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Abstract— The average delays of flights and passengers are not 

the same. The air transport industry is lacking passenger-centric 

metrics; its reporting is flight-centric. We report on the first 

European network simulation model with explicit passenger 

itineraries and full delay cost estimations. Trade-offs in 

performance are assessed using passenger-centric and flight-

centric metrics, under a range of novel flight and passenger 

prioritisation scenarios. The need for passenger-centric metrics is 

established. Delay propagation is characterised under the 

scenarios using, inter alia, Granger causality techniques. 

Keywords–delay propagation; passenger-centric; metric; flight 

prioritisation; Granger causality 
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I.  INTRODUCTION 

The average delays of (delayed) flights and passengers are 

not the same. The air transport industry is lacking passenger-

centric metrics; its reporting is flight-centric. Trade-offs 

between these metrics need to be better understood, as they are 

observed to move in opposite directions under certain types of 

flight prioritisation. With growing political emphasis in Europe 

on service delivery to the passenger, and passenger mobility, 

how are we to measure the effectiveness of passenger-driven 

performance initiatives in air transport if we do not have the 

corresponding set of passenger-oriented metrics and understand 

the associated trade-offs in the context of delay propagation? 

In the ‘POEM’ (Passenger-Oriented Enhanced Metrics) 

SESAR Workpackage E project, we have built a European 

network simulation model with explicit passenger itineraries 

and full delay cost estimations. A baseline traffic day in 

September 2010 was selected as a busy day in a busy month – 

without evidence of exceptional delays, strikes or adverse 

weather. We compare the effects of novel flight and passenger 

prioritisation scenarios on new passenger-centric and flight-

centric metrics, which assess not only delay but also a range of 

costs associated with delay. The propagation of delay through 

the network is also investigated, using complexity science 

techniques to complement classical metrics. 

TABLE I.  PRIORITISATION SCENARIOS 

Type, level Designator Summary description 

No-scenario, 0 S0 
No-scenario baselines (reproduce historical operations for 

baseline traffic day) 

ANSP, 1 N1 
Prioritisation of inbound flights based on simple 

passenger numbers  

ANSP, 2 N2 

Inbound flights arriving more than 15 minutes late are 

prioritised based on the number of onward flights delayed 

by inbound connecting passengers 

AO, 1 A1 

Wait times and associated departure slots are estimated on 

a cost minimisation basis, with longer wait times 

potentially forced during periods of heavy ATFM delay 

AO, 2 A2 

Departure times and arrival sequences based on delay 

costs – A1 is implemented and flights are independently 

arrival-managed based on delay cost 

Policy, 1 P1 

Passengers are reaccommodated based on prioritisation by 

final arrival delay, instead of by ticket type, but preserving 

interlining hierarchies 

Policy, 2 P2 

Passengers are reaccommodated based on prioritisation 

by final arrival delay, regardless of ticket type, and also 

relaxing all interlining hierarchies 

Table I summarises the prioritisation scenarios investigated. 

They were designed in parallel with the new metrics. For 

convenience, they are broadly classified according to the 

agency of the instigating stakeholder. For example, only 

airlines are currently likely to be able to estimate their own 

delay cost data in A1 and A2. The policy-driven scenarios P1 

and P2 are bolder than the current scope of European 

regulations. It is essential to explore the context of the model 

and the metrics in terms of future developments such as Airport 

Collaborative Decision Making (A-CDM) and, regarding flight 

prioritisation, the User Driven Prioritisation Process (UDPP). 

These technical contexts, in addition to the evolving socio-

political landscape, are discussed in Section III. This includes a 

review of the European Union’s underpinning regulatory 

instrument for air passenger compensation and assistance 

(Regulation 261, [1]), of high-level political objectives, of the 

Single European Sky performance scheme, and of recent ATM 

delay performance. A full discussion of the design of our 

metrics has recently been published [2], whereby a 

complementary approach is proposed to the understanding of 

network performance. This is reflected in the cross-section of 

results presented in Section IV. We turn first to a review of the 

start of the art. 

