

Machine Learning of Speech Recognition Models for Controller Assistance

Hon. Prof. Dr. Hartmut Helmke

SJU Scientific Committee Meeting 06 Brussels, 30th May, 2018

The expensive part of Automatic Speech Recognition (ASR)

Prague

tango papa, papa turn left heading three,

Word transcription

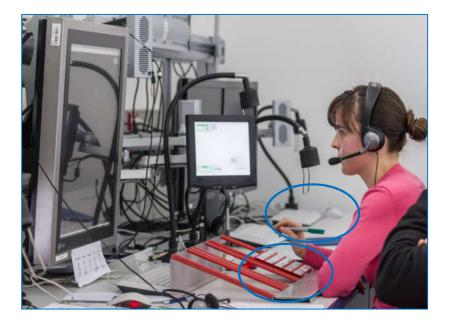
T7APP TURN_LEFT_HEADING 330	
T7APP	Command transcription

Basic Recognizer is improved by Machine Learning from 8% command recognition error rate to 0.6%.

Contents

- Motivation for Speech Recognition in Air Traffic Control
- MALORCA-Project Objectives and Building Blocks of a Basic Speech Recognizer
- Adaptation to Prague and Vienna and Approach Area by Machine Learning
 - Experiment
 - Results
- PJ.16-04 and Speech Recognition
- Next Steps
- Conclusions

From Paper to Electronic Flight Strips with Speech Recognition Support



All flight information in digital form in the system (and on the radar screen).This may results in higher controller workload.Controllers have the additional workload. Others have the benefits.ASR (= Automatic Speech Recognition) may be a solution

> MALORCA> H. Helmke > **SJU-SCM** > 2018-05-30

AcListant[®]-Strips: Validation at DLR in 2015

In 2014/2015 >20 controllers from DFS, Austro Control and ANS CR validated Speech Recognizer by USAAR in DLR labs for Dusseldorf Approach Area. **Goal:**

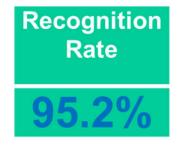
Quantify the benefits for Automatic Speech Recognition wrt.

- controllers' workload and
- ATM efficiency.

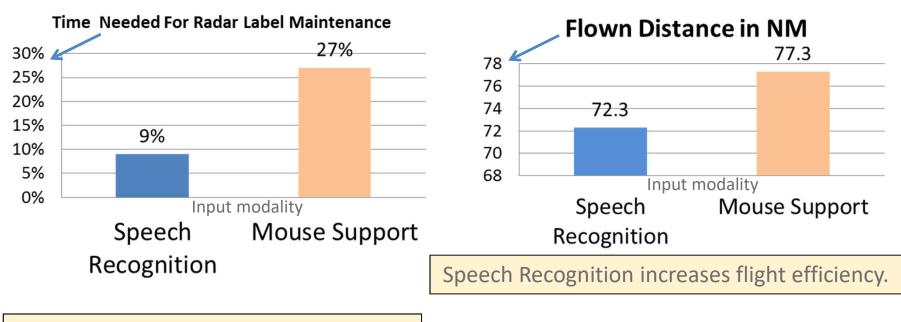
Baseline:

- Commands entered by mouse into radar labels
- **Improved Mode**
- Commands entered by ASR (automatic speech recognition), correction if necessary by mouse

AcListant[®]-Strips: Validation at DLR in 2015 (2) SESAR



Number of correctly recognized commands divided by number of given commands. Correct means: callsign, type and value correct.



Speech Recognition reduces workload.

Speech recognizer developed by USAAR and integrated with DLR arrival manager.

