UNCERTAINTY HANDLING AND TRAJECTORY SYNCHRONIZATION FOR THE AUTOMATED ARRIVAL MANAGEMENT

MICHAEL SCHULTZ, T. KUNZE, H. FRICKE, J. MUND
TU DRESDEN

J. LÓPEZ LEONÉS, C. GRABOW, J. DE PRINS
BOEING RESEARCH & TECHNOLOGY EUROPE

M. WIMMER, P. KAPPERTZ
BARCO ORTHOGON GMBH
1. Status quo of the UTOPIA project

2. Simulation environment

3. Scenario setup

4. Implementation and simulation results

5. Outlook
Each UTOPIA member focuses on one of three innovative key elements:

- Study **uncertainty sources** and their propagation in the aircraft n-dimensional trajectories (nDT), considering also system disruptions

- Formal models of trajectory data and **trajectory synchronization** protocols for heterogeneous systems in an automated environment,

- Advanced **trajectory management algorithms** and ground synchronization functions based on the formal n-dimensional trajectory data and uncertainty models substituting today's HMI by **automated functions**
1. Status Quo - Concept Specification

- SESAR Milestone Deliverable 3 “The ATM Target Concept” and European ATM Master Plan as technological baseline of aircraft operations in the year 2020 (ConOps)

- Operational concept description (e.g. SESAR or NextGen) focusing on
 - aircraft and ground automation,
 - trajectory synchronization,
 - technical requirements for airspace users and ground-based systems

- UTOPIA specific ConOps
 - terminal maneuvering area (E-TMA) extended to 500+ NM imposing considerably larger look ahead times (LAT)
 - automated inbound sequencing
 - tailored to Frankfurt Airport (EDDF) environment in 3 RWY configuration
1. Status Quo - Stochastic Modeling, Definitions

- Uncertainty triggered by
 - change of system states
 - availability of data (update rate)
 - (reliable) sources of data

- Disruption
 - uncertain states require high update rates inducing high amount of data to be exchanged to grant synchronization
 - system fails (disrupted) if it cannot satisfy the synchronization demand

- Synchronization (updates) required, if agents (represented by their trajectory) tend to violate pre-defined navigation tolerances
1. Status Quo - Stochastic Modeling, Basics

- Following ICAO's RNP/RNAV concept:
 - uncertain input factors result into along, cross, and/or vertical track tolerances
 - along track tolerance (ATT) significant to target times (e.g. CTO, RTA) as generated through the UTOPIA AMAN

- Uncertainty factors classified into two domains
 - atmospheric conditions
 - navigation performance /operational factors

- Implementation
 - unsteady wind conditions result in increased ATT inducing uncertain target times (AMAN: over FAF)
 - Individual ATT additionally used to optimize the arrival sequence
 - convective weather scenarios covered by no-go-zones, leading to re-routing of individual flight plans
1. Status Quo - Stochastic Modeling, Data

- Atmospheric Conditions

Windfield

Convective Weather (declared No-Go-Zones)

Meteox.com (DWD, KMI, KNMI, MetEireann, MeteoFrance, MetOffice)
1. Status Quo - Design Scheme for Virtual Environment

- Agent-based approach (capability of autonomous acting and decision making)
 - Agents individually plan their trajectory (through dedicated Boeing / Airbus FMS)
 - Agents individually react on AMAN advices
 - Agents communicate their decisions

- Modeling of
 - atmospheric conditions
 - weather patterns
 - corridor of uncertainty (COU)

- Mandatory set of messages for data exchange (AIDL) extended with uncertainty information
2. Simulation Environment

UTOPIA Demonstrator

Trajectory Management

AMAN

FACT

UTOPIA Demonstrator

Control Process

TP Trajectory Predictor

nDT n-dimensional trajectory description data
2. Simulation Environment - BR&TE Tools FACT & APATS
2. Simulation Environment - Receiving UTOPIA Messages

- WX forecast
- Flight plan
- AIP
- TCP IN
- FMS TP
- Guidance Reference (Predicted Trajectory)
- Flight Guidance
- TCI
- Flown Trajectory
- Data Communication
 - Arrival Data
 - Holding Data
 - RTA Data
 - Route translator
 - Holding translator
 - RTA translator
- XML UTOPIA Approach Advice
- XML UTOPIA Holding Advice
- XML UTOPIA RTA Advice
- \(|\text{ETA} - \text{RTA}| > \varepsilon_{\text{funnel}} \)
2. Simulation Environment - Trajectory Data Exchange

