Recommendations on trajectory selection in flight planning based on weather uncertainty

Alan Hally, Jacob Cheung, Jaap Heijstek, Adri Marsman, Jean-Louis Brenguier

SESAR INNOVATION DAYS, 1st-3rd Dec. 2015, Bologna
Introduction
Overview

- Introduction
- Ensemble Prediction System (EPS)
 - Comparison of EPSs
Overview

→ Introduction

→ Ensemble Prediction System (EPS)
 → Comparison of EPSs

→ Methodology (EPS + TP)
Overview

Introduction

Ensemble Prediction System (EPS)
 - Comparison of EPSs

Methodology (EPS + TP)

Example Case
Overview

Introduction

Ensemble Prediction System (EPS)
 - Comparison of EPSs

Methodology (EPS + TP)

Example Case

Conclusions and Future Work
Overview

Introduction

Ensemble Prediction System (EPS)

Comparison of EPSs

Methodology (EPS + TP)

Example Case

Conclusions and Future Work
Trajectory Predictors (TP) currently use deterministic meteorological (MET) forecasts

Deterministic MET forecasts contain uncertainties due to errors from:

- Atmospheric chaos
- Lack of observations
- Modelling errors

These uncertainties lead to **unknown uncertainty** in the trajectory

Unknown uncertainty in flight time and thus **fuel consumption**
Trajectory Predictors (TP) currently use deterministic meteorological (MET) forecasts.

Deterministic MET forecasts contain uncertainties due to errors from:

- Atmospheric chaos
- Lack of observations
- Modelling errors

These uncertainties lead to **unknown uncertainty** in the **trajectory**

Unknown uncertainty in **flight time** and thus **fuel consumption**

Approach?

Use **Ensemble Prediction System** + TP
Ensemble Prediction System (EPS)

How does an EPS capture uncertainty?

- Initial condition with uncertainty
- True state of current weather
- Ensemble forecasts
- Best estimate of current state of weather
- True state of weather in future
- State of weather in future predicted by deterministic forecast
- Forecast uncertainty

t_0 to Time
Ensemble Prediction System (EPS)

How does an EPS capture uncertainty?

Maximise **spread** and thus cover whole **envelope** of **future weather scenarios**.
Ensemble Prediction System (EPS)

How does an EPS capture uncertainty?

Maximise **spread** and thus cover whole **envelope** of future weather scenarios

Useful in nominal (**uncertainty in winds in the upper-atmosphere**) and non-nominal weather (**convection**)
Ensemble Prediction System (EPS)

How does an EPS capture uncertainty?

Maximise spread and thus cover whole envelope of future weather scenarios

Useful in nominal (uncertainty in winds in the upper-atmosphere) and non-nominal weather (convection)

Quantify uncertainty in flight planning due to weather
Ensemble Prediction System (EPS)

Maximise spread and thus cover whole envelope of future weather scenarios

Useful in nominal (uncertainty in winds in the upper-atmosphere) and non-nominal weather (convection)

Quantify uncertainty in flight planning due to weather

Lead to a more accurate description of extra fuel needed for flight
Ensemble Prediction System (EPS)

All world-wide weather centres run EPS systems daily
Ensemble Prediction System (EPS)

All world-wide weather centres run EPS systems daily

Met Office Global and Regional Ensemble Prediction System (MOGREPS)
Global, Hor. Res. ~33 km, 70 Vert. Levels, 12 members, 00,06,12 & 18UTC
Ensemble Prediction System (EPS)

All world-wide weather centres run EPS systems daily

<table>
<thead>
<tr>
<th>Met Office Global and Regional Ensemble Prediction System (MOGREPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global, Hor. Res. ~33 km, 70 Vert. Levels, 12 members, 00,06,12 & 18UTC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Provision Ensemble Action de Recherche Petite Échelle Grande Échelle (PEARP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global, Hor. Res. 15.5 km (over France), 65 Vert. Levels, 35 members, 06 & 18UTC</td>
</tr>
</tbody>
</table>
Ensemble Prediction System (EPS)

