ONBOARD

Air Traffic Flow Management Under Uncertainty

Gillian Clare, Jesus Cegarra
SESAR Innovation Days, Braunschweig, Germany
November 28th, 2012
INDEX

1. Description of the project
2. Global System Concept
3. Airlines Operation Centre
4. Network Manager
5. Results
6. Further work
7. Conclusions
ONBOARD

DESCRIPTION OF THE PROJECT
DESCRIPTION OF THE PROJECT

- Air Traffic Flow Management Uncertainties
 - Weather
 - Unscheduled Demand

- The goal of the ONBOARD project is to deal with those uncertainties.

- Two algorithms interacting each other have been developed, one acting as the Airlines Operation Centre and the other as the Network Manager.

More info at: http://www.onboard-sesar.eu/
DESCRIPTION OF THE PROJECT

Network Manager (NM) - Wx forecast, Unscheduled demand

Capacity/Traffic Load

Air user Ops. Centre (AOC) - Tool to generate the Evaluation scenarios

Schedule

TTA/TTOs - RBTs

Recovery plan
ONBOARD

GLOBAL SYSTEM CONCEPT
GLOBAL SYSTEM CONCEPT

The architecture defined foresees the exchange of information through databases. This approach has several benefits.

- Independent development (AOC and NM) in terms of code and platform.
- Possibility of doing backups easily and run scenarios using stored backup data.
ONBOARD

AIRLINES

OPERATIONS

CENTRE
Objective: find the sequence of flights to be flown by each aircraft that minimizes the total cost and guarantees that all planned flights have been flown once and only once.

Formulation:

Minimise $c^T x$
Subject to: $Ax = b$
$x \leq C$
$c = 1$
$x \in \{0,1\}^n$

Model: Time-Line Network

Description
- Nodes: represent location and time with associated flow.
- Arcs: represent movement between two nodes with associated capacity and cost/profit.
- Aircraft represent the commodities which are routed through the network with every arc.
The Airlines Operations Centre is in charge of the following functionalities:

- Keep or cancel the flight legs on ground
- Change the assignment of aircraft tails to flight legs on ground
- Change the departure time of each flight leg on ground
- Re-time a SBT on ground (e.g. changing the CI or speed profile)
AOC MATHEMATICAL MODEL
ONBOARD NETWORK MANAGER
Allocating Airspace Resources:

Flow Based Models:

Aggregate Flights within the optimizer mean only particle **flow rates** are known.
NETWORK MANAGER

Allocating Airspace Resources:

capacity demand

Flow Based Models:

Aggregate Flights within the optimizer mean only particle flow rates are known.

BIG QUESTION:
How do we include uncertainty in this problem?

WHAT’S NEW:
Previously: chance constraints
Now: disturbance feedback
BASE ATFM MODEL

Cells:

Paths are *grouped by destination* and split into a series of *cells* which each represent a sector in the shared flight path. Control actions are represented as binaries:

\[u^i(k) = \text{no. aircraft held back at cell } i \text{ in time period } k \]
\[u^{i\rightarrow j}(k) = \text{no. aircraft moving, cell } i \rightarrow j \text{ in time period } k \]
FLOW BASED

Objective:
Minimize weighted sum of **Airborne Delay + Ground Delay**

\[
\min \sum_{k \in T} \left(\sum_{s \in S} \sum_{i \in B(s)} c_a u^i(k) + \sum_{a \in A} \sum_{i \in B(a)} c_g u^i(k) \right)
\]

Capacity Constraints:

\[
\sum_{i \in B(s)} \left(u^i(k) + \sum_{j \in L_i} u^{i,j}(k) \right) x^i(k) \leq C_s(k)
\]

\[\forall s, k \in T : k > 1\]
FLOW BASED

Objective:
Minimize weighted sum of **Airborne Delay + Ground Delay**

\[
\min \sum_{k \in T} \left(\sum_{s \in S} \sum_{i \in B(s)} c_a u^i(k) + \sum_{a \in A} \sum_{i \in B(a)} c_g u^i(k) \right)
\]

Capacity Constraints:

\[
\sum_{i \in B(s)} \left(u^i(k) + \sum_{j \in L_i} u^i,j(k) \right) \leq C_s(k)
\]

Predicted capacity over time
(\text{DETERMINISTIC})

BIG DEAL:
Uncertainty in this Capacity due to Weather
WHY FEEDBACK FOR UNCERTAINTY?

Nominal Plans
- Single plan
- Plan for most likely scenario
WHY FEEDBACK FOR UNCERTAINTY?

Nominal Plans
- Single plan
- Plan for most likely scenario

Robust Plans
- Single plan
- Robust to all possible scenarios
WHY FEEDBACK FOR UNCERTAINTY?

Nominal Plans
- Single plan
- Plan for most likely scenario

Robust Plans
- Single plan
- Robust to all possible scenarios

Feedback Plans
- Multiple plans
- Robust to all possible scenarios
- Represented by feedback
WHY FEEDBACK FOR UNCERTAINTY?