II. OVERVIEW OF POEM MODEL AND EXISTING MODELS  

A. Existing modelling – the state of the art 

Using large data sets for passenger bookings and flight 

operations from a major US airline, it has been shown [3] that 

passenger-centric metrics are superior to flight-based metrics 

for assessing passenger delays, primarily because the latter do 
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not take account of replanned itineraries of passengers 

disrupted due to flight-leg cancellations and missed 

connections. For August 2000, the average passenger delay 

(across all passengers) was estimated as 25.6 minutes, i.e. 1.7 

times greater than the average flight leg delay of 15.4 minutes. 

 

TABLE II.  PREDICTED PAX TRIP DELAY BY PERFORMANCE CHANGES 

Performance change 
Predicted pax trip  

delay change 

15-minute reduction in flight delay -24% 

Improved airline cooperation policy in re-booking 

disrupted passengers 
-12% 

Flights cancelled earlier in the day -10% 

Decreasing load factor to 70% -8% 

Source: [5]. 

 

Based on a model using 2005 US data for flights between 

the 35 busiest airports, [4] concurs that “flight delay data is a 

poor proxy for measuring passenger trip delays”. For 

passengers (on single-segment routes) and flights, delayed 

alike by more than 15 minutes, the ratio of the separate delay 

metrics was estimated at 1.6. Furthermore, heavily skewed 

distributions of passenger trip delay demonstrated that a small 

proportion of passengers experienced heavy delays, which was 

not apparent from flight-based performance metrics ([5], [6]).  

Using US historical flight segment data from 2000 to 2006 

to build a passenger flow simulation model to predict 

passenger trip times, [5] cites flight delay, load factors, 

cancellation (time), airline cooperation policy and flight times 

as the most significant factors affecting total passenger trip 

delay in the system (see Table II). 

An “inherent flaw in the design of the passenger 

transportation service” has been pointed out [7], in that service 

delivery to the passenger did not improve in 2008 in the US, 

despite the downturn in traffic. One in four US passengers 

experienced trip disruption (due either to delayed, cancelled or 

diverted flights, or due to denied boarding). Recovery 

mechanisms in place for disrupted passengers, such as transfer 

to alternative flights or re-routing, require seat capacity 

reserves. However, the airline industry wishes to maximise 

economies of scale, optimise yield management, maximise 

load factors, and (thus) to minimise seat capacity reserves. In 

2008, as airlines reduced frequencies to match passenger 

demand, higher load factors severely reduced such reserves [7]. 

Analysing US flight data for 2007 between 309 airports to 

estimate passenger-centric delay metrics showed [6] that the 

average trip delay for passengers over all flights was 24 

minutes, whilst for passengers on flights delayed by at least 

fifteen minutes, the average delay was 56 minutes. 

Flight-centric and passenger-centric metrics have also been 

examined [8] by comparing different rationing rules in a model 

US ground delay programme rationing rule simulator, 

exploring the trade-off between flight and passenger delay, and 

also between airline and passenger equity. (We shall return to 

these results later.) 

Turning to more recent work, [9] presents a closed-form, 

aggregate model for estimating passenger trip reliability 

metrics from flight delay data from US system-wide 

simulations. Metrics were derived from the probabilities of 

delayed flights and network structure parameters. A 

particularly appealing finding was that the average trip delay of 

disrupted passengers varies as the square of the probability of a 

delayed flight and linearly with respect to rebooking delays. 

An analytical queuing and network decomposition model – 

Approximate Network Delays (AND) – studied [10] delay 

propagation for a network comprising the 34 busiest airports in 

the US and 19 of the busiest airports in Europe. The model 

treats airports as a set of interconnected individual queuing 

systems. Due to its analytical queuing engine, it does not 

require multiple runs (as simulations do) to estimate its 

performance metrics and can evaluate the impacts of scenarios 

and policy alternatives. 

Covering 305 US airports in 2010, an agent-based model 

reproduced [11] empirically observed delay propagation 

patterns. Estimated passenger and crew connectivities were 

identified as the most relevant factors driving delay 

propagation. The probability of such connections were 

modelled as proportional to flight connectivity levels at each 

airport. 

Almost no current models use explicit passenger data, 

although this is planned for the AND model (ibid.). Also, 

actual passenger transfer numbers have been used in numerical 

simulations of a major US hub, where it was demonstrated [12] 

that each metric studied – terminal transit times of passengers, 

aircraft taxi times and gate conflict durations – outperformed 

observed values through the use of a balancing objective 

function. (As part of our work in SESAR Workpackage E, we 

are also preparing publications focused on actual transfer 

passengers at a major European hub.) 

