Uncertainty Analysis of Thunderstorm Nowcasts for Utilization in Aircraft Routing

Manuela Sauer¹, Thomas Hauf¹, Caroline Forster²

¹Leibniz Universität Hannover, Institute of Meteorology and Climatology
²DLR, Institute of Physics of the Atmosphere

25. November 2014 – 4th SESAR Innovation Days
Outline

• Thunderstorms, motivation and nowcast data used
• Methodology and results of the uncertainty analysis
• Application in weather avoidance routing
Thunderstorms

- Small scale phenomena
 - cell diameter: 5 - 50 km
 - life time: 20 - 60 min

- After generation: further life cycle and movement is in principal predictable

- Prediction of onset?
 - generation mechanisms need to be forecasted:
 - deterministic components: orography, surface convergence lines
 - stochastic components: gravity waves, temperature inhomogeneities

Motivation

approaching an event in time and space

decreasing inherent uncertainty

increasing uncertainty

remaining nowcast uncertainty

nowcast systems

lead time
Rad-TRAM nowcast system
Radar Tracking and Monitoring

• Based on radar composit with timely resolution of 5 minutes
• object-based (> 37 dBZ)
• Pyramidal image matcher
 ➢ displacement
 ➢ life cycle: growth and decay of cells

Further information:
Tafferner, A., C. Forster, 2012: Weather Nowcasting and Short Term Forecasting, in Atmospheric Physics, U. Schumann (ed.), Springer Verlag

Source: http://www.pa.op.dlr.de/MUCSOMMER/2012/
Rad-TRAM nowcasts

timely resolution: 5 minutes
horizontal resolution: 2 km

no further detection of this cell
Nowcast uncertainty determination

METHODOLOGY & RESULTS
Methodology

\[\Delta \text{dist}_{\text{left}} \]

\[\Delta \text{dist}_{\text{right}} \]

\[\Delta \text{dist}_{\text{forward}} \]

\[\Delta \text{dist}_{\text{backward}} \]

Frequency distributions

\[\Delta = \text{obs} - \text{nowcast} \]
Results 20120715

Uncertainty Analysis of Thunderstorm Nowcasts for Utilization in Aircraft Routing
Manuela Sauer et al.

4th SESAR Innovation Days, Madrid
Increase of uncertainty with lead time

60 min LEFT lead time RIGHT

17.14 km ← $P_{90,\text{abs},60\text{min}}$ → 18.24 km

35 min

1.98 km ← $P_{90,\text{abs},60\text{min}}$ → 3.79 km

observation is always larger than nowcast in direction right
Increase of uncertainty with lead time

- 60 min: LEFT 17.14 km, RIGHT 18.24 km
- 35 min: LEFT 1.98 km, RIGHT 3.79 km
- 5 min: LEFT 1.98 km, RIGHT 3.79 km
80% intervals in all directions

FORWARD, 35 min

nowcast time: 35 min

RIGHT, 35 min

LEFT, 35 min

BACKWARD, 35 min

10th and 90th percentile

mean uncertainty

100 km
80 % intervals in all directions

moving direction 5 min

forward

left

right

backward

nowcast time: 10 min

nowcast time: 20 min

nowcast time: 25 min

nowcast time: 30 min

nowcast time: 35 min

nowcast time: 40 min

nowcast time: 45 min

nowcast time: 50 min

nowcast time: 55 min

nowcast time: 60 min

50 km
Differing results for different days/situations

July 15th, 2012

nowcast time: 35 min

July 15th & 10th, 2012

nowcast time: 35 min

No characteristic distribution on right extent!
Separate uncertainty analysis – propagation error

No systematic misplacement!

Gravity center displacement (rel. to obs)

- 5 min
- 35 min
- 60 min

Separate uncertainty analysis – propagation error
Separate uncertainty analysis – extension error

Relative small uncertainties

\(P_{90,\text{rel, right, 60min}} = 5.87 \text{ km} \)

Extension difference in direction RIGHT

- 5 min
- 35 min
- 60 min
Correlated distances in separate analysis

Regular growth or shrinkage on both sides

Equivalent correlation between FORWARD and BACKWARD deviations
Integrated uncertainty development

Regressions:

\[u_{90, \text{left}}(t) = -0.0023 \cdot t^2 + 0.4275 \cdot t - 0.0921 \]
\[u_{90, \text{right}}(t) = -0.0021 \cdot t^2 + 0.3908 \cdot t + 2.1487 \]
\[u_{95, \text{left}}(t) = -0.0029 \cdot t^2 + 0.4784 \cdot t + 2.4620 \]
\[u_{95, \text{right}}(t) = -0.0039 \cdot t^2 + 0.5162 \cdot t + 4.0876. \]
Integrated uncertainty development

Uncertainty development in absolute mode

Larger 90th percentiles for directions

BACKWARD and RIGHT

Uncertainty Analysis of Thunderstorm Nowcasts for Utilization in Aircraft Routing
Manuela Sauer et al.
4th SESAR Innovation Days, Madrid
Nowcast uncertainty determination

APPLICATION IN WEATHER AVOIDANCE ROUTING
Add uncertainty margin around a nowcast

Uncertainty development in absolute mode

- 35 minutes nowcast of a point cell
- 90th percentile uncertainty margin

Uncertainty Analysis of Thunderstorm Nowcasts for Utilization in Aircraft Routing
Manuela Sauer et al.
4th SESAR Innovation Days, Madrid
Add uncertainty margin around a nowcast

Uncertainty development in absolute mode

- BACKWARD
- LEFT
- FORWARD
- RIGHT

~ 1.3°

12 km

525 km at 480kt

Additional heading change to that forced by the nowcasted cells extent.
Conclusion I

• Spatial uncertainty determination method of nowcast cells considering extent and displacement
 – Isotropic behavior for both components
 – BUT: integrated uncertainty shows characteristic features

Separate view

Integral view
Conclusion II

- Spatial uncertainty determination method of nowcast cells considering extent and displacement
 - Isotropic behavior for both components
 - BUT: integrated uncertainty shows characteristic features

- Quantified rate of increasing uncertainty with lead time
Conclusion

• Spatial uncertainty determination method of nowcast cells considering extent and displacement
 – Isotropic behavior for both components
 – BUT: integrated uncertainty shows characteristic features

• Quantified rate of increasing uncertainty with lead time

• Uncertainty is even higher due to
 – new, not yet nowcasted cells
 – Other not yet considered statistics
 • dissipating cells
 • merged/splitted cells

• Further analyses on different thunderstorm situations
THANK YOU

Contact information:
Manuela Sauer sauer@muk.uni-hannover.de
Thomas Hauf hauf@muk.uni-hannover.de
Caroline Forster caroline.forster@dlr.de