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Motivation: Aviation climate effects

Climate Forcings from Global Aviation Emissions and Cloudiness
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Global Aviation Effective Radiative Forcing (ERF) Terms
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JOINT UNDERTAKING

T
Contrail cirrus
in high-humidity regions

ERF RF ERF | cont.

(1940 to 2018) (mW m?) (mW m?) RF |levels
T T T T T T T T T T T T T

E—( 57.4(17,98) [111.4(33,189) | 0.42 | Low

Carbon dioxide (CO5)
emissions

34.3 (20,40) | 34.3(31,38) | 1.0 | High

Nitrogen oxide (NO,) emissions
Short-term ozone increase
Long-term ozone decrease

Methane decrease

Stratospheric water vapor decrease

49.3 (32, 76) | 36.0 (23,56) | 1.37 | Med.
-10.6 (20, -7.4) | -9.0 (17,-6.3) | 1.18 | Low

-21.2 (40,-15) | -17.9 (-34,-13) | 1.18 | Med

-3.2 (6.0, -22) [-2.7 (50,-1.9) | 1.18 | Low

Net for NOy emissions

17.5(06,29) | B.2(48,16 | — | Low

Water vapor emissions in
the stratosphere

200832 | 20832 | [1] | Med

Aerosol-radiation interactions
~from soot emissions

~from sulfur emissions

0.94 (0.1,4.0) | 0.94 (0.1,4.0) [ [1] | Low
BB Bestestimates

fe—| 5 - 85% confidence 7.4 (19,-26) | 7.4 19,28 | [1] | Low

Aerosol-cloud interactions

-from sulfur
-from soot emissions

I No best No best === | Very

Net aviation (Non-COy terms)

Net aviation (All terms)

L
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i
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:7 estimates estimates - | low
I

} 66.6 (21, 111) |114.8 (35, 184) | — | —
|

100.9 (55, 145) [ 149.1 (70, 229) | — | —
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Effective Radiative Forcing (mW m2)

Non-CO, effects are important as they contribute to total climate effect of aviation

Climate effects of non-CO, effects depend on emission location, meteorological conditions
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Lee et al. 2021




Overall concept of FlyATM4E — cosar’
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Workflow for
Climate-optimized trajectories
as developed within FlyATMA4E
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FIYATMAE (Flying Air Traffic Management for the Environment) developed a
concept to identify climate-optimized aircraft trajectories which enable a
robust and eco-efficient reduction in aviation’s climate impact.

Climate optimized routing takes into account CO, and non-CO, climate effects,
“such as contrails and contrail-cirrus, water vapour, nitrogen oxide emissions o
. .izdhoth ozone and methane and particulate emissions.
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Algorithmic Climate Change Functions (aCCFs) 4

* Prototype algorithmic climate change functions (aCCFs) of nhon-CO, effects give climate Sesa r
impact of aviation emissions at a specific location and time (in terms of average JOINT UNDERTAKING
temperature response ATR). ATM

* aCCFs provided for contrail-cirrus, water vapour, NO,-induced changes of ozone and
methane. First consistent set: aCCF-V1.0 (Yin et al. 2022, GMDD)

e aCCFs based on meteorological parameters. Can be calculated from e.g. numerical weather
prediction data.
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* Water vapour and NO, induced aCCF is positive (warming)

* Contrail (daytime) aCCF warming/cooling impact in areas where contrails can form




Candidate Solution: Sol-FIyATM4E-01 ceca r4~

Sol-FIyATMA4E-01 informs the airspace user on those regions where aviation [6ifiT UNBERTAKING
emissions have a high climate effect, while using a physical climate metric in order to
provide a spatially and temporally resolved quantitative estimate. ATM

Water vapour aCCF : NO,-induced aCCF : Contrail [da!time] aCCF
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* advanced ME."I"' service to mform on the cllmate effect of flight operations
comprising CO, and non-CO, effects

e spatially and temporally resolved quantitative information on climate
effects of aviation emissions in the airspace -> assess climate effects of
aircraft operations.

Efficient integration (in ATM) relies on combining aCCFs with numeri
weather prediction data & specific aircraft emissions
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Candidate Solution Sol-FIyATM4E-02

)(.
Sol-FIyATMA4E-02 identifies those aircraft trajectories with lower climate effects Sesa r
by a trajectory optimisation expanded with an environmental component JOINT UNDERTRKING

lyi Sol-FIyATMA4E-01.
"elying on SOy Aircraft Trajectory Optimization ATM

W Climate-optimized North Atlantic flights
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Tc?wards implgmentgtion of | By sesar*
climate-optimized flight planning

* Having available a MET-service in trajectory
planning is a prerequisite for climate-
/ - \ optimized alternative aircraft trajectories in
flight dispatching and network management.

e advanced MET service to inform on the
climate effect of flight operations comprising
CO, and non-CO, effects

 Characterization of uncertainties enables
estimation of confidence intervals in a risk
analysis.

Cost-climate optimal trajectsry  Ferl
——— Climate optimal trajectory

* Definition of environmental performa
indicators requires a dialogue with
makers and regulators.
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