delgado

Dr Luis Delgado
Senior Research Fellow
University of Westminster
Universitat Politècnica de Catalunya
Overview

- Background
- Optimization models
 - System overview
 - Stakeholders
 - General ground holding problem formulation
 - Cost functions
- Scenario
- Results
 - Tactical
 - Pre-tactical
- Conclusions and further work
Background
Background

Tactical traffic management

Pre-tactical traffic management

Diagram showing the relationship between tactical and pre-tactical traffic management.
Background

Tactical traffic management

Extended region

E-AMAN
Background

- **RBS**
- **Minimising passenger delay**
- **Minimising delay considering turn-around**

![Diagram of slots and demand](chart)

<table>
<thead>
<tr>
<th>Demand</th>
<th>Slots available</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>S1</td>
</tr>
<tr>
<td>F2</td>
<td>S2</td>
</tr>
<tr>
<td>F3</td>
<td>S3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Fm</td>
<td>Sn</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optimisation assignment 1</th>
<th>Optimisation assignment 2</th>
<th>Optimisation assignment j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric 1</td>
<td>V₁₁</td>
<td>V₁₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V₁ₐ</td>
</tr>
<tr>
<td>Metric 2</td>
<td>V₂₁</td>
<td>V₂₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V₂ₐ</td>
</tr>
<tr>
<td>Metric i</td>
<td>Vᵢ₁</td>
<td>Vᵢ₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vᵢⱼ</td>
</tr>
</tbody>
</table>
Optimization models

- System overview
System overview

- Optimisation phases

 - Slot window between 10 to 15 minutes
 - Delay realised on-ground at origin

 • Slot window between 1 to 3 minutes
 • Re-optimised every time a flight enters the outer radius
 • Maximum 35 minutes of delay assigned

- Pre-tactical optimisation

 - Origin

- Tactical uncertainty

 - Tactical optimisation

 - E-AMAN

 - Destination

- 50 km

- 500 km
Optimization models
- Stakeholders
Stakeholders

- Airlines
 - Flight centric metrics

- Passengers
 - Passenger centric metrics

- Importance of optimization function focus
Optimization models
- General ground holding problem formulation
General GHP formulation

- Deterministic Ground Holding Problem (GHP)
- Constraints applied at destination
 - outer or inner radius

General GHP formulation

- Set of intervals
- Set of flights
- Inputs defined
 - Capacity at each time interval
 - Scheduled time of arrival for each flight
- Decision variables
 - If a flight is assigned to arrive at a given time interval
 (starting at the earliest possible arrival time for that flight)
- Problem formulation
 - Assign flights to intervals minimizing cost
 (all flights must be assigned, capacity not overpassed)

Optimization models
- Cost functions
Cost functions

• Four costs models considered (c_{ft})
 - GHP Flight: Delay per flight minimised

\[c_{ft} = \text{Arrival time} - \text{Scheduled arrival time} \]

Arrival delay
Cost functions

• Four costs models considered (c_{ft})
 – GHP PAX: Delay per passenger minimised

$$c_{ft} = \text{Number of passengers arriving} \times \text{Arrival delay}$$
Cost functions

- Four costs models considered (c_{ft})
 - GHP Reac: Delay per flight considering reactionary departure delay

$$c_{ft} = \text{Arrival delay} + 1.8 \times \text{Subsequent departure delay}$$

- Arrival time
- Latest arrival time not generate departure delay
Cost functions

- Four costs models considered (c_{ft})
 - GHP Reac Pax: Delay per passengers considering reactionary departure delay

\[
c_{ft} = \text{Passenger arrival delay} \times \text{Number of passengers arriving} + 1.8 \times \text{Subsequent passenger departing delayed} \times \text{Number of passengers departing} \times \text{Subsequent departure delay}
\]
Cost functions

- Four costs models considered (c_{ft})
 - GHP Flight: Delay per flight minimised
 - GHP PAX: Delay per passenger minimised
 - GHP Reac: Delay per flight considering reactionary departure delay
 - GHP Reac Pax: Delay per passengers considering reactionary departure delay
Scenario and model uncertainty
Scenario definition and uncertainty