B. The POEM model – an overview 

POEM models the busiest 199 European Civil Aviation 

Conference (ECAC) airports in 2010, having identified [13] 

that these airports accounted for 97% of passengers and 93% of 

movements in that year. Routes between the main airports of 

the (2010) EU 27 states and airports outside the EU 27 were 

used as a proxy for determining the major flows between the 

ECAC area and the rest of the world. This process led to the 

selection of 50 non-ECAC airports for inclusion of their 

passenger data. The assignment of passengers to individual 

flights, with full itineraries and calibrated load factors, was a 

fundamental component of POEM. All the allocated 

connections were viable with respect to airline schedules and 

published minimum connecting times (MCTs). Dynamically, 

the full gate-to-gate model then explicitly manages passenger 

connectivities. The core flow structure is shown in Fig. 1. Each 

simulated process is governed by one or more rules (as detailed 

extensively in [13]). Two airline case studies, including on-site 

visits and workshops, focused on developing and testing 

specific aspects of the model rules in an operational context. 

2
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Key: ACRB: aircraft ready for boarding; ART: actual ready time; ETOT: estimated take-

off time; AOBT: actual off-block time; ATOT: actual take-off time; PTI: passing time 

over Initial Approach Fix (IAF); ATO: actual time on; AIBT: actual in-block time. 

Figure 1.  Model core flow structure and selected rules. 

 

Figure 2.  Selected rules by scenarios. 

Fig.2 shows the key rules that are modified from their 

baseline behaviour under the various scenarios introduced in 

Table I. Rule 13 takes account of inbound passenger arrival 

times, MCTs and prevalent ATFM conditions to determine 

how long a flight should wait for inbound connecting 

passengers. The baseline rules are driven by implicit cost 

considerations (passengers’ onward haul and ticket types; 

percentage of expected passenger loading completed) in the 

context of ATFM slot availabilities. Under A1 and A2, explicit 

costs are traded in the wait rules (by passively running Rule 33 

– see below). During heavier congestion, the flight either waits 

an extra hour, or departs. Under less heavy congestion, costs 

are calculated for increments of 15-minute waits, and the 

minimum cost alternative is adopted. 

Rule 26 models arrival management based on airport 

capacities, applying spacing from the IAF. Under baseline 

conditions, this is operated on a first-come, first-served basis. 

Under N1 and N2, flights are prioritised based on minimising 

total passenger inbound delay and onward flight delays, 

respectively. Whilst inactive under A1 (see Fig. 2), under A2 

Rule 26 arrival-manages flights based on delay costs – 

independently with Rule 13. 

Rule 33 governs realistic decision-making for missed 

passenger connections due to delays and cancellations. It 

incorporates dynamic passenger reaccommodation onto aircraft 

with free seats, using detailed fleet and load factor data, and 

integrates with the tail-tracked aircraft wait and turnaround 

(recovery) rules. This rule allows for the investigation of the 

policy-driven scenarios P1 and P2, relaxing current airline 

practice to explore potential future policy outcomes. 

Cost estimations are with respect to delay costs to the 

airline, since it is these that drive airline behaviour. Costs 

considered are: passenger hard and soft costs to the airline, 

fuel, maintenance and crew costs [13]. In order to improve the 

cost optimisation for the airlines, without running the entire 

model to estimate the implication of each decision, pre-

computed cost functions were developed. These were 

implemented as complementary procedures to the dynamic cost 

functions in the scenario modules by calculating delay 

propagation costs based on scheduled times, i.e. without 

dynamic data or stochastic assessment. These functions work 

recursively (i.e. backwards from the end of the simulation day) 

using entire propagation cost trees based on discrete delay 

values (0, 5, 10, 15 … minutes of delay, up to 6 hours). 

The two principal datasets used to prepare the input data for 

the model were IATA’s PaxIS passenger itineraries and 

EUROCONTROL’s PRISME traffic data. Extensive data 

cleaning of the source traffic data was required, especially with 

regard to unreliable taxi-out data and scheduled times, missing 

taxi-in data and aircraft characteristics (including registration 

sequencing). There are approximately 30 000 flights in each 

day’s traffic and around 2.5 million passengers distributed 

among 150 000 distinct passenger routings. Using a cloud-

computing platform, each full day’s simulation took 

approximately two minutes. As a stochastic model, statistically 
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stable results were produced typically after ten runs (although 

the results presented are based on fifty runs). 