Nominal Plans
- Single plan
- Plan for most likely scenario

Robust Plans
- Single plan
- Robust to all possible scenarios

Feedback Plans
- Multiple plans
- Robust to all possible scenarios
- Represented by feedback

Disturbance Feedback Formulation:
Express the control variables as functions of the disturbance seen:

Control = Baseline Control + Feedback * Disturbance Signal

Action Action Term Signal

• Use this to enable us to react to differing weather capacity scenarios
DISTURBANCE SIGNAL: SCENARIO TREE

1.

2.

[Diagram showing a scenario tree with nodes and edges representing different scenarios over time.]
DISTURBANCE SIGNAL: SCENARIO TREE

W’s are the binary **branching points**, so each scenario is represented by a individual set of W’s.

We define associated **capacity reductions** for each scenario, e. These then count towards the sector capacity. i.e. they are appended to this side of the previous capacity equation.

\[
\sum_{i \in B(s)} \left(u^i(k) + \sum_{j \in \mathcal{L}_i} u^{i,j}(k) \right) \leq c_s(k) - q(e, s, k)
\]

\[\forall s, k \in \mathcal{T} : k > 1\]
FEEDBACK REFORMULATION

Control Variables:

\[u^i(k) = v^i(k) + \sum_{n : tw(n) < k} M^i_n(k) W_n(c) \]

Objectives:

\[
\begin{align*}
\min \epsilon_1 \sum_{k \in T} \left(\sum_{s \in S} \sum_{i \in B(s)} c_{td} v^i(k) + \sum_{a \in A} \sum_{i \in B(a)} c_g v^i(k) \right) \\
+ \epsilon_2 \sum_{w \in W} \sum_{k \in T} \left(\sum_{s \in S} \sum_{i \in B(s)} c_{td} u^i(k) + \sum_{a \in A} \sum_{i \in B(a)} c_g u^i(k) \right)
\end{align*}
\]

\[\epsilon_2 \ll \epsilon_1 \]

Delay Cost of nominal (disturbance-free) plan

Delay Cost of disturbance recovery plans
ONBOARD

RESULTS
RESULTS: PROBLEM TEST CASE

- **30** flights
- **5** airports, **17** sectors
- Flights between **06:00h** and **16:00h**
- **5**-aircraft capacity limit
- **5**-minute time windows

- **Capacity Reduction Scenarios**
 - **4** storms, one subject to some speed uncertainty
 - Storms reduce capacities to **1 aircraft per 5-minute** time window.
RESULTS: PROBLEM TEST CASE

- **30** flights
- **5** airports, **17** sectors
- Flights between **06:00h** and **16:00h**
- **5**-aircraft capacity limit
- **5**-minute time windows

Capacity Reduction Scenarios
- **4** storms, one subject to some speed uncertainty
- Storms reduce capacities to **1 aircraft per 5-minute** time window.

CURRENT SCOPE:
200 flight problem in less than 2 minutes
TEST CASE RESULTS: INTERACTION

- **Iterative Process:**

 - **ITERATION 1:** NM introduces additional delays to meet capacity restrictions

 - **ITERATION 2:** AOC re-adapts its ideal plan considering NM output

 - **ITERATION 2:** NM suggests new delays to meet capacity restrictions

- **Start:** AOC shares an ideal plan

- **Start:** AOC shares an ideal plan

- Iterative process continues until convergence is reached i.e. AOC plan meets all capacity restrictions.
<table>
<thead>
<tr>
<th>Scenario</th>
<th>No. Sector Capacity Breaches</th>
<th>Ground Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOC Ideal Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>c_2</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>c_3</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>c_4</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Solve Time: 4.6 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>c_2</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>c_3</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>c_4</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Solve Time: 4.9 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>c_2</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>c_3</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>c_4</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Solve Time: 14.5 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disturbance Feedback</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>c_2</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>c_3</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>c_4</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Solve Time: 130.3 s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESULTS: BENEFITS OF FEEDBACK

<table>
<thead>
<tr>
<th>No. Sector</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
</tr>
</tbody>
</table>

Disturbance Feedback solve times now on the order of several seconds:
- Due to reduced number of control variables in time.

200 Flight problems now possible
RESULTS: DISTURBANCE FEEDBACK

Scenario 1

Scenario 4
FURTHER WORK

- Incorporate unscheduled demand.

- Increase the problem size.
 - The main goal is to handle up to several hundred flights in one iteration. Meaning that thousands of flights can be considered during one day.

- Conduct a series of tests in order to demonstrate the benefits of this approach.
ONBOARD

CONCLUSION
CONCLUSION

- The integrated AOC / NM has been presented.

- The benefits of a disturbance feedback approach over a single robust plan have been demonstrated.

- The system is ready to run realistic size problems in a rolling window fashion.

- A testing platform based on databases has been set up between University of Bristol and GMV in order to conduct the testing phase.
Thank you

ONBOARD Team

http://www.onboard-sesar.eu