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-model</th>
<th>Description</th>
<th>Times</th>
</tr>
</thead>
</table>
| Scenario | Flight demand | • Based on 12SEP14 at CDG
• Between 5:00 and 11:00 GMT
• Cancelled flight considered pre-tactically but not tactically
• Flights within inner radius excluded | Once |

Demand Data Repository 2 (DDR2)
Scenario definition and uncertainty

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-model</th>
<th>Description</th>
<th>Times</th>
</tr>
</thead>
</table>
| Scenario| Flight demand | • Based on 12SEP14 at CDG
• Between 5:00 and 11:00 GMT
• Cancelled flight considered pre-tactically but not tactically
• Flights within inner radius excluded | Once |
| Turnaround| | | |

Top 10 AC types

![Bar chart showing the number of flights per aircraft type]

A320 turn around times

![Graph showing the proportion of turnaround time]

Legend:
- **Burr probability distribution**
- **Real data**
Scenario definition and uncertainty

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-model</th>
<th>Description</th>
<th>Times</th>
</tr>
</thead>
</table>
| Flight demand | Based on 12SEP14 at CDG
• Between 5:00 and 11:00 GMT
• Cancelled flight considered pre-tactically but not tactically
• Flights within inner radius excluded |
| Turnaround | AC type for minimum turnaround time (MTT)
• AC types top 10 used
• AC categories otherwise
• Burr and Weibull distribution fitting
• $MTT(f) = \text{Max}(\text{rand}(0.1,0.4),\text{STT}(f))$ | Once |
Scenario definition and uncertainty

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-model</th>
<th>Description</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight demand</td>
<td></td>
<td>• Based on 12SEP14 at CDG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Between 5:00 and 11:00 GMT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cancelled flight considered pre-tactically but not tactically</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flights within inner radius excluded</td>
<td></td>
</tr>
<tr>
<td>Turnaround</td>
<td></td>
<td>• AC type for minimum turnaround time (MTT)</td>
<td>Once</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AC types top 10 used</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AC categories otherwise</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Burr and Weibull distribution fitting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• $MTT(f) = \text{Max}(\text{rand}(0.1,0.4),STT(f))$</td>
<td></td>
</tr>
<tr>
<td>Passenger</td>
<td></td>
<td>• Triangular distribution between 60-95% centered at 85%</td>
<td></td>
</tr>
<tr>
<td>demand</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scenario definition and uncertainty

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-model</th>
<th>Description</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight demand</td>
<td>Based on 12SEP14 at CDG · Between 5:00 and 11:00 GMT · Cancelled flight considered pre-tactically but not tactically · Flights within inner radius excluded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnaround</td>
<td>AC type for minimum turnaround time (MTT) · AC types top 10 used · AC categories otherwise · Burr and Weibull distribution fitting · $MTT(f) = \max(\text{rand}(0.1,0.4), STT(f))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passenger demand</td>
<td>Triangular distribution between 60-95% centered at 85%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>80 acc/h nominal · 40 acc/h regulated from 6:00 to 8:00 GMT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing arrival demand at CDG, 12 Sept 2014](image)
Scenario definition and uncertainty

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-model</th>
<th>Description</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight demand</td>
<td></td>
<td>• Based on 12SEP14 at CDG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Between 5:00 and 11:00 GMT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cancelled flight considered pre-tactically but not tactically</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flights within inner radius excluded</td>
<td></td>
</tr>
<tr>
<td>Turnaround</td>
<td></td>
<td>• AC type for minimum turnaround time (MTT)</td>
<td>Once</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AC types top 10 used</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AC categories otherwise</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Burr and Weibull distribution fitting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• $MTT(f) = \text{Max}(\text{rand}(0.1,0.4),STT(f))$</td>
<td></td>
</tr>
<tr>
<td>Passenger demand</td>
<td></td>
<td>• Triangular distribution between 60-95% centered at 85%</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td></td>
<td>• 80 acc/h nominal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 40 acc/h regulated from 6:00 to 8:00 GMT</td>
<td></td>
</tr>
<tr>
<td>Radii</td>
<td></td>
<td>• Outer 500 km (270 NM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inner 50 km (27 NM)</td>
<td></td>
</tr>
</tbody>
</table>
Scenario definition and uncertainty

