Self-Managing Conflict Resolution for Autonomous Taxiing Tugs: An Initial Survey

Zarrin Chua
Institut Supérieur de l'Aéronautique et de l'Espace - SUPAERO

1 December 2015
adding an autonomous tug

• Without a human onboard
• What prioritization strategy should be used to resolve potential conflicts between two tugs?
soliciting atco input
Revue / Review

Veuillez choisir l'option qui correspond le mieux à votre choix de priorité entre les taxibots.
Please select the option that best matches your prioritization approach for the taxibots.

☐ J'ai regardé les critères de chaque taxibot et choisi celui qui semblait être globalement "le meilleur" / Looked at the criteria of each aircraft and picked the taxibot that seemed to be globally "better"

☐ Je n'ai utilisé a priori qu'un seul critère ; si jamais le critère était identique entre les avions, j'ai utilisé un second critère et ainsi de suite / Chose between aircraft based on one criterion, if they were equal, used another criterion until I found one "better" than the other

☐ Other: ____________________

Veuillez choisir les critères que vous avez utilisés. Si vos critères ne sont pas dans cette liste, écrivez-les dessous, séparés par une virgule.
Please choose the criteria that you used. If your criteria are not in the list, write them below, separated by a comma.

☐ Temps de roulage avant / Time called prior

☐ Temps d'arrivée prévue / ETA

☐ Trajet prévu / Predicted trajectory
online exercise

- 73 scenarios
- 17 participants (11 airports represented; France, Spain, Turkey, USA)
- Analysis:
 - Linear multivariate regression model with logical variables
 - One-way Kruskal-Wallis ANOVA
 - Mann-Whitney Wilcoxon rank-sum test
• Radar image of generic intersection at generic airport
cues used during test

- Radar image of generic intersection at generic airport
cues used during test

- Radar image of generic intersection at generic airport
- Radar image of generic intersection at generic airport
• Position relative to the intersection (PosRel; Closer, Farther)
Path after intersection (PathAfter; Turn, Straight)
• Estimated time of arrival at Destination (ETA; +2 mins, +10)
• Visual representation of non-quantified information
- Taxi time prior to intersection (TaxiPrior: -10 mins, -5)
- Visual representation of non-quantified information
design of experiments

- 3^{5-1} fractional factorial design (Xu 2004) – 81 runs, three levels
- Example: with NAC cue
• 3^{5-1} fractional factorial design (Xu 2004) – 81 runs, three levels
• Example: with NAC cue
• 3^{5-1} fractional factorial design (Xu 2004) – 81 runs, three levels
• Example: with NAC cue
assumptions

1. Empty tugs operate at a constant velocity

- None of these situations occur near the runway
- Participants asked to respond in 5s or less
assumptions

1. Empty tugs operate at a constant velocity
2. Tugs are equipped with data link (no radio)

- None of these situations occur near the runway
- Participants asked to respond in 5s or less
assumptions

1. Empty tugs operate at a constant velocity
2. Tugs are equipped with data link (no radio)
3. Stopping a tug requires tablet interaction

- None of these situations occur near the runway
- Participants asked to respond in 5s or less
assumptions

1. Empty tugs operate at a constant velocity
2. Tugs are equipped with data link (no radio)
3. Stopping a tug requires tablet interaction
4. Data link transfer is instantaneous

• None of these situations occur near the runway
• Participants asked to respond in 5s or less
cue usage

\[y = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_5 x_5 + \beta_{12}(x_1 \vee x_2) + \beta_{45}(x_4 \vee x_5) \]
- All cues except PathAfter are significant
- Primary cue is relative position of each tug to intersection
 - Secondary cue used is either NAC or ETA
cue usage

\[y = \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_5 x_5 + \beta_{12} (x_1 \lor x_2) + \beta_{45} (x_4 \lor x_5) \]

- All cues except PathAfter are significant.
- Primary cue is relative position of each tug to intersection.
 - Secondary cue used is either NAC or ETA.

Use of ETA cue
- Delay to tug+ETA2 greater impact than tug+ETA10.
- Perhaps still accounting for airport location.
cue usage by airport, exp, country

ETA: +2
TaxiPrior: -10

ATCo from larger airports more likely to choose tug with low values
cue usage by airport, exp, country

<table>
<thead>
<tr>
<th>ETA: +2</th>
<th>TaxiPrior: -10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCo from larger airports more likely to choose tug with low values</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETA: +10</th>
<th>TaxiPrior: -5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCo with more experience are more likely to choose tug with high values</td>
<td></td>
</tr>
</tbody>
</table>

HFES Annual Meeting 2015 (Los Angeles, LA, USA)
cue usage by airport, exp, country

ETA: +2
TaxiPrior: -10

ATCo from larger airports more likely to choose tug with low values

ATCo with more experience are more likely to choose tug with high values

ETA: +10
TaxiPrior: -5

However this effect is very minor and dominated by the environmental cues. No changes in cue usage due to these variables.
Modern Taxiing

cue usage by airport, exp, country

ETA: +2
TaxiPrior: -10

ATCo from larger airports more likely to choose tug with low values

ATCo with more experience are more likely to choose tug with high values

ETA: +10
TaxiPrior: -5

However this effect is very minor and dominated by the environmental cues. No changes in cue usage due to these variables.
ATCo from larger airports more likely to choose tug with low values

ATCo with more experience are more likely to choose tug with high values

ETA: +2
TaxiPrior: -10

ETA: +10
TaxiPrior: -5

However this effect is very minor and dominated by the environmental cues. No changes in cue usage due to these variables.
Two highest beta values plotted against self-reported cue usage

Almost 1/3 mismatch (5 out of 17 participants)

Cannot always rely on participant qualitative feedback
• Physical study limitations – information not presented similar to real working conditions
• Small sample of different cue values (e.g. different results if followed by another tug? Different high/low ETA values?)
• Only one type of decision making strategy (Take the Best)
• No information regarding their charges (e.g. departure manager, airport flight duty period)
• Future end game: operational requirements (based on detailed use studies)
Effect of Technology on Vehicle Airport Taxiing Prioritization (Part 2)

January – February 2016
• Initial investigation into autonomous tug conflict resolution strategies
• Online international study with static scenarios
• Closest to intersection
 • Number of aircraft behind tug
 • Estimated time to destination
• Additional follow-up study planned
questions?

This work is co-financed by EUROCONTROL acting on behalf of the SESAR Joint Undertaking (the SJU) and the EUROPEAN UNION as part of Work Package E in the SESAR Programme. Opinions expressed in this work reflect the authors’ views only and EUROCONTROL and/or the SJU shall not be considered liable for them or for any use that may be made of the information contained herein.

Acknowledgements

• G. Durantin, F. Lancelot, M. Cousy, F. André
• Anonymous air traffic controller participants
• Neuroergonomics group at ISAE-SUPAERO

ATCo and want to participate? Or work with ATCos? Contact me (zarrin.chua@gmail.com) for study online link!