U-space CONOPS and research dissemination conference

1 October 2019

FIRST SESSION PRESENTATIONS

SAFEDRONE

SAFEDRONE Javier Contreras and Antidio Viguria INDRA and CATEC

SAFEDRONE project

SAFEDRONE consortium:

Project scope:

- Acquire practical experience in Very Low Level (VLL) operations where general aviation and drones will share the airspace.
- SAFEDRONE project has a clear practical focus which primary activities are innovation, integration, and especially, demonstrating activities with flight tests.

SAFEDRONE U-space demonstrations

- U-space services (U1 and U2) with up to 6 drones
- Demonstration of specific procedures under nonnominal situations:
 - Geofencing
 - Dynamic no-fly zone activation
- Advanced technologies (related to future U3 services):
 - On-board Detect&Avoid of obstacles
 - A single UAV operator in charge of 3 drones
- Drones and general aviation aircraft sharing airspace

SAFEDRONE U-space demonstrations @ATLAS

- Located in Villacarrillo, Jaén (Spain)
 www.atlascenter.aero
- Available for the industry, research centers and universities
 - Our objective is to facilitate the experimentation of technologies and systems for the Unmanned Aerial sector
- Major differential factors:
 - Ideal weather conditions: >300 operational days a year
 - Current segregated airspace: 30x35Km up to 5.000ft
- Open demo on November 28th; <u>Please register to attend at:</u> <u>https://sites.google.com/view/safedrone/open-demo</u>

SAFEDRONE outcomes summary

U-space and SORA

- How U-space fits into the new European Drone Regulation?
 - For the Specific category, SORA is adopted as AMC for risk analysis
- In SAFEDRONE, we have applied SORA to the following CONOPS:
 - VLL, BVLOS, MTOW<25 and 3m wingspan, rural area, and uncontrolled airspace
 - GRC=3, ARC-b => SAIL II

Conclusions

- U-space fits mainly in TMPR (low)
- Major challenge for U-space => detect 50% of manned aircrafts

SAFEDRONE outcomes summary

- Integration of GA aircrafts and drones
 - Below 500ft (VLL) there are a diverse set of airspace users
 - Although in principle, except emergencies and special cases, no aircraft should fly at this level
 - <u>DAA functionality is essential</u> to allow a safe integration into the airspace
 - Non-cooperative DAA presents major technological problems, especially for small drones
 - Full integration of GA aircrafts in U-space could create rejection from users
- SAFEDRONE proposal
 - Cooperative but passive approach
 - GA aircraft is not integrated in U-space
 - But it is connected to U-space in order to increase Situational Awareness of the pilot
 - If GA aircraft is going to VLL (due to emergency or the operation itself), it has always priority and can alert Uspace that will "clean" the area of drones
 - Compromise solution for first implementation stages and especially in areas with low density of aircrafts (like rural areas)

SAFEDRONE outcomes summary

Advanced autonomous functionalities

- Autonomous Detection & Avoidance of obstacles, such as: buildings, cranes, etc.
 - Autonomous and on-board replanning of trajectories "within" U-space approved flight plan
- Operation of multiples drones by a single operator
 - Definition on how U-space should handle group of drones managed by a single operator
 - Autonomous generation of coordinated trajectories within an approved U-space area of operation

Stay in touch with us

More information at: http://safedrone-project.eu

Open demo on November 28th, 2019;

Everybody is welcome!

Please register to attend at: https://sites.google.com/view/safedrone/open-demo

We would love to see you there! ©

DIODE

DIODE Luigi Brucculeri Technosky

The **Demonstration of U-space Services** with **6 contemporary missions** with "unmanned" and "manned" flights in several geographical situations including urban area and close to a small airport.

Objectives

- to demonstrate the U-Space services consumed by the missions, by means of DIODE U-space solution
 - demonstrate that U-Space services contribute in maintaining/improving the level of human performance
 - demonstrate that U-space services contribute in maintaining an acceptable level of safety during the operations
- to demonstrate the feasibility of managing the interaction with ATM (manned flight, ATSU) through U-space services

DIODE Technical solution

DIODE Technical solution – e/Identification, Position reporting and Tracking

Hook on device (UTM Box)

Virtual Box - (GCS plug-in)

U-space-enabled Drone

U-space

DIODE Technical solution – Front-end

Monitoring

Tracking / Traffic information

Drone operaiton planning

Emergency mngt

Project outcomes summary

- Operation centric principle and Risk based approach confirmed
- CORUS/Y airspace demonstrated.
 - Risk of collision **reduced** to an (acceptable **=green**) level thanks to adequate mitigations (drone containment measures) and **U-Space services** (**strategic deconfliction**)
 - Actors involved provided positive feedback about Situational awareness, workload and trust.

Pre-Flight

- Demonstrated the importance of Planning, Risk assessment and Field analysis
- Strategic Deconfliction, evaluated the balance between Situational awareness and Privacy

•In Flight

- Flight profile accuracy generally acceptable in nominal weather conditions (mainly on horizontal profile)
- Trackers demonstrated performances satisfactory for the end usage (e.g. Monitoring).
- Geofencing, Monitoring and Emergency recovery actively contribute in maintaining the safety level.
- Evaluated the balance between Situational awareness and Privacy when providing Traffic information
- Evaluation of Mitigations (when required) to avoid flying over people (Law enforcement, Street Crossing)
- Excellent feedback from the authority on the potential for immediate operational intervention that tactical geofencing allows.
- Emergency management (visual and audio alerts) improves SA in emergency

Project outcomes summary

General

- Aeronautical culture is not homogeneous
- Definition of the legal aspects related to the use of the system

Pre-flight

- Pre-tactical Geofencing aligned with drone operational plan filed (not only cylinder).
- Tracker installation would benefit in standardisation (Hooking as minimum or integration)
- Important VLOS planning as well (to enable safe BVLOS in Y airspace)

In Execution

- Altitude measurements and precisions
- Harmless Drones vs. mitigation for ground risk
- Tactical Geofencing formalisation of operational process related to the originator/manager of new constraints (Authority vs. U-space Service provider vs. ANSP).
- Procedural Interface with ATS, ATCO workload increases with the number of the drone in ATZ, and the procedural solution worked only with a limited traffic or with a focal point for the ATSU.

Stay in touch with us

DIODE project

https://www.sesarju.eu/node/3200

Project Manager: Stefano GIOVANNINI

stefano.giovannini@enav.it

Project communication: Eugenio SANGIANANTONI

eugenio.sangianantoni@posteitaliane.it

https://www.d-flight.it

This U-Space project has received funding from the SESAR Joint Undertaking under the European Union's Connection Europe Facility (CEF) programme under grant agreement SJU/LC/343-CTR

DREAMS

DREAMS
Giuseppe Di Bitonto
IDS Ingegneria Dei Sistemi

DREAMS Objectives

contribute to the definition of **Drone Information Management**

fill the gap between the existing information used by traditional manned aviation and the needs of U-Space concept

Path to Drone AIM

IDS Air Nov

TUDelft

EUROUSC

EUROUSC

U1 U2 U3 **Traffic information Tactical Geofencing** Collaborative Flight planning Procedural interface E-registration interface with ATC with ATC management **Drone Aeronautical** Dynamic Emergency E-identification **Information** geofencing management **Management** Pre-tactical **Tactical Conflict** Weather Monitoring geofencing Information Resolution **Strategic Conflict Dynamic Capacity Tracking** Resolution Management

Drone Aeronautical Information Management

Project outcomes summary: Drone AIM

- Identification of **new aeronautical feature** (e.g. Geofencing areas) and definition of **extension of existing features (through AIXM)**, to include U-space needs.
- The ADS has to provide the same content with **different formats** (e.g. AIXM, GeoJson) **and** be able to interact with consumers by **several protocols** (e.g. WMS,REST) to allow the data exchange **considering different clients capability**.
- The ADS has to provide data querying capability in terms of feature type, attribute, temporal, etc.
- The change management for U-space features should be AIXM-oriented due to its native characteristics (e.g. feature id, temporality, cross reference, spatial resolution) – update might be AIRAC Cycle independent.
- DREAMS recommends **microservice paradigm** (fully compliant with CORUS CONOPS architecture principles) for U-space platforms implementation
- Deconfliction and dynamic capacity management services shall consider different mission types (**Geovectoring** in U4?).

Project outcomes summary: additional topics

- SORA limitations (in line with CORUS outcomes):
 - Not assessing risks related to failures (e.g. unavailability, corruption of data) of U-space services;
 - UAS concurrent operations not covered

Safety

Regulation & Standardization

- Oversight of service providers in the U-Space needed for high SAIL operations (*risk based approach*) → ISO 23629 12
- highlighted gaps in existing EU/ICAO regulations, in terms of technical (e.g. separation btn drones) and legal (e.g. liability of data) aspects of U-Space service providers.
- Transaction time of U-Space information services should be less than 10 seconds
- DREAMS platform performance in terms of time of AIXM data import, feature searching and publication have been measured for Benchmark purposes

Performance

Aeronautical Data and information available today are not sufficient to cope with the U-Space operational needs.

New information should be provided, but also an extension/tailoring of existing one through polyglot formats service allows pursue U-space.

Stay in touch with us

dreams.mgt@idscorporation.com

https://www.u-spacedreams.eu

https://www.linkedin.com/company/ u-spacedreams/

@UspaceDREAMS

PERCEVITE

PERCEVITE Hazem Sallouha and Franco Minucci TU DELFT

Project Overview and Scope

Avoiding other aircraft
Avoiding ground-based obstacles

"We will develop a detect and avoid sensor, communication, and processing package for **small** drones"

Light weight

Low power

Low cost

Why small drones?

The drone market is booming, and most drones flying in the sky will be relatively cheap and light-weight

Partners

Parrot

Communication Package

Communication package

Vision and audio

Vision with the Parrot SLAM Dunk

Visual odometry for flying also in GPS-denied environments

We have re-implemented eVO (result on KITTI dataset left) on the Parrot SLAM Dunk (shown on top of the Parrot Bebop 2 on the right), and will make the source code openly available.

Depth perception with a single image

Audio-based detection

Recording helicopter sounds for creating a public dataset for hear-and-avoid purposes.

Preliminary results aircraft detection: True Positive Rate vs. False Positive Rate

The upcoming 3rd year...

What to still expect?

- Mini sensor suite (~200 grams) with both the Parrot SLAM Dunk (or equivalent) and multi-technology communication package integrated and tested. → Staying well clear of static obstacles, other drones, and ADSB emitting air traffic.
- Micro sensor suite (~50 grams) with almost the same capabilities as the mini sensor suite but in a tiny package. → Avoidance of both static obstacles and other drones. Potentially complemented with ADSB in.
- More insight into: hear and avoid, monocular depth estimation with deep neural networks, using multi-antenna solutions to determine the relative location of non-collaborative air traffic that is emitting some signals.

Big symposium

June 26, 2020, in Delft, the Netherlands

AIRPASS

AIRPASS Robert Geister DLR

AIRPASS Scope and Objective

- Overall project objective is to develop a high level architecture for drone on-board systems
- Functional architecture to be able to use and to interact with U-space
- Define requirements for the on-board system concept, considering communication, safety and interoperability
- Identify gaps between available and required on-board technologies, e.g. autopilot systems, D&A and CNS systems

On-board System Concept

 Interactions between subsystems define on-board architecture

Drone

Subsystems:

Communication

Flight Management System

Geo-fencing

Detect and Avoid

Autopilot

Surveillance

U-space

Definition of On-board System Concept

AIRPASS Contribution to U-space services

- Different services are addressed by different sub-systems
- Contribution my differ in different implementations of sub-systems

Project outcomes summary

- Outcome is generally a functional architecture
- Results will be passed to different standardization groups
- The concept tries to be holistic
 - Different instantiations could be possible for specific missions
 - Only functional, no implications to hardware (integrated solution possible)
- Standardized on-board architecture simplifies the integration of every drone into U-space

Stay in touch with us

<u>airpass@dlr.de</u> <u>www.airpass-project.eu</u>

SECOPS

SECOPS René Wiegers NLR

SECOPS Objectives

SECOPS will develop a security concept for U-space including technological options for airborne and ground elements, taking into account legal, regulatory and social aspects.

The integrated security concept will help ensure:

- Drones shall be operated in accordance with the appropriate procedures and regulations and will not divert from their flight plan.
- Drones which fail to do so shall be detected and acted upon.

The SECOPS Integrated security concept

SECOPS Security Risk Assessment Approach

• Identify the services and information flows in U-space. • Determine primary and supporting Step 1 (Business) Impact areas Goal & Severity Security levels For each asset Obtain threat scenarios from a user (Primary) Assets point of view. • Derive Feared Events for Primary Supporting For each supporting asset Step 2 Assets Assets. (system/ procedures) Consequences Vulnerabilities Threats Successful Controls • Assess possible causes of Feared attack ∑ supporting assets Events: threat, vulnerability and consequences on Supporting Assets. Step 3 Likelihood Impact Successful Successful attack attack Risk= • Assess impact of PA and Feared Event. Likelihood ∑ assets • Assess likelihood of possible causes. Step 4 Derive risks evaluation

SECOPS follows SESAR SecRAM methodology for ATM Risk Assessment.

Most critical issues (high level)

Proof of Concept demonstrator results

Rogue drone detection scenario

Counter drone scenario

Thank you for your attention