Validation Results of 2015 *

Airlines

save 50 to 65 liters of kerosene per flight

Airports

benefit from increase flow of 1 to 2 landings per hour

ANSPs and controllers

have reduced workload needed for clicking by a factor of 2 to 3 and benefit from reduced head down times which increases safety **society**

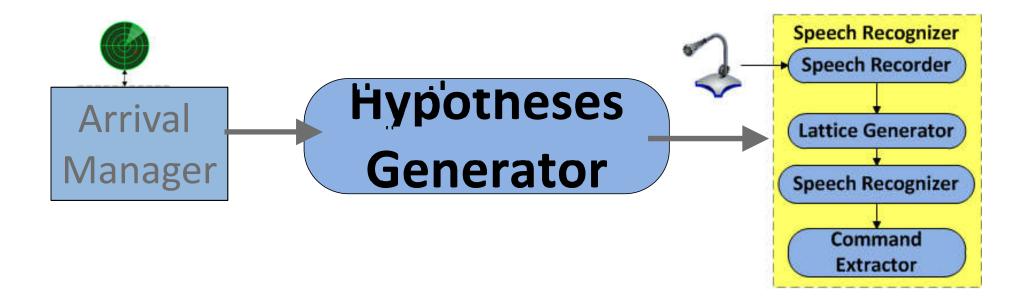
saves approx. 130 kg of CO₂ per flight

A320,

*

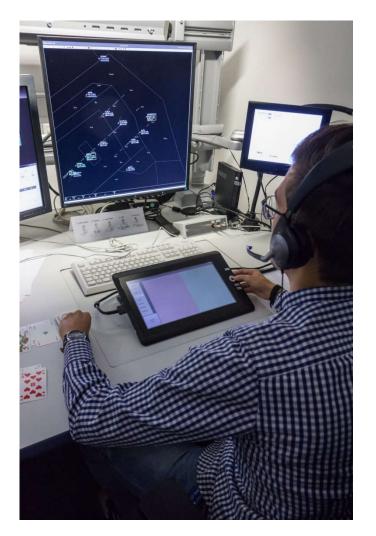
0.8 kg / l, 1 kg kerosene results in 3.15 kg C02; 35 landings per hour extrapolation of results of 60 minutes scenarios for 23R, 8 controllers..., see papers at DASC 2016 and FAA/Eurocontrol ATM Seminar 2017

Assistant Based Speech Recognition (ABSR)



Contents

- Motivation for Speech Recognition in Air Traffic Control
- MALORCA-Project
- Adaptation to Prague and Vienna and Approach Area by Machine Learning
 - Experiment
 - Results of Technical Experiment
 - Feedback of Controllers (Operation Validation)
- Conclusions



MALORCA project in Admin numbers

- MALORCA = Machine Learning of Speech Recognition Models for Controller Assistance
- 24 months duration (Apr. 2016 to March 2018)
- 37 deliverables (5 public ones)
- 5 partners with funding of 538 k€ plus 267 kCHF
- Total: 83.1 PM
- <u>www.malorca-project.de</u>

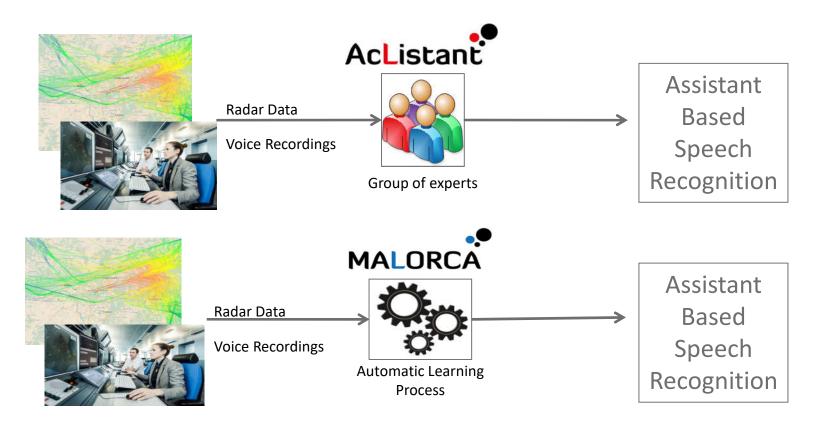
Motivation of MALORCA project

- We have high command recognition rates (> 90%) and low command recognition error rates (< 2%)
- Users (Air traffic controllers) want the system, because Automatic Speech Recognition reduces controllers' workload.
- We even have a **business case** (less fuel consumption, more landings per hour, ...)

However,

DLR and USAAR spent more than **1.4 million Euros** for AcListant[®] and AcListant[®]-Strips just for adaptation to Dusseldorf Approach Area for landing direction 23R.