III. SOCIO-POLITICAL AND TECHNICAL CONTEXTS  

A. Socio-political context – the passenger imperative 

SESAR’s ‘Performance Target’ [14] refers frequently to the 

concept of society and the passenger. The ‘societal outcome’ 

cluster of KPAs1, is defined as being of “high visibility”, since 

the effects are of a political nature and are even visible to those 

who do not use the air transport system. The ‘operational 

performance’ cluster2 is also specifically acknowledged as 

impacting passengers. 

Social and political priorities in Europe are now shifting in 

further favour of the passenger, as evidenced by high-level 

position documents such as ‘Flightpath 2050’ [15] and the 

European Commission’s 2011 White Paper (‘Roadmap to a 

Single European Transport Area’, [16]). 

However, it has been accepted that there are currently 

several problems with regard to the implementation and scope 

of Regulation 261. A roadmap for the revision of the 

Regulation was published in late 2011 [17]. After various 

consultations, a memo was released in 2013 [18] detailing key 

proposed changes, which could become law by 2015, subject to 

approval by member states. In summary, the key changes are 

to: (i) initiate passengers’ right to care and assistance after two 

hours of delay, regardless of the length of the flight; (ii) require 

an airline to re-route passengers onto other carriers (already 

much commoner in the US) if it cannot re-route onto its own 

services within 12 hours; (iii) offer passengers the same rights 

for delays relating specifically to connecting flights, and to 

extend such rights to compensation for long delays (including 

arrival delay) caused by any reason; (iv) introduce new 

obligations (currently none exist) regarding information on 

delayed or cancelled flights; and, (v) better define 

‘extraordinary circumstances’ that exempt carriers from paying 

passenger compensation (although proposed changes to the 

compensation rights will make these more complex, allowing 

the carriers more time to avoid cancelling flights, for example). 

The baseline scenario (S0) rules of the POEM model reflect 

airline costs typically imposed by Regulation 261 and common 

practice regarding care and rebooking during disruption [13]. 

Under the P1 and P2 scenarios, current constraints on airline 

practice are successively relaxed and the impacts are examined, 

as presented in Section IV. 

B. ATM delay performance and model alignment 

Table III compares key statistics for 2010 (the year from 

which the POEM model’s baseline day was taken) and 2012 

(the latest year for which such statistics were available at the 

time of press). It is to be noted that the traffic and passenger 

numbers are similar. Passenger numbers depend on coverage: 

whereas data from Eurostat [21] describe a small fall between 

these periods, EUROCONTROL [20] reports an increase. 

                                                           
1 Environment, safety, security. 
2
 Capacity, cost effectiveness, efficiency, predictability, flexibility.  

TABLE III.  KEY PERFORMANCE STATISTICS FOR 2010 AND 2102 

Metric 2010 2012 

IFR flights (million) 9.5 9.6 

Total pax (million, EU 27) 777 734 

Average dep. delay (mins) 14.8 9.5 

Arrival delays > 15 mins 24.2% 16.7% 

Reactionary delays 46.7% 45.5% 

Sources: [19], [20], [21]. 

Whilst 2010 suffered from a high number of cancellations 

(due to the Eyjafjallajökull ash cloud in April and May, strikes 

in France and Spain, and bad winter weather), this had a 

limited effect on punctuality per se [19]. Nevertheless, 

punctuality in 2010 was at its worst since 2001, even with 

traffic below 2007 levels after modest growth on the previous 

year [19]. The average departure delay values include all 

flights, with delays counted from the first minute and early 

departures counted as zero delay. The percentage of arrival 

delays greater than 15 minutes in 2012 reached an all-time low 

of 16.7% – the changes in punctuality were largely driven by 

improvements in en-route ATFM delays [20]. 

