AeroMACS
Data Link Technology for Total Airport services

Florence, 6th July 2018

Giulio Vivaldi (giulio.vivaldi@leonardocompany.com)
AeroMACS – Finding the roots
Origins and What are the Benefits from AeroMACS?

- AeroMACS is a Broadband wireless communication system that can support the transmission of safety and regularity of flight data for both fixed and mobile applications of the airport surface.
- It is based on the mature WIMAX standard IEEE 802.16E and operate in the protected aviation spectrum band from 5091 MHz to 5150 MHz.
- The International Civil Aviation Organisation (ICAO) has approved the AeroMACS standard and recommended practices (SARPS) and Technical Manual, which will help guarantee manufacturer interoperability and Global harmonisation through certified equipment.

The AeroMACS general benefits are the following:

- Higher throughput for airport surface communications
- Reduction of congestion of VHF spectrum at airports and delays consequently
- Supporting worldwide interoperability aspects and the integration of critical communications for all the Airport Stakeholders
- Provision of increased security capabilities
- Enhances situational awareness on the airport’s surface
Airport Data link Infrastructure Solution

Technological Drivers vs AeroMACS Technical Solution

DRIVERS

- Airport wireless cabling: F.O. rings backup or substitution with a more cost-effective solution

- AOC airport applications are bandwidth-consuming on VHF spectrum (ACARS and VDL2)

- ATC airport applications can be performed on ATN/IPS and ATN/OSI connectivity (worldwide application ATS services)

- Airport needs (e.g. alerts, real time data mngt, etc..) require a common and simultaneously fixed and replaceable sensors

AeroMACS Solution

- AeroMACS solution lead to reduce the deployment and maintenance costs by a wireless infrastructure

- AeroMACS solution natively provides support to multiple CSNs (e.g. Airport users, CSPs networks, etc...) and Priority service flows on AeroMACS network

- AeroMACS solution is natively based on IP network. It is able to support both ATN/IPS connectivity and ATN/OSI connectivity via usage of proper convergence function (i.e. SNDCF) with no further network developments

- AeroMACS solution supports unicast data, broadcast/multicast data traffic.
AeroMACS Ground System Infrastructure Solution - Example

Physical Architecture Design

Architecture Principles

- **Architecture for Best Airport Deployment**
 - The Architecture foresees Base Stations split in RF outdoor units and BB indoor unit in order to minimize the RF cabling between RF unit and antenna. Furthermore, this architecture allows to centralize the BB indoor units with the ASN-GW in a collocated configuration.
 - Rationalisation of the RF Unit Deployment to cover the whole Airport surface without shadow areas

Note: It can be added up to 8 Base Band in the same rack
AeroMACS Ground System Infrastructure Solution

System Characteristics:

- Coverage up to 2500-3000 meters (depending on propagation scenario), fixed and mobile services
- High throughput, low jitter and delay with 1 to up to 4 Service Flows with several modulation downlink and DL/UL Ratio
- Throughput in lines with theoretical expected values
- Quality Of Service: up to 4 different Service Flows with several combinations of protocols (TCP/UDP) and type of flows (BE, nrtPS, rtPS)
- Mobility tested with channel emulator up to 105 km/h
- Network features (dhcp, NTP and AAA)
- Security features
- Handover and mobility features
- MIMO 2x1
- Tri-sectoriality
AeroMACS Use Cases – examples

- Airport Services (e.g. Guidance)
- ANSPS + Airlines Services (ATC and AOC)
AeroMACS Guidance Case Study

The following section reports the aim, the deployment, setting up, and the outcome of a Test session in terms of D-TAXI field trials, held in Milano Malpensa Airport the 12th of July 2016

AIM:
Verification and Technical Validation of the Airport Guidance messages transmission via Airport Data Link Infrastructure (AeroMACS), in order to:

- Provide guidance instructions to the airport vehicles, included all the information concerning the surrounding traffic displayed on the tablet board to improve the airport awareness
- Make available a set of Guidance Information in order to allow their actuation through Airport Visual Aids

MAIN DIRECT BENEFIT:
Decreasing the taxi time and consequently improving the airport throughput in