Motivation – The MALORCA Project



Instead of (highly skilled and paid) experts, machine learning is used.

MALORCA objectives

Speech Recognition related objectives

- Provide speech recognition tools for different deployment areas
- Improvement of command recognition error rate by machine learning (ML)

MALORCA objectives (2)

Machine learning related objectives

- Develop a multi-modal, state-of-the-art, automatic learning system
 - To reduce costs of data
 - To speed up development
 - To reduce manual adaptation effort

Two different roadmaps exists (at least):

- 1. Speech Recognition Roadmap
- 2. Machine Learning Roadmap

MALORCA concentrates on Machine Learning,

i.e. learning instead of programming/configuration.

MALORCA objectives (3)

Bringing together experts from multiple disciplines, i.e. experts

- from data science, machine learning,
- speech processing and recognition and
- air traffic control

Bringing together experts from multiple disciplines

Bringing together experts from multiple disciplines

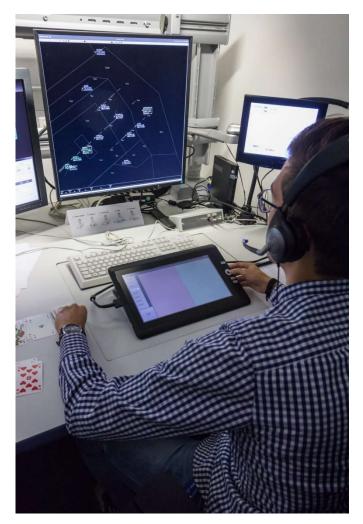
Bringing together experts from multiple disciplines

Participants from

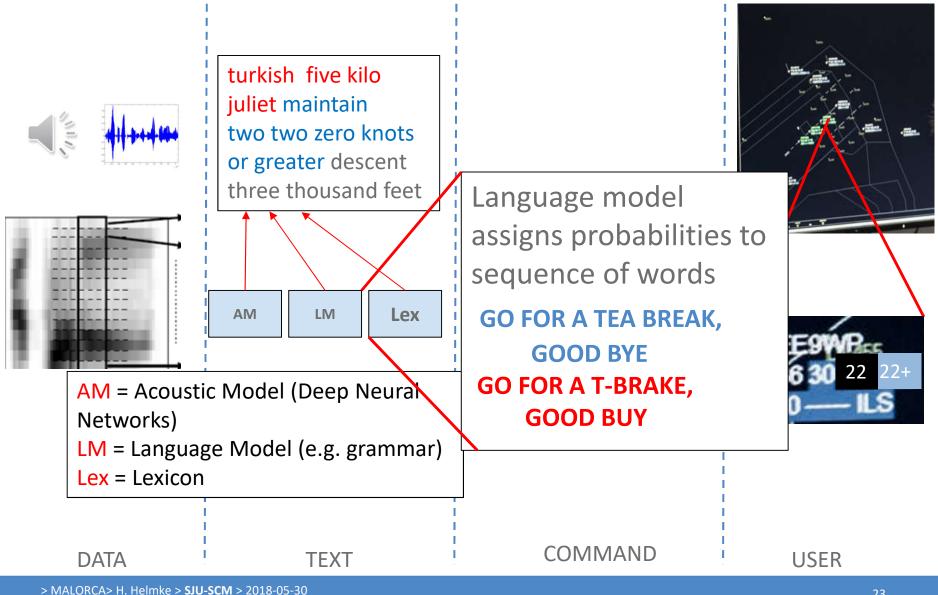
- **12 ANSPs** (DFS, Coopans (IAA, ACG, LFV, CROC, NUAC HB) , **FAA**, NATS, ANS CR, Avinor, LPS)
- System Suppliers (Thales, Frequentis, CS-Soft, ZCU, CVU, Harris)
- Speech Recognition (UFA, E-Sigma)
- Academia (Linköping University, Idiap, Saarland University, Univerity of Munich)
- Airport (FRAPORT)
- Airbus, Honeywell, Aeroholding
- SJU