The average departure delay for September 2010, the 

month from which POEM’s baseline was selected, was 13.9 

minutes, and the average arrival delay was 13.6 minutes. As we 

have detailed more fully [13], the model was calibrated partly 

using these values, with S0 (baseline) averages of 13.8 and 13.5 

minutes, respectively. With similar passenger and traffic 

volumes already across the two years, the model could also be 

recalibrated, if required, to reflect the better delay performance 

of 2012 (or, indeed, for future traffic scenarios). 

Fig. 3 shows the sensitivity of the network to primary 

delay. In 2010, the ratio was approximately 0.9. On average, 

every minute of primary delay thus resulted in approximately 

0.9 minutes of reactionary delay. After peaking in 2010, the 

ratio improved in 2011 and 2012. Reactionary delay in 

September 2010 averaged 46%, with the POEM model S0 

value calibrated at 49%. 

 

Figure 3.  Reactionary delay trend to 2012. 

Source: adapted from [20]. 

A key advance made possible through the POEM model is 

the detailed analysis of the effects of the various scenarios on 

reactionary delays and the associated trade-offs with other 
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metrics, as will be illustrated in Section IV. The persistence of 

reactionary delays illustrated through Fig. 3 underlines the 

continuing importance of research into these effects. 

C. The SES performance scheme and model flexibility 

TABLE IV.  SES PERFORMANCE SCHEME REFERENCE PERIODS 

Reference period Applicable years 

RP1 2012 - 2014 

RP2 2015 - 2019 

RP3 2020 - 2024 

EUROCONTROL is designated the Performance Review 

Body (PRB) of the Single European Sky (SES). The 

performance scheme is managed by the PRB and is a central 

element of the SES initiative. It is defined across various 

reference periods (RPs), as shown in Table IV. Performance 

targets are set at various levels before each period and are 

legally binding for EU member states. 

Several en-route RP1 targets have been set [22] at the 

European level. For capacity, average ATFM en-route delay 

per flight has a binding EU-wide target of 0.5 minutes by 2014. 

Encouraging intermediate reporting has been published for 

performance in 2012 [23]. RP2 sets out to extend the 

performance scheme to cover the full gate-to-gate scope, with 

target setting for four of the International Civil Aviation 

Organization’s eleven KPAs: capacity, environment, cost 

efficiency and safety [24]. The PRB has recently published 

[25] its proposed EU-wide targets for RP2. For capacity, this is 

an average of 0.5 minutes of ATFM en-route delay per flight 

for 2015-2019. According to PRB analysis (ibid.), this target 

corresponds to more than 98% of flights not being constrained 

by ATC. (Not a focus of our research to date, the POEM model 

does not yet have sufficient fidelity for assessing en-route 

ATFM delays per se, although this module is a target for future 

refinement.) 

Setting challenging targets for 2020, SESAR’s Performance 

Target [14] significantly refines (see Table V) the fifteen 

minute historical threshold for defining arrival and departure 

delay in Europe and the US. Whilst the SES performance 

scheme focuses on improving air navigation service (ANS) 

provision, and hence uses ATFM delay in its capacity KPAs, 

the SESAR targets are broader in scope. 

TABLE V.  SESAR PERFORMANCE OBJECTIVES AND TARGETS 

SESAR metric Target for 2020 

departure punctuality ≥ 98% of flights departing as planned ±3 mins 

other 2%: average delay ≤ 10 mins 

arrival punctuality 
> 95% of flights arrival delay ≤ 3 mins 

other 5%: average delay < 10 mins 

reactionary delay 50% reduction by 2020, cf. 2010 

cancellations 50% reduction by 2020, cf. 2010 

variation in 

block-to-block times 
 block-to-block σ < 1.5% of route mean

a
 

a. For repeatedly flown routes using aircraft with comparable performance. 

Airline punctuality is a poor metric for assessing ANS 

performance per se, since such punctuality is driven to a 

considerable extent by airline scheduling decisions. Such 

punctuality metrics remain pertinent in terms of service 

delivery to the passenger, however, and it is clear that a 

complementary set of metrics is needed by the industry. Whilst 

evidence [6] suggests that delays of less than 15 minutes are 

less important in terms of passenger connectivities, increasing 

pressures on utilisation and lower connecting times add to the 

importance of more exacting targets. 