- All weather conditions, especially in case of low visibility conditions
- Airport with high complexity
AeroMACS Infrastructure solution for Test Case
AeroMACS Deployment in Milano Malpensa (MXP) Airport

- The AeroMACS solution deployed in Milano Malpensa Airport was composed by:

 - The Ground Network installed on MXP Control Tower and connected to Guidance Server

 - The Vehicle Network installed on a ‘Follow me’ car connected via Tablet
The AeroMACS Vehicle System was composed by:

- An AeroMACS CPE and 1 Antenna installed on the ‘Follow me’ car connected to WI-FI router to ensure the connectivity with the Guidance client Application installed on a Tablet.
The current section describes the AeroMACS Guidance Test roll out in three steps

- **First Step:**
 Follow-me vehicle stops on parking area requesting to Logon on the guidance server and after that it receives the position of all vehicles present in airport at the moment

- **Second Step:**
 Follow-me vehicle requests permission to move to the run-way. It receives the path to be followed

- **Third Step:**
 Follow-me vehicle receives an instruction of change on the path during the movement and an alert concerning the forbidden zone is shown
The Integrated VDL2 / AeroMACS Solution
A Data Link Communication Platform Solutions vs Gate-to-Gate Business Model

The diagram summarises all the different application areas which are affected by a global SoS approach (Gate-to-Gate approach) and the Leonardo Data Link Communication Platform which provides direct benefits to the ATS.

Leonardo Data Link Communication Platform, which is able to manage and support all macro-segments, demonstrates how it is looking at a real «Air Traffic System (ATS)» which engage all the operational needs concerning:

- People
- Procedure
- Equipment
VDL2 / AeroMACS Integrated Solution

AeroMACS Network in Airport, connected to two CSN (via ASNGW)

CSN#1: ATN OSI AGR via IP SNDCF / IS-IS for ATS B2 (DCL/D-TAXI)

CSN#2: ACSP GTW for Connectivity towards AeroMACS
After Landing – AeroMACS Connectivity

- A/C wakes-up AeroMACS CPE upon W-o-W event;
- Link Establishment & Authentication
AeroMACS support to ATN – OSI & AOC

A/C on ground, using AeroMACS for:
- D-TAXI (e.g.)
- AOC

AeroMACS IDU & ASNGW
Leonardo participation in SESAR2020 (PJ14-02-06)

Partners:
Leonardo, Airtel, EUROCONTROL

Tasks:
- Integration of AeroMACS within ATN (OSI and IPS)
- Digital voice communication solution over AeroMACS
- Integration of AeroMACS A/G DL with Multilink environment
- Support to standardisation and global harmonisation
AeroMACS in the Future Communication Infrastructure (Multi-link -> PJ14.02.04)
THANK YOU FOR YOUR ATTENTION
Backup slides
Integration of Aeromacs AAA Server with the Certification Authority for certificates

Mutual Authentication and interface encryption

Guidance message exchange

AeroMACS High Level Diagram for Cyber aspects

Integration of Aeromacs AAA Server with the Certification Authority for certificates
Mutual Authentication and interface encryption
Guidance message exchange

AeroMACS AAA Server with the Certification Authority for certificates
Mutual Authentication and interface encryption
Guidance message exchange

AeroMACS High Level Diagram for Cyber aspects
Drivers by ICAO Global Air Navigation Plan

<table>
<thead>
<tr>
<th>AIR-GROUND DATA LINK COMMUNICATIONS</th>
<th>BLOCK 0</th>
<th>2018</th>
<th>BLOCK 1</th>
<th>2024</th>
<th>BLOCK 2</th>
<th>2030</th>
<th>BLOCK 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport DL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPDLC & ADS-C over FANS/1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPDLC over Baseline 1 (Link 2000+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0-OPFL, B0-TBO, B0-FRTG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced CPDLC & ADS-C over Baseline 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATN OSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1-RSEQ, B1-AMET, B1-TBO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2-RSEQ, B2-AMET, B2-TBO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1-TBO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2-AMET, B2-TBO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1-AMET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2-AMET, B2-TBO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3-AMET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3-TBO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full 4D Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATN OSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A path from Data Link Technologies to the End-to-End Operational Needs via ICAO GANP