- Exchange of trajectory information via **XML** messages
- **Currently** implemented UTOPIA message types
 - Aircraft → Ground (AMAN)
 - Flight Plan (later replaced by FIDL)
 - Track (pseudo message to simulate radar tracking)
 - 4D Trajectory (later replaced by AIDL)
 - Ground (AMAN) → Aircraft
 - administrative purposes (e.g. simulation time)
 - advisories
 - Required Time of Arrival (RTA) at Initial Approach Fix
 - approach transition
 - holding
 - trombone variant and fine tuning
3. Scenario Setup - Control Loop

Air Traffic Simulators: FACT / TABATS

A/C Intent, COU

FPL, Track

Prediction & Monitoring

Spacing, Delay Balance, Stability

Landing Sequence

Advice

Approach, RTA, Holding, Trombone
3. Scenario Setup - Airspace and Traffic

- Frankfurt/Main EDDF
 - ‘Old’ 3 RWY configuration
 - RNAV-Z approaches with ‘trombone’ variations
 - Outer holdings

- Generated traffic is based on CFMU flight data set:
 - EDDF inbound traffic extracted
 - Variations of:
 - Traffic density
 - WTC mix
 - RTA capability
4. Implementation and Simulation Results - Advice Hierarchy

1) Approach and runway
2) RTA if possible
3) Delay absorption in holdings
4) Path stretching with ‘trombones’ and ‘trombone fine tuning’
4. Implementation and Simulation Results - Advice Execution

Without RTA Advice

- 07C ACA872 UNON +7 U50 11
- 07C AAL70 UNON +5 09
- 07C DLH1493 KEON +5 07
- 07C DLH3KH PSOS +5 06
- 07C DLH4M PSOS +6 P47 04
- 07C DLH99T PSOS +5 02
- 07C DLH6RW KE1N -- 00
- 07C DLH6MA KE1N +2 59
- 07C BER552P PSOS +1 57
- 07C DLH5P KE2N +1 55
- 07C ALK553 PS1S +2 54
- 07C DLH2UK PSOS 52
- 07C CFG235 UNON +2 50
- 07C DLH2HY KEON 48
- 07C DLH4JH ROON 44
- 07C DLH761 KEON 43
- 07C DLH1461 KEON 41

With RTA Advice

- 07C DLH35WV KEON +3 12
- 07C ACA872 UNON +2 10
- 07C AAL70 UNON +2 08
- 07C DLH1493 KEON +1 06
- 07C DLH3KH PSOS +1 05
- 07C DLH4M PSOS 03
- 07C DLH99T PSOS +1 01
- 07C DLH6RW KE1N +1 00
- 07C DLH6MA KEON 58
- 07C BER552P PSOS +2 55
- 07C DLH5P KEON +1 53
- 07C ALK553 PSOS +1 51
- 07C DLH2UK PSOS +2 50
- 07C DLH2HY KEON +1 48
- 07C DLH4JH ROON +2 46
- 07C DLH1461 KE1N +1 45
- 07C DLH761 KEON 43
4. Implementation and Simulation Results - Example Metric

- Scenario: 74 flights
- Flight horizon: 1 hour out
- Simulation time: 4 hours

<table>
<thead>
<tr>
<th>Advice given / Metric</th>
<th>STAR & RWY (reference)</th>
<th>+ Holding & Trombones</th>
<th>+ RTA</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Advice</td>
<td>74</td>
<td>360</td>
<td>426</td>
</tr>
<tr>
<td>Landings per 15 Minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Fuel Usage per Flight</td>
<td>1,84 t</td>
<td>2,37 t</td>
<td>2,30 t</td>
</tr>
</tbody>
</table>
5. Outlook

- Simulation test bed finished ... Debugging
- Full implementation of wind conditions and evaluation metrics

Uncertainty handling:
- Aircraft with reliable (certain) target times get a high priority in arrival sequence
- Aircraft with uncertain target times get a higher degree of freedom in arrival sequence planning
- Introduce flight path adaptations (re-routing) due to convective weather

Trajectory synchronization:
- Improve AMAN TP by using aircraft intent information from AIDL messages

Target:
- Evaluate effects of weather uncertainty and traffic mixes on the fully automated control loop
Thank you!

Project Leader:
Hartmut Fricke
fricke@ifl.tu-dresden.de

Project Coordinator:
Michael Schultz
schultz@ifl.tu-dresden.de