For the POEM model results, we focus in Section IV on the 

trade-offs between flight-centric and passenger-centric metrics, 

including costs, reporting on the corresponding reactionary 

delay effects at the disaggregate level, in addition to the impact 

on the high-level target of Table V. With RP2 now matured, 

incorporation of passenger-centric metrics into the SES 

performance scheme would need to be considered for RP3. 

In 2014, traffic is expected to increase by 2.8%, finally 

reaching the 2008 pre-economic crisis levels again by 2016 

[20]. Future traffic samples could also be used as inputs into 

the POEM model, which would be interesting to stress-test the 

scenarios. (Explicit passenger assignments would have to 

rebuilt using the dedicated algorithms.) It would be feasible, 

and instructive, to observe the impacts on modelled 

performance compared with some of the SES / SESAR targets.  

D. Flight prioritisation and SESAR ConOps 

At the core of the POEM model simulations are the flight 

and passenger prioritisation scenarios. These need to be 

considered in the context of the SESAR Concept of Operations 

(henceforth ‘ConOps’). Is there a future role for such 

mechanisms? If so, over what timescale and at what level of 

prominence? The SESAR ConOps is mapped into three steps – 

Step 1: time-based; Step 2: trajectory-based; and, Step 3: 

performance-based. Key components of these steps are UDPP 

and Demand and Capacity Balancing (DCB). UDPP is a CDM-

based process carried out for DCB purposes, which allows 

airlines to request a priority order for flights affected by 

restrictions arising from unexpected capacity reductions. The 

desired priority order is that which “best respects the business 

interests” [27] of the airspace users.  

Indeed, ConOps Step 1 extends [26] the previous scope of 

UDPP. Previously, the emphasis of UDPP was on 

implementation after DCB had failed to reach an acceptable 

solution. Its current scope, however, embraces strategic, pre-

tactical and tactical phases and will be available in any 

‘normal’ situation, although with a particular applicability 

during capacity constraints with an early focus, once the design 

has sufficiently matured, on the pre-departure phase (but 

ultimately including en-route and arrival phases). The Step 1 

deployment phase is from 2014 to 2025. Furthermore, in the 

second edition of the ATM Master Plan [28], the prominence 

of UDPP in the implementation of Step 3 is also apparent: 

““Performance-based Operations” is realised through the 

achievement of SWIM and collaboratively planned network 

operations with User Driven Prioritisation Processes (UDPP).”  

5
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Clearly, there is a well-defined place for flight prioritisation 

strategies within the SESAR ConOps. Already aligned with A-

CDM implementation plans, UDPP is a perfect vehicle for the 

inclusion of cost- and passenger-focused prioritisation 

mechanisms. In the next section, we demonstrate how the 

impacts of the POEM (flight) prioritisation scenarios are 

reflected through appropriate metrics and analytical tools. 

IV. KEY RESULTS FROM THE POEM MODEL 

A. New metric results 

Fig. 4 presents the core results across various flight-centric 

and passenger-centric metrics, by the various scenarios. The 

values indicated3 are scenario values minus the corresponding 

baseline (S0) value. Flight prioritisation scenarios (N1 and N2) 

operating during arrival management based simply on the 

numbers either of inbound passengers or on those with 

connecting onward flights, were ineffective in improving 

performance. The policy-driven scenario (P1) represents 

putative conditions not driven by current airline or ATM 

objectives but which may nevertheless benefit the passenger. 

This scenario, rebooking disrupted passengers at airports based 

on minimising delays at their final destination, produced very 

weak effects when current airline interlining hierarchies were 

preserved. When these restrictions were relaxed, under P2, 

marked improvements in passenger arrival delay were 

observed, although at the expense of an increase in total delay 

costs per flight, due to passenger rebooking costs. (Trade-off 

results have also been observed in a US model [8]: compared 

to the traditional ration-by-schedule rule, rationing by aircraft 

size (three priority queues: ‘heavy’, ‘large’ and ‘small’ aircraft) 

was shown to decrease the total passenger delay by 10%, with 

a 0.4% increase in total flight delay. Rationing by passengers 

on-board decreased total passenger delay by 22%, with only a 

1.1% increase in total flight delay.) 