Airport Data Link Technologies

ICAO Aviation System Block Upgrade (ASBU) – ref. Block 1 Short-Medium Term

ATM Key Operational Changes

- Integrated Surface Management
- Integrated Surface Management DL
- Meteorological Information Exchange
 - Are managed by the CPDLC, Airport MLAT capability, Navaids and Meteo Data included

AeroMACS (for Airport)
AeroMACS Ground Station

- GS is composed by one or more Indoor Units (Base Bands) and up to three Outdoor Units connected via fiber per Base Band.
- RF Unit has a mean-time-between-failures (MTBF) of 45000 hours.
- GS reaches an availability of 99,999 % (redundant architecture).
- Maximum transmit power (PTx,max) of GS transmitter for each sector is:
 - 27 dBm <= PTx,max (Power Class 3) < 30 dBm.
- GS use a Global Position System (GPS) signal for system synchronization.
- GS provide system status and event using Simple Network Management Protocol (SNMP).
AeroMACS Ground System Infrastructure Solution

AeroMACS Ground System: ASNGW

- ASN GW features:
 - compliant with profile C as requested in DO 346 MOPS for AeroMACS
 - support a RADIUS client
 - provide system status and event using Simple Network Management Protocol (SNMP)

AeroMACS Ground System: AAA Server

- AAA Server features:
 - support RADIUS server
 - support EAP TLS for Authentication
 - support encrypted X.509 Version 3 digital certificate for authentication and encryption of data flow

AeroMACS Ground System: DHCP Server and NAT Features

- DHCP server must allocate private address to MS/SS
- Optionally Network Address Translation (NAT) should be installed and configured
AeroMACS Fixed Subscriber Station

- Fixed SS features:

 - Standard Compliance IEEE 802.16-2009
 - Antenna port N-type x 2 (or embedded antenna)
 - System Configuration TR-069, Web UI
 - Encryption CCM mode 128bits AES, CCM mode, AES key wrap with 128-bit
 - Authentication PKMv2, EAP-TLS, X.509 digital certificates
 - Interface RJ-45 Power-over-Ethernet (proprietary)
 - PoE Adapter 110~240VAC, 56V DC,
 - Dimensions 247mm x 247mm x 80mm
 - Weight 1.5 Kg
 - Operating temperature -40°C +55°C
 - Outdoor water-proof casing IP67/IP68
 - Type Approval EMC & EMI: EN 301 489-1, EN 301 489-4, FCC Part 15
 - Safety Compliance: IEC 60950-1, EN 60950-1, UL 60950-1
Airport Data link Infrastructure Solution

Focus on UL - DL Throughput

<table>
<thead>
<tr>
<th>DL -UL Ratio</th>
<th>QPSK 1/2</th>
<th>16 QAM 1/2</th>
<th>64 QAM 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UL (Uplink)</td>
<td>DL (Downlink)</td>
<td>UL (Uplink)</td>
</tr>
<tr>
<td>35:12</td>
<td>580 Kbit</td>
<td>1,8 Mbit</td>
<td>1,1 Mbit</td>
</tr>
<tr>
<td>31:16</td>
<td>780 Kbit</td>
<td>1,1 Mbit</td>
<td>1,5 Mbit</td>
</tr>
<tr>
<td>26:21</td>
<td>1 Mbit</td>
<td>1,2 Mbit</td>
<td>2 Mbit</td>
</tr>
</tbody>
</table>
AeroMACS Ground System Infrastructure Solution

Focus on next evolution on Architectural Redundancy

GS has multiple sector redundant configurations such as 2 or 3 sectors redundant configurations, 2 or 3 sectors - Full Mimo-A redundant configurations

Base Band 1

Base Band 2

Benefit:
- MIMO extends coverage whilst increasing trustworthiness of the received signal
- Three sector base station optimise deployment architecture and reduce the installation equipment cost
- Full redundancy of both base bands equipment and RF units in order to achieve the Ground system resilience to double crossed failures.
AeroMACS Ground System Infrastructure Solution

Focus on next evolution on Architectural Redundancy