<table>
<thead>
<tr>
<th>Model</th>
<th>Sub-model</th>
<th>Description</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight demand</td>
<td></td>
<td>• Based on 12SEP14 at CDG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Between 5:00 and 11:00 GMT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cancelled flight considered pre-tactically but not tactically</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flights within inner radius excluded</td>
<td></td>
</tr>
<tr>
<td>Turnaround</td>
<td></td>
<td>• AC type for minimum turnaround time (MTT)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AC types top 10 used</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AC categories otherwise</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Burr and Weibull distribution fitting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• $\text{MTT}(f^) = \text{Max}(\text{rand}(0.1,0.4),\text{STT}(f^))$</td>
<td></td>
</tr>
<tr>
<td>Passenger demand</td>
<td></td>
<td>• Triangular distribution between 60-95% centered at 85%</td>
<td>Once</td>
</tr>
<tr>
<td>Capacity</td>
<td></td>
<td>• 80 acc/h nominal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 40 acc/h regulated from 6:00 to 8:00 GMT</td>
<td></td>
</tr>
<tr>
<td>Radii</td>
<td></td>
<td>• Outer 500 km (270 NM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inner 50 km (27 NM)</td>
<td></td>
</tr>
<tr>
<td>Optimisation window</td>
<td></td>
<td>• 15’ pre-tactical (20 acc/15’ nominal, 10 acc/15’ regulated)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3’ tactical (4 acc/3’ nominal, 2 acc/3’ regulated)</td>
<td></td>
</tr>
</tbody>
</table>
Scenario definition and uncertainty

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tactical noise</td>
<td>• Difference scheduled actual</td>
<td>Monte Carlo 50</td>
</tr>
<tr>
<td></td>
<td>• Burr distribution</td>
<td>times</td>
</tr>
</tbody>
</table>

Diagram Notes:
- **Tactical optimisation**
- **E-AMAN**
- **Tactical uncertainty**
- **Origin**
- **Destination**
- **50 km**
- **500 km**
Results
Results

• Per flight and per passenger
 – Mean arrival delay
 – Mean tactical delay, i.e., delay generated at the E-AMAN
 – Mean reactionary delay
 – Mean total delay (arrival and reactionary)
 – Number of flights with reactionary delay
 – Maximum reactionary delay
Tactical results

![Graph showing tactical delay per flight and per passenger (PAX)]
Pre-Tactical results

Arrival and Reactionary Total Delay per Flight

Arrival and Reactionary Total Delay per PAX
Pre-Tactical results

Number of flights with Reactionary Delay

- GHP Reac PAX–RBS
- GHP Reac–RBS
- GHP PAX–RBS
- GHP flight–RBS
- RBS–RBS

Maximum Reactionary Delay

- GHP Reac PAX–RBS
- GHP Reac–RBS
- GHP PAX–RBS
- GHP flight–RBS
- RBS–RBS

Number of flights [55 - 75]
Delay [min] [60 - 140]
Pre-Tactical results
Pre-Tactical results
Conclusions and further work
Conclusions

• Flight and passenger centric metrics might lead to different results

• Four optimization functions considered
 – Arrival delay for flight
 – Arrival delay for passengers
 – Total delay for flight
 – Total delay for passengers
Conclusions

- Tactical management and delay is required to adjust arrivals
 - All strategies represent benefit with respect to RBS, benefit very small and there are not different between strategies
 - At the E-AMAN scope a more sophisticated strategy rather than RBS is not justified
 - E-AMAN allows to manage delay more efficiently leading to benefits in terms of fuel consumption, reduction of holdings, etc.
Conclusions

• Pre-tactical management (ATFM delay)
 – Other strategies rather than RBS might lead to better results for flights and passengers
 – If optimisation only focus on arrival delay, counter-productive effects might be generated
 – Minimising total delay considering turnaround the best strategies
 – Passenger centric might lead to higher reactionary delays and less fair delay assignment
Further work

• Passenger delay values are preliminary
 – Values highly correlated with aircraft size
 – Need to incorporate itineraries with connections
 – We expect to find strategies that will benefit passengers without impacting flight metrics significantly

• Propagation of delay should consider other sources of delay

• Cost of delay incorporated
Thank you