All world-wide weather centres run EPS systems daily

Met Office Global and Regional Ensemble Prediction System (MOGREPS)
Global, Hor. Res. ~33 km, 70 Vert. Levels, 12 members, 00,06,12 & 18UTC

Provision Ensemble Action de Recherche Petite Échelle Grande Échelle (PEARP)
Global, Hor. Res. 15.5 km (over France), 65 Vert. Levels, 35 members, 06 & 18UTC

European Centre for Medium-Range Weather Forecast (ECMWF)
Global, Hor. Res. ~32 km, Vert. 91 levels, 51 members, 00 & 12UTC
<table>
<thead>
<tr>
<th>Ensemble Prediction System (EPS)</th>
<th>Met Office Global and Regional Ensemble Prediction System (MOGREPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Global, Hor. Res. ~33 km, 70 Vert. Levels, 12 members, 00,06,12 & 18UTC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Provision Ensemble Action de Recherche Petite Échelle Grande Échelle (PEARP)</th>
<th>Provision Ensemble Action de Recherche Petite Échelle Grande Échelle (PEARP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Global, Hor. Res. 15.5 km (over France), 65 Vert. Levels, 35 members, 06 & 18UTC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>European Centre for Medium-Range Weather Forecast (ECMWF)</th>
<th>European Centre for Medium-Range Weather Forecast (ECMWF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Global, Hor. Res. ~32 km, Vert. 91 levels, 51 members, 00 & 12UTC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPER</th>
<th>Multi-model ensemble (mix of all ensembles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>98 members, 18UTC initialisation time</td>
</tr>
</tbody>
</table>
Overview

Introduction

Ensemble Prediction System (EPS)
 Comparison of EPSs

Methodology (EPS + TP)

Example Case

Conclusions and Future Work
Comparison of EPSs

Relative Operating Characteristic (ROC) curve

ROC measures the **ability** of the **forecast** to discriminate between two alternative outcomes (yes/no) at different probability thresholds.

ROC is conditioned on the observations (i.e., given that an event **occurred**, what was the corresponding **forecast**?)

The **Area Under the ROC** curve (**AUC**) is the value which is often used.

Want **AUC** close to **1** as possible (translates to high Probability of Detection (**POD**) and low Probability of False Detection (**POFD**))

The **ROC** can be considered as a measure of potential **usefulness**.
Comparison of EPSs

Relative Operating Characteristic (ROC) curve

ROC measures the ability of the forecast to discriminate between two alternative outcomes (yes/no) at different probability thresholds.

ROC is conditioned on the observations (i.e., given that an event occurred, what was the corresponding forecast?)

The Area Under the ROC curve (AUC) is the value which is often used.

Want AUC close to 1 as possible (translates to high Probability of Detection (POD) and low Probability of False Detection (POFD)).

The ROC can be considered as a measure of potential usefulness.

\[\text{HIT} = \frac{a}{(a+c)} \quad \text{POFD} = \frac{b}{(b+d)} \]

<table>
<thead>
<tr>
<th>Event Forecast</th>
<th>Event Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>a</td>
</tr>
<tr>
<td>No</td>
<td>c</td>
</tr>
</tbody>
</table>
Comparison of EPSs

Relative Operating Characteristic (ROC) curve

ROC measures the ability of the forecast to discriminate between two alternative outcomes (yes/no) at different probability thresholds.

ROC is conditioned on the observations (i.e., given that an event occurred, what was the corresponding forecast?)

The Area Under the ROC curve (AUC) is the value which is often used.

Want AUC close to 1 as possible (translates to high Probability of Detection (POD) and low Probability of False Detection (POFD)).

The ROC can be considered as a measure of potential usefulness.