Contents

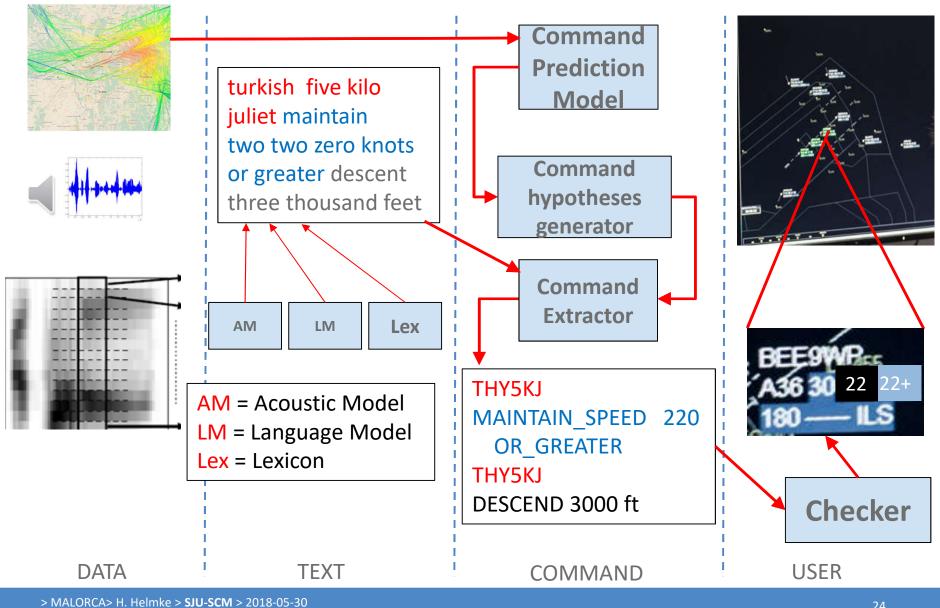
- Motivation for Speech Recognition in Air Traffic Control
- Building Blocks of a Basic Speech Recognizer
- Adaptation to Prague and Vienna and Approach Area by Machine Learning
 - Experiment
 - Results
- PJ.16-04 and Speech Recognition
- Next Steps
- Conclusions



From Speech Signal to HMI

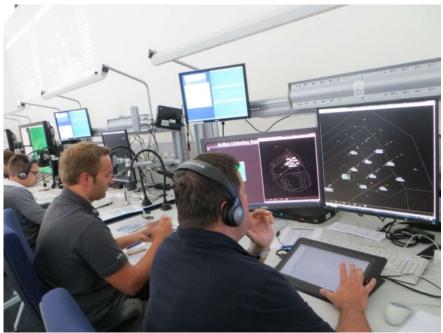


From Speech Signal to HMI

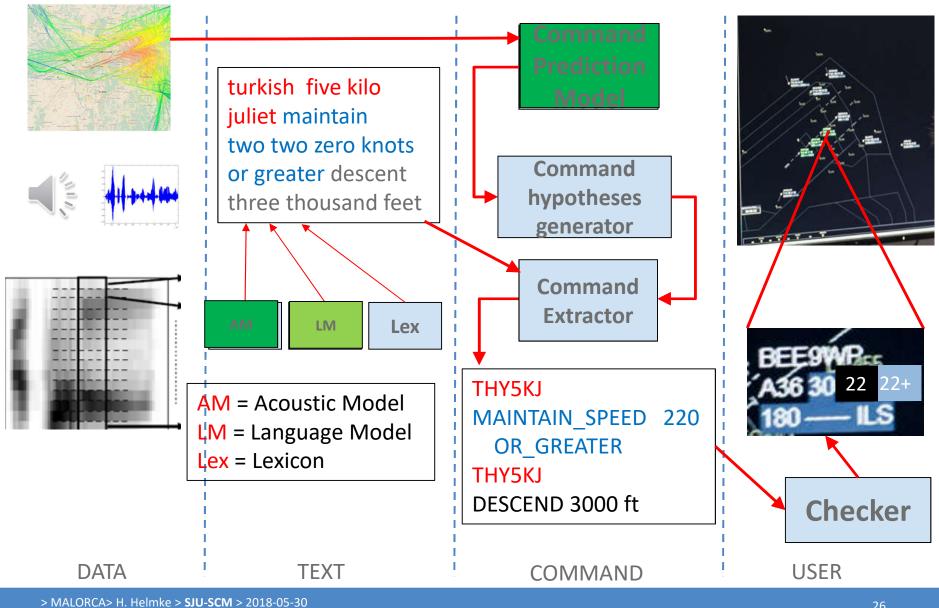


Contents

- Motivation for Speech Recognition in Air Traffic Control
- MALORCA-Project Objectives and Building Blocks of a Basic Speech Recognizer
 - sic speech kecognizer
- Adaptation to Prague and Vienna and Approach Area by Machine Learning
 - Experiment
 - Results
- PJ.16-04 and Speech Recognition
- Next Steps
- Conclusions

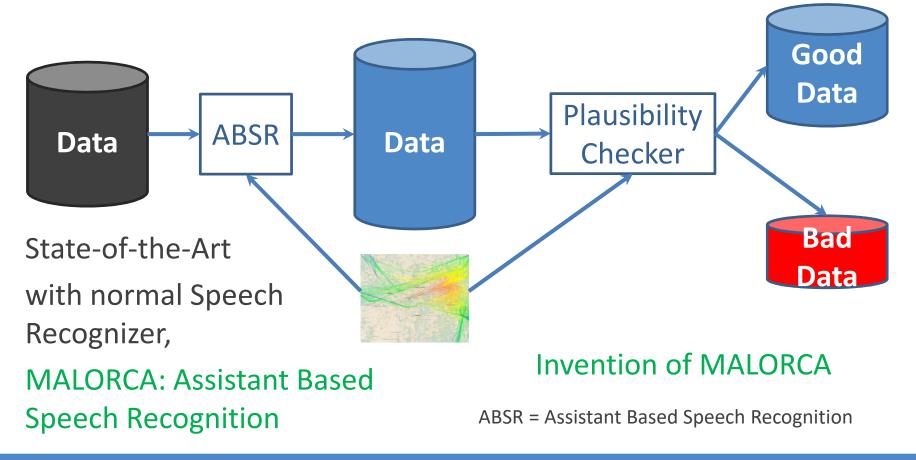


Model Training / Learning

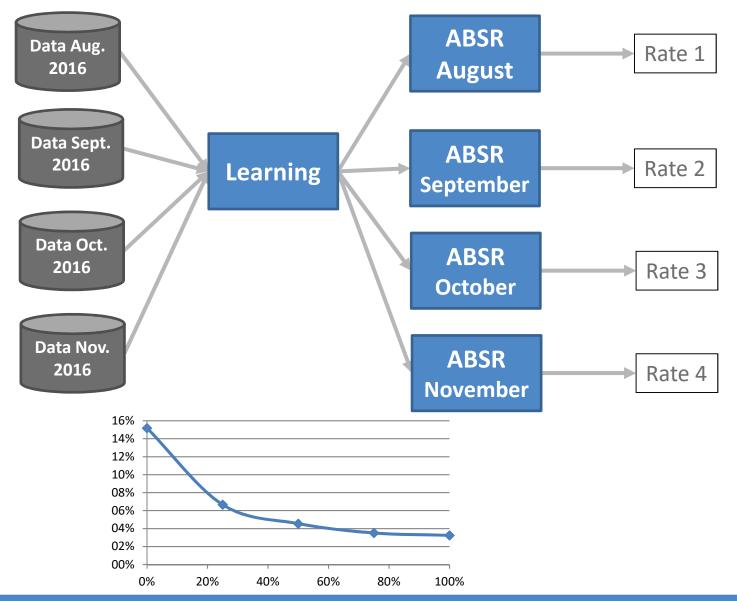


Semi-supervised learning (AM, LM, CPM)

- Exploit untranscribed data
- Generate transcripts (using actual system)
- Data selection: Select "good" or "bad" data ?



T2: Proof-of-Concept for Continuous Learning

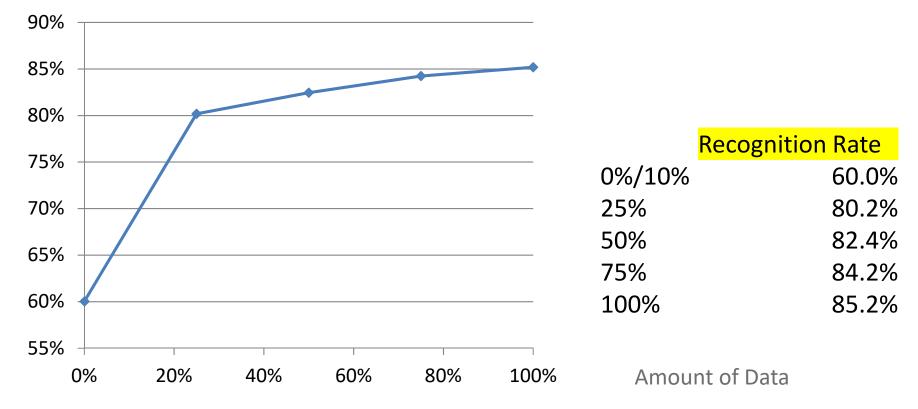


Contents

- Motivation for Speech Recognition in Air Traffic Control
- MALORCA-Project Objectives and Building Blocks of a Basic Speech Recognizer
- Adaptation to Prague and Vienna and Approach Area by Machine Learning
 - Experiment
 - Results
- PJ.16-04 and Speech Recognition
- Next Steps
- Conclusions

Learning Curve for Vienna

Command Recognition Rate



Learning Curve for Prague

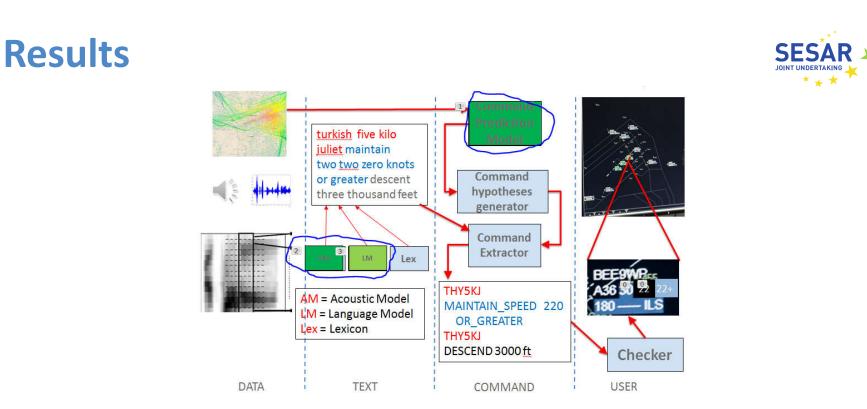
94% 92% 90% **Recognition Rate** 88% 0%/10% 79.8% 86% 25% 90.2% 50% 91.3% 84% 75% 91.7% 82% 100% 91.9% 80% 78% Amount of Data 0% 20% 40% 60% 80% 100%

Command Recognition Rate

Different Audio Qualities (Signal-to-Noise-Ratio) SESAR

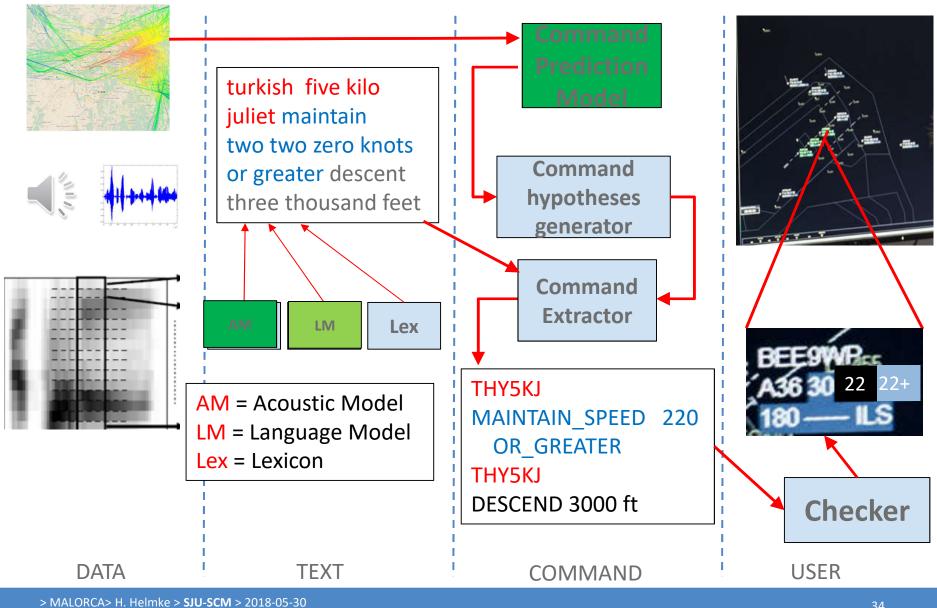
Prague

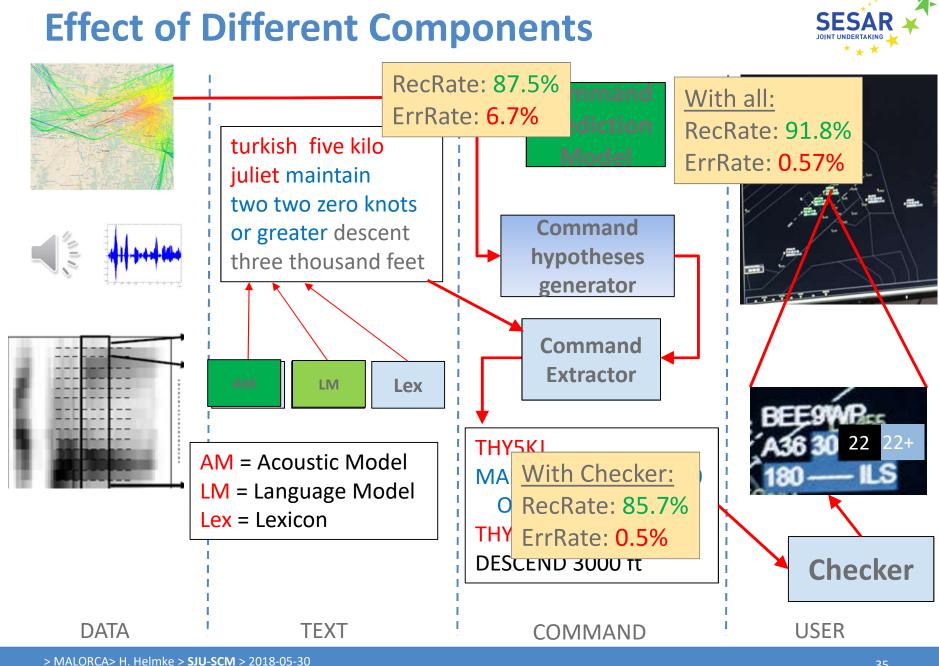
good day easy three one tango hotel ruzyne radar, radar contact roger continue	Vienna
Prague	austrian nine four zero nine, there is vfr traffic one o'clock distance five miles opposite aeh round three thousand five hundred feet
tango papa, papa turn left heading three, three zero cleared for ils three zero report established and reduce speed	Vienna
one six zero knots	turkish five kilo juliet maintain two two zero knots or greater descent three thousand feet

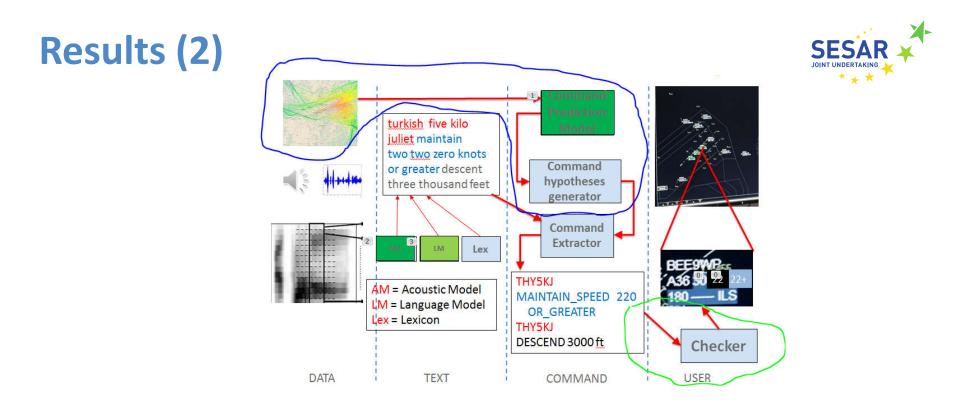


- Machine Learning of Acoustic Model, Language Model, Command Prediction Model is possible
- Command Recognition Rate improves from 80% to 92% (Prague) resp. from 60% to 85% (Vienna)
- By 8 times more data may provide 92.6% (Prague) resp. 90.2% (Vienna)
- Open Question: Explore combining the data from different airports

Effect of Different Components



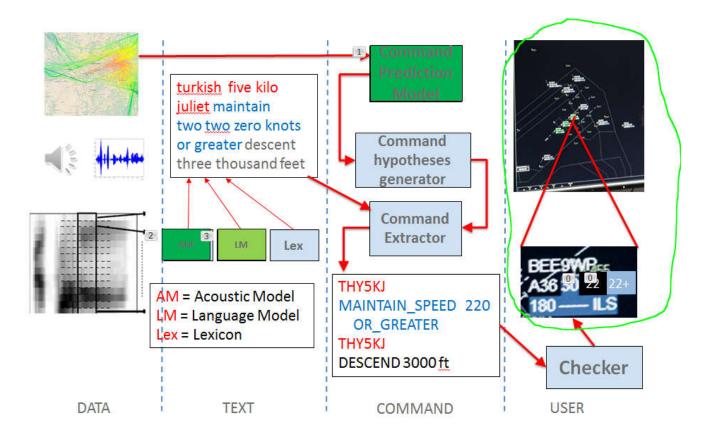




Command hypotheses generator plus Checker improves

- Command Recognition Rate from 85.7% to 91.8% (Prague)
- Command Recogn. Error Rate from 6.7% to 0.6% (Prague)
- Command Recognition Rate from 71.3% to 85.2% (Vienna)
- Command Recogn. Error Rate from 15.7% to 3.2% (Vienna)

User Acceptance (1)



The numbers are clear, BUT

we need to have the end users (controllers) on board from the beginning!!!

Prague:					
Number of	Number of ABSR		corrected by	detected by	
Commands	Errors/Rejections	Rec Rate	controller	controller	
396	36	90.9%	31	36	

Vienna:					
Number of	Number of ABSR		corrected by	detected by	
Commands	Errors/Rejections	Rec Rate	controller	controller	
610	80	86.9%	79	80	

No safety issues were observed.

All misrecognitions were detected.

Better Recognition Rate of course would improve even more workload reduction.

ABSR = Assistant Based Speech Recognition (= Speech Recognition with Command Hypotheses Generator)

Contents

- Motivation for Speech Recognition in Air Traffic Control
- MALORCA-Project Objectives and Building Blocks of a Basic Speech Recognizer
- Adaptation to Prague and Vienna and Approach Area by Machine Learning
 - Experiment
 - Results
- PJ.16-04 and Speech Recognition

> MALORCA> H. Helmke > SJU-SCM > 2018-05-30

- Next Steps
- Conclusions

Who contributes to PJ.16-04? 23 partners from 16 European countries

m	Logos of PJ.16 Members

PJ.16-04 Team
THALES AIR SYS
ANS CR (B4)
Integra
LPS SR (B4)
ACG/COOPANS
CCL/COOPANS
LFV/COOPANS
Naviair/COOPANS
DFS
ENAIRE
CRIDA
NATS
NATS Avinor ANS
Avinor ANS
Avinor ANS SKYGUIDE
Avinor ANS SKYGUIDE SKYSOFTATM
Avinor ANS SKYGUIDE SKYSOFTATM EUROCONTROL
Avinor ANS SKYGUIDE SKYSOFTATM EUROCONTROL DLR (AT-One)
Avinor ANS SKYGUIDE SKYSOFTATM EUROCONTROL DLR (AT-One) FRQ (FSP)
Avinor ANS SKYGUIDE SKYSOFTATM EUROCONTROL DLR (AT-One) FRQ (FSP) HC (FSP)
Avinor ANS SKYGUIDE SKYSOFTATM EUