Case Study of Adverse Weather Avoidance Modelling

Patrick Hupe*, Thomas Hauf*, Carl-Herbert Rokitansky**

* University of Hannover, Germany
** University of Salzburg, Austria

4th SESAR Innovation Days
Madrid, 25th November 2014
Case Study of Adverse Weather Avoidance Modelling

Outline

• Motivation and Objectives

• The weather diversion model DIVMET

• The air traffic simulation model NAVSIM

• Case Study: Air traffic over Austria during a squall-line passage

• Summary and Outlook
Motivation and Objectives

17th July 2010: Squall line over Austria and Czech Republic
 extension: >500 km, durability: ~6 hrs

 → Impact on air traffic
 → Austro Control: Additional workload for air traffic controllers

Can we predict the sector occupancy for various time scales by forecasting weather impacted flight trajectories?

Basic question: How accurately and realistically can we simulate trajectories in adverse weather situations?
 Case study: thunderstorms, 1 hr time horizon (over Austria), based on observations, but not yet on forecasts
THE WEATHER DIVERSION MODEL
DIVMET
DIVMET

Input:
- Flight trajectories
- Weather situation

Parameters:
- Distance to CBs
- Field of view
How much weather information is considered?

Limited view (business case: on-board radar at night)

Full view (unlimited weather information in the cockpit)
How much weather information is considered?

Limited view (business case: on-board radar at night) Full view (unlimited weather information in the cockpit)
DIVMET

Input:
- Flight trajectories
- Weather situation

Parameters:
- Distance to CBs
- Field of view

→ Realistic representation of diversion routes

→ Diagnostics: Punctuality, distance, fuel consumption

Limitations:
- 2-dimensional
- Single AC with constant speed
- Without AC performance data
THE AIR TRAFFIC SIMULATION MODEL
NAVSIM

C.-H. Rokitansky
NAVSIM: Global air traffic simulation tool

Up to 300,000 aircraft per day

Simulation: real time and fast time (up to 60x)

4D trajectories

Input:
- Traffic Demand
- Base-of-Aircraft-Data (BADA)
- Navigation data
NAVSIM

Output:
• Position recording

Display (radar-like screen):
• Weather polygons
• FPL route (planned)
• CPR route (actually flown)
• POS route (NAVSIM simulated)

AC-AC conflict detection

Realistic representation of the entire air traffic from gate to gate!
Case Study of Adverse Weather Avoidance Modelling
Patrick Hupe et al.

4th SESAR Innovation Days, Madrid

12

CASE STUDY: AIR TRAFFIC OVER AUSTRIA DURING A SQUALL LINE PASSAGE
17th July 2010, 12:30 UTC – 18:00 UTC

>26,000 flights over Europe (Traffic Demand)

Weather radar data: CERAD
- Threshold for polygons: 37 dBZ ↔ 8 mm/h
- Time interval: 15 min

„Area of relevance“

![Map showing the area of relevance](image_url)
Scenario: 8 flights in the area of relevance
Scenario: 8 flights in the area of relevance

<table>
<thead>
<tr>
<th>AC-Type</th>
<th>Start (UTC)</th>
<th>Departure</th>
<th>Destination</th>
<th>Detour in % of FPL route</th>
</tr>
</thead>
<tbody>
<tr>
<td>B737</td>
<td>13:53</td>
<td>Graz</td>
<td>Berlin-Tegel</td>
<td>0</td>
</tr>
<tr>
<td>F100</td>
<td>14:34</td>
<td>Vienna</td>
<td>Frankfurt/M</td>
<td>-2</td>
</tr>
<tr>
<td>B737</td>
<td>15:24</td>
<td>Amsterdam</td>
<td>Budapest</td>
<td>+1</td>
</tr>
<tr>
<td>B738</td>
<td>15:50</td>
<td>Palma Mall.</td>
<td>Bratislava</td>
<td>+1</td>
</tr>
<tr>
<td>A319</td>
<td>15:59</td>
<td>Amsterdam</td>
<td>Split</td>
<td>+12</td>
</tr>
<tr>
<td>F100</td>
<td>16:36</td>
<td>Zurich</td>
<td>Budapest</td>
<td>+14</td>
</tr>
<tr>
<td>F100</td>
<td>16:43</td>
<td>Munich</td>
<td>Vienna</td>
<td>0</td>
</tr>
<tr>
<td>CRJ9</td>
<td>16:58</td>
<td>Düsseldorf</td>
<td>Vienna</td>
<td>0</td>
</tr>
</tbody>
</table>

Weather update (interval: 15 min)
New route calculation
Residual route is deconflicted
Case Study of Adverse Weather Avoidance Modelling
Patrick Hupe et al.

Flight from Vienna to Frankfurt

- Distance to CBs: 5 NM
- Distance to CBs: 10 NM
Flight from Vienna to Frankfurt

Flight from Vienna to Frankfurt, simulated with varied parameters (distance to CBs, field of view)

Conclusions:
- Actual flight can partly be represented
- Smallest deviation from FPL with $d = 5$ NM
- Largest detours with limited view and $d > 5$ NM
- Optimized trajectories for $d > 5$ NM with full view
- All simulated trajectories are shorter than actually flown route (up to 6%)

TABLE I

<table>
<thead>
<tr>
<th>route parameters</th>
<th>track length (NM)</th>
<th>deviation from FPL route (NM)</th>
<th>deviation from CPR route (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPL</td>
<td>358.0</td>
<td>0.0</td>
<td>-14.0</td>
</tr>
<tr>
<td>5 NM full view</td>
<td>351.0</td>
<td>-7.0</td>
<td>-21.0</td>
</tr>
<tr>
<td>10 NM</td>
<td>353.6</td>
<td>-4.4</td>
<td>-18.4</td>
</tr>
<tr>
<td>15 NM</td>
<td>357.9</td>
<td>-0.1</td>
<td>-14.1</td>
</tr>
<tr>
<td>5 NM limited view</td>
<td>350.0</td>
<td>-8.0</td>
<td>-22.0</td>
</tr>
<tr>
<td>10 NM</td>
<td>370.3</td>
<td>+12.3</td>
<td>-1.7</td>
</tr>
<tr>
<td>15 NM</td>
<td>371.3</td>
<td>+13.3</td>
<td>-0.7</td>
</tr>
<tr>
<td>CPR</td>
<td>372.0</td>
<td>+14.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
SUMMARY AND OUTLOOK
Summary

17th July 2010: Squall line over Austria and Czech Republic
 Austro Control: Additional workload for air traffic controllers

How accurately and realistically can we simulate trajectories in thunderstorm situations?

- Comparison of simulated trajectories with planned and actually flown routes
- Deconflicted realistic routes using DIVMET and NAVSIM
- More efficient routes in case of an increased field of view
- Limitation: Special flight manoeuvres (e.g. directs)

- Decision support for pilots in case of adverse weather
Outlook

Key question: Can we predict the sector occupancy for various time scales by forecasting weather impacted flight trajectories?

Prediction of sector occupancies will be possible at least for up to 1 hr!
Thank you!

Patrick Hupe*, Thomas Hauf*, Carl-Herbert Rokitansky**

* University of Hannover, Germany
 Email: hupe[at]muk.uni-hannover.de, hauf[at]muk.uni-hannover.de

** University of Salzburg, Austria
 Email: roki[at]cosy.sbg.ac.at

4th SESAR Innovation Days
Madrid, 25th November 2014