<table>
<thead>
<tr>
<th>Event Forecast</th>
<th>Event Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>a</td>
</tr>
<tr>
<td>No</td>
<td>c</td>
</tr>
<tr>
<td>Yes</td>
<td>b</td>
</tr>
<tr>
<td>No</td>
<td>d</td>
</tr>
</tbody>
</table>

\[
HIT = \frac{a}{(a + c)} \quad POFD = \frac{b}{(b + d)}
\]
Comparison of EPSs

<table>
<thead>
<tr>
<th>AUC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>No discrimination/prediction skill (equal to climatology)</td>
</tr>
<tr>
<td>0.6-0.7</td>
<td>Poor discrimination/prediction skill (slightly better than climatology)</td>
</tr>
<tr>
<td>0.7-0.8</td>
<td>Acceptable</td>
</tr>
<tr>
<td>0.8-0.9</td>
<td>Excellent</td>
</tr>
<tr>
<td>>0.9</td>
<td>Outstanding</td>
</tr>
</tbody>
</table>
Comparison of EPSs

<table>
<thead>
<tr>
<th>AUC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>No discrimination/prediction skill (equal to climatology)</td>
</tr>
<tr>
<td>0.6-0.7</td>
<td>Poor discrimination/prediction skill (slightly better than climatology)</td>
</tr>
<tr>
<td>0.7-0.8</td>
<td>Acceptable</td>
</tr>
<tr>
<td>0.8-0.9</td>
<td>Excellent</td>
</tr>
<tr>
<td>>0.9</td>
<td>Outstanding</td>
</tr>
</tbody>
</table>

4 different model configurations compared using AUC score

One month (Jan 2015) of observed AMDAR wind data at FL340 compared to wind forecast by model at 250hPa

Large dataset and thus **statistically robust** verification of model ability

Domain: 75N-10N, 105W-15E
Comparison of EPSs

AUC score between 0.85 and 0.96 demonstrates excellent model resolution.
Comparison of EPSs

AUC score between 0.85 and 0.96 demonstrates excellent model resolution.

Dispersion of RCRV score illustrates models’ spread. SUPER (multi-model ensemble) has greatest spread at +36hr lead time.
Overview

- Introduction
- Ensemble Prediction System (EPS)
 - Comparison of EPSs
- Methodology (EPS + TP)
- Example Case
- Conclusions and Future Work
Methodology

Probabilistic Trajectory Prediction (PTP)
Methodology

Probabilistic Trajectory Prediction (PTP)

Ensemble forecast

TP TP TP TP

Ensemble trajectories

Statistical characteristics of ensemble trajectories

Ensemble of trajectories

Represents **uncertainty** related to uncertainty in MET forecasts

Gives a degree of **uncertainty** on important **flight parameters**
Methodology

Predicted Trajectory

<table>
<thead>
<tr>
<th>EWF member 1</th>
<th>T^1</th>
<th>T^2</th>
<th>...</th>
<th>T^m</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWF member 2</td>
<td>t_{11}</td>
<td>t_{12}</td>
<td>...</td>
<td>t_{1m}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>EWF member n</td>
<td>t_{n1}</td>
<td>t_{n2}</td>
<td>...</td>
<td>t_{nm}</td>
</tr>
</tbody>
</table>

PDF of t_{1m}

![Histograms for different T_i values]
Methodology

<table>
<thead>
<tr>
<th>Predicted Trajectory →</th>
<th>T¹</th>
<th>T²</th>
<th>...</th>
<th>Tᵐ</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWF member 1</td>
<td>t₁₁</td>
<td>t₁₂</td>
<td>...</td>
<td>t₁ₘ</td>
</tr>
<tr>
<td>EWF member 2</td>
<td>t₂₁</td>
<td>t₂₂</td>
<td>...</td>
<td>t₂ₘ</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>EWF member n</td>
<td>tₙ₁</td>
<td>tₙ₂</td>
<td>...</td>
<td>tₙₘ</td>
</tr>
<tr>
<td>PDF of tₙₘ</td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

High projected cost (flight time/fuel)

But **low** uncertainty
Methodology

<table>
<thead>
<tr>
<th>EWF member</th>
<th>t_{11}</th>
<th>t_{12}</th>
<th>...</th>
<th>t_{1m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWF member 2</td>
<td>t_{21}</td>
<td>t_{22}</td>
<td>...</td>
<td>t_{2m}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>EWF member n</td>
<td>t_{n1}</td>
<td>t_{n2}</td>
<td>...</td>
<td>t_{nm}</td>
</tr>
</tbody>
</table>

PDF of t_{mn}

High projected cost (flight time/fuel)
But **low** uncertainty

Lower projected cost (flight time/fuel)
But **higher** uncertainty
A 12 member MOGREPS ensemble was used as input to a simple TP system for a case study flight from London (EGLL) to New York (KJFK) on the 25th of January 2015.

Trajectories shown in each panel with the Probability Density Function (PDF) of the flight times for each trajectory shown in the bottom right.

The grey bars represent the standard deviation of the flight times.
Example Case

A 12 member MOGREPS ensemble was used as input to a simple TP system for a case study flight from London (EGLL) to New York (KJFK) on the 25th of January 2015.

Trajectories shown in each panel with the Probability Density Function (PDF) of the flight times for each trajectory shown in the bottom right.

The grey bars represent the standard deviation of the flight times.
Overview

Introduction

Ensemble Prediction System (EPS)

Comparison of EPSs

Methodology (EPS + TP)

Example Case

Conclusions and Future Work
A universal methodology has been proposed which incorporates ensemble prediction systems (EPSs) into existing deterministic TP systems.
A universal methodology has been proposed which incorporates ensemble prediction systems (EPSs) into existing deterministic TP systems.

Using specific metrics, we have shown that the EPSs are capable of capturing specific nominal weather 36 hours before take-off time. A combination of the EPSs further improves performance.
Conclusions

A universal methodology has been proposed which incorporates ensemble prediction systems (EPSs) into existing deterministic TP systems.

Using specific metrics, we have shown that the EPSs are capable of capturing specific nominal weather 36 hours before take-off time. A combination of the EPSs further improves performance.

A trajectory ensemble was generated using each member of an EPS. A representation of the uncertainty involved in each member of the trajectory ensemble was demonstrated to help in decision making by providing a range of trajectory cost (flight time, fuel) values.
A universal methodology has been proposed which incorporates ensemble prediction systems (EPSs) into existing deterministic TP systems.

Using specific metrics, we have shown that the EPSs are capable of capturing specific nominal weather 36 hours before take-off time. A combination of the EPSs further improves performance.

A trajectory ensemble was generated using each member of an EPS. A representation of the uncertainty involved in each member of the trajectory ensemble was demonstrated to help in decision making by providing a range of trajectory cost (flight time, fuel) values.

This would allow TP users to select a suitable trajectory according to their optimum cost distributions.
Our **approach** is currently being validated within **WP11.1**

Extend the approach to the **time interval** close to the **execution** phase using **nowcasting**

Further developments on **Ensemble Weather Forecast (EWF) optimisation**, e.g. ensemble weighting
Thank you for your attention

Met Office

IMET

METEO FRANCE

Alan Hally, Jacob Cheung, Jaap Heijstek, Adri Marsman, Jean-Louis Brenguier

SESAR INNOVATION DAYS, 1st-3rd Dec. 2015, Bologna
Methodology

<table>
<thead>
<tr>
<th>TP</th>
<th>T¹</th>
<th>T²</th>
<th>...</th>
<th>Tᵐ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t₁₁</td>
<td>t₂₁</td>
<td>...</td>
<td>tₘ₁</td>
<td></td>
</tr>
<tr>
<td>Weather 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t₁₂</td>
<td>t₂₂</td>
<td>...</td>
<td>tₘ₂</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t₁ₙ</td>
<td>t₂ₙ</td>
<td>...</td>
<td>tₘₙ</td>
<td></td>
</tr>
</tbody>
</table>

PDF

Low projected cost (flight time/fuel)
But **high** uncertainty

Higher projected cost (flight time/fuel)
But **lower** uncertainty