The prioritisation process A1, assigning departure times 

based on cost minimisation, markedly improved a number of 

passenger delay metrics and airline costs, the latter determined 

by reductions in passenger hard costs to the airline. One of the 

very few negative outcomes associated with A1 was an increase 

of two percentage points in overall reactionary delay. This was 

manifested through relatively few flights and was introduced 

purposefully by airlines through the cost model (i.e. waiting for 

late passengers) such that the overall cost to the airlines 

decreased. 

Under A2 (results not shown) the addition of independent, 

cost-based arrival management (see Table I) apparently foiled 

the benefits of A1 due to lack of coordination between 

departures and arrivals. This was also reflected through the 

finding that A2 caused increased dispersion (standard 

deviations) of all the core metrics, and produced the highest 

reactionary delay ratio of 58%.  

                                                           
3 Differences shown are statistically significant (p < 0.05; z-tests) and 

exceeded a minimum change threshold applied to avoid reporting artefactual 

results (typically set at approximately 2% of the baseline mean values; not 

applied to the ratio metrics).  

 

Figure 4.  Summary of core results. 

Comparably, it has been shown [29] using US data, that 

arrival queuing delay at certain airports is associated with a net 

reduction of delay in the network as a whole, whilst queuing at 

others is associated with a net increase. Non-linear 

relationships were demonstrated. Arrival queuing may thus 

have a delay multiplier effect in the network. 

The ratio of arrival-delayed passenger over arrival-delayed 

flight minutes (both pertaining to delays of greater than 15 

minutes) was 1.5 for the S0, P1 and P2 simulations for the 

baseline traffic day and the high delay day, rising to 1.9 for S0 

on the high cancellation day. Notably, A1 for the baseline 

traffic day resulted in a minimum value of this ratio of 1.3. 

These values compare well with the range 1.6 – 1.7 cited in 

Section II. 

The importance of using passenger-centric metrics in fully 

assessing system performance is clearly made through the 

results shown in Fig. 4, since the changes were not expressed 

through any of the currently-used flight-centric metrics at the 

common thresholds set. Scenario A1 appears to hold particular 

promise and will be studied in particular, along with the 

corresponding baseline (S0) results, in the next sections. 

B. Delay propagation 

Reactionary delays and their causes are determined a 

posteriori. If several passengers were connecting from different 

flights and all of them were late, we only considered the most 

restrictive connection (in actual minutes) as the reason for the 

reactionary delay being induced. In this sense, one flight can 

delay many others, but any given flight can only be delayed by 

one previous flight (the most restrictive one). This graph is thus 

a (propagation) tree. 
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Figure 5.  Arrival and reactionary delay, by airport size. 

Fig. 5 shows total (daily) reactionary and arrival delay as a 

function of airport movements. Although large airports are 

associated with more reactionary and arrival delay, there is a 

considerable relative difference between these delay types at 

the smaller airports. For some of the forty smaller airports 

arrival delay was doubled (or even tripled) into reactionary 

delay. This is due to reduced delay recovery potential at such 

airports, for example through: flexible or expedited 

turnarounds; spare crew and aircraft resources (as yet not 

explicitly modelled in POEM); and, whether a given airport has 

sufficient connectivity and capacity to reaccommodate 

disrupted passengers. In practice, the business model of airlines 

operating at airports also influences these effects. Similar 

findings have been reported in some literature ([30], [31]). 

Better integration of passenger disruption recovery into A-

CDM practice is an important area for future research. 

Back-propagation (where an aircraft’s outbound delay 

propagates back to an airport one or more times later in the 

day) was found to be an important characteristic of the 

persistence of delay propagation in the network. Paris Charles 

de Gaulle, Madrid Barajas, Frankfurt, London Heathrow, 

Zürich and Munich all demonstrated more than one hundred 

hours of back-propagated delay during the modelled (baseline) 

day. The prevalence of hub back-propagation has also been 

reported in the literature ([10], [31], [32]). 

C. Granger causality directed network analysis  

Classical statistical instruments such as correlation analysis 

are only able to assess the presence of some common 

(equivalent) dynamics between two or more systems. However, 

correlation does not imply causality. Granger causality, on the 

other hand, is held to be one of the only tests able to detect the 

presence of causal relationships between different time series. 

It is an extremely powerful tool for assessing information 

exchange between different elements of a system, and 

understanding whether the dynamics of one of them is led by 

the other(s). It was originally developed by Nobel Prize winner 

Clive Granger [33] and although it was applied largely in the 

field of economics [34] it has received a lot of attention in the 

analysis of biomedical data ([35]-[37]). 

