Preparing for an Unmanned Future in SESAR
Real-time Simulation of RPAS Missions

E. Pastor M. Pérez-Batlle
P. Royo R. Cuadrado C. Barrado

3rd SESAR Innovation Days

Universitat Politècnica de Catalunya (Barcelona-Tech)
RPAS peculiarities

Flight plan stages

- Civil RPAS applications: Surveillance, SAR, terrain mapping...

![Flight plan stages diagram](image-url)
The mission stage1

- VFR-like missions in an IFR environment.

1Courtesy of NASA (V. Ambrosia); Google Earth background image used by permission to the NASA Wildfire Research and Applications Partnership project.
The mission stage\(^2\)

TS Nadine September 26-27

TS/Hurricane Nadine September 14-15

TD14/TS Nadine September 11-12

\(^2\)Courtesy of NASA
RPAS peculiarities

Performance dissimilarities

<table>
<thead>
<tr>
<th>Performance Parameter</th>
<th>RPAS</th>
<th>Manned Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cruise airspeed</td>
<td>↓↓↓</td>
<td>↑↑↑</td>
</tr>
<tr>
<td>Rate of climb</td>
<td>↓↓↓</td>
<td>↑↑↑</td>
</tr>
<tr>
<td>Cruise altitude</td>
<td>≈</td>
<td>≈</td>
</tr>
<tr>
<td>Endurance</td>
<td>↑↑↑</td>
<td>↓↓↓</td>
</tr>
</tbody>
</table>

Other issues

- **Datalink related:**
 - Communication latency.
 - Lost-link.

- **Contingency related:**
 - Loss of control/navigation capabilities.
Gaps for the integration of civil RPAS into the European aviation system have been identified. They are related to:

- **EC 1**: Development of a methodology for the justification and validation of RPAS safety objective.
- **EC 2**: Secure command & control / data links / bandwidth allocation.
- **EC 3**: Insertion of RPAS into the air traffic management system, detect & avoid (air and ground) and situational awareness (including for small RPAS), weather awareness.
- **EC 4**: Security issues attached to the use of RPAS.
- **EC 5**: Safe automated monitoring, support to decision making and predictability of behaviour.

Research goals

Regarding the roadmap

- To provide an environment that permits the analysis of specific areas/gaps.

Towards higher levels of automation

- To investigate the active interaction of the RPAS pilot and the ATCo through the extensive use of automation and information exchange.
- Higher automation to provide flexibility and situational awareness rather than become an obstacle to perform a safe operation.
What we propose

A novel real-time simulation environment

- Simulation of a realistic RPAS operation.
- ATC simulation environment that can integrate traffic and RPAS.
- Historical or predicted IFR traffic and its corresponding airspace structure.
Outline

1. Introduction
2. ISIS+
3. Use case
4. Conclusions & Further work
The ISIS+ ATM-RPAS simulation environment

Characteristics

- Integration of two separated simulators:
 - ISIS: In charge of running an environment in which RPAS operations and subsystems can be tested.
 - eDEP\(^4\): Low cost, lightweight ATC simulation platform.

\(^4\)Developed by EUROCONTROL Experimental Center
ISIS. Internal architecture

Air Segment

- **VAS-FMo**: In charge of abstracting from the particular autopilot.
ISIS. Internal architecture

Air Segment

- **FPMa-FPMo**: The core of the autonomous operation of the RPAS under the supervision of the PiC.
Flight Plan Manager (FPMa)

- Towards a high semantic level of flight plan specification.
- Usage of extended leg and path terminator concept (RNAV):
 - Basic (RNAV) legs:
 - Control (extended RNAV) legs:
 - Iterator.
 - Conditional.
 - Parametric (extended RNAV) legs.
 - Flight path generated using a reduced number of parameters.
Flight Plan Manager (FPMa)

- Towards a high semantic level of flight plan specification.
- Usage of extended leg and path terminator concept (RNAV):
 - Basic (RNAV) legs:
 - Control (extended RNAV) legs:
 - Iterator.
 - Conditional.
 - Parametric (extended RNAV) legs.
 - Flight path generated using a reduced number of parameters.
Flight Plan Manager (FPMa)

- Towards a high semantic level of flight plan specification.
- Usage of extended leg and path terminator concept (RNAV):
 - Basic (RNAV) legs:
 - Control (extended RNAV) legs:
 - Iterator.
 - Conditional.
 - Parametric (extended RNAV) legs.
 - Flight path generated using a reduced number of parameters.
ISIS. Internal architecture

Air Segment

- **CMa-CMo**: In charge of managing contingency situations.
Air Segment

- **Separation Management**: In charge of dealing with separation issues with other collaborative traffic.
eDEP. Overview

- **Airspace File**
- **Traffic File**
- **Resource Files**
- **Map Files**
- **Graphic Displays**

Characteristics

- Human-in-the-Loop ATC simulator.
- Provides access to the ATC controller’s capabilities and interactions.
- Two working stations are provided:
 - Controller Working Position
 - Pilot Working Position

ISIS-eDEP integration

ISIS+ = eDEP + ISIS
Description

- Departure, arrival and approach are also simulated.
- Mission is formed by two scan patterns and four hold patterns.

M. Perez-Batlle

SID 2013
Conclusions & further work

Conclusions

- ISIS+ development to study and evaluate complex scenarios in which RPAS are integrated into non-segregated airspace.
- RPAS simulator is integrated with eDEP, an Eurocontrol air traffic simulator.

Further work

- Some work need to be done to tackle specific RPAS airspace integration gaps