A network reconstruction was computed for the flight and 

passenger layers for the S0 and A1 scenario simulations of the 

baseline traffic day, i.e. four reconstructions in total (the two 

baseline networks are shown in figures 6 and 7). The colour of 

each node represents its eigenvector centrality, from green (low 

centrality) to red (most central nodes). The size represents the 

out-degree, i.e. the number of airports that a given airport 

Granger ‘forces’ in terms of delay. The eigenvector centrality 

is a metric defined such that this centrality of a node is 

proportional to the centralities of those to which it is connected.  

 

Figure 6.  Flight delay causality network for S0 simulation. 

Comparing eigenvector centrality rankings through 

Spearman rank correlation coefficients showed [13] that all 

four network layers were remarkably different from each other 

(rs: 0.01 – 0.07). These rankings demonstrated that different 

airports have different roles with regard to the type of delay 

propagated (i.e. flight or passenger delay) and that these were 

further changed under A1. Indeed, a trade-off was introduced 

under A1: the propagation of delay was contained within 

smaller airport communities, but these communities were more 

susceptible to such propagation. The absence of major hubs in 

the top five ranking lists for in-degree, out-degree and 

eigenvector centralities was evident. Indeed, the largest airports 

present in these rankings were Athens, Barcelona and Istanbul 

Atatürk. We previously reported similar findings in a network 

vulnerability analysis [2]. 

Investigating how congested airports form connected 

clusters in the US 2010 network, it was found [11] that the 

same airports were not consistently part of such clusters, 

implicating daily scheduling differences in delay propagation 

patterns. It was noted that being in the same cluster was a 

measure of correlation but not necessarily a sign of a cause and 

effect relationship. Notably, only two major hubs, Newark and 

San Francisco, were present in the top ten for persistence in the 

largest congested clusters ([11]; “Supplementary information”). 

 

Figure 7.  Passenger delay causality network for S0 simulation. 
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D. Robustness under disruption  

The POEM model represents a normative day and the 

simulation results thus reflect schedule robustness (e.g. with 

respect to passenger reaccommodation). Exploring the 

robustness of our prioritisation rules under disruption, two 

disrupted days were derived from the baseline traffic. This 

allowed like-for-like comparisons between the disrupted days 

and the baseline day. One disrupted day imposed 1 extra 

minute on the average departure delay (making a new average 

of 14.9 minutes across all flights). The other disrupted day 

imposed just under 1% of additional cancellations on morning 

operations. Comparing the model outputs for the disrupted 

days showed them to be well modelled in that changes to the 

core metrics were as expected and reflected operational 

experience (e.g. with regard to relatively low impacts on flight 

punctuality metrics during periods of higher cancellations). 

Compared with the baseline day, the prioritisation rules 

performed similarly under disruption, demonstrating a degree 

of robustness in terms of their efficacy under perturbation [13]. 

V. FUTURE RESEARCH  

An examination of the socio-political, regulatory and 

technical contexts of European ATM, and of the state of the art 

regarding current modelling, suggests that there is a role for the 

continued development of tools to explore the impacts of flight 

and passenger prioritisation strategies. The results we have 

presented, building the first explicit passenger connectivity 

simulation of the European air transport network, show that 

passenger-centric metrics, including appropriate network and 

cost considerations, are necessary complements to existing 

flight-centric metrics in order to fully evaluate system 

performance. These furnish insights into such performance, in 

addition to oversight. Building on the POEM model’s 

flexibility, we plan to implement higher fidelity en-route 

behaviour and ATFM modelling functionalities, and to use the 

tool to explore: future market trends (such as traffic levels, 

aircraft size, load factors, service frequencies and hub wave 

structures); robustness under disruption (including integration 

with A-CDM); and, the trade-offs between various 

prioritisation and (policy) strategies. The model may be further 

used by policymakers to better assess the full impacts of future 

policies (for example changes to Regulation 261). It could also 

be readily adapted to include impacts on emissions. These 

factors may be examined not only at the network level, for 

example in the context of SES (RP3) and SESAR high-level 

targets, but also for airline route clusters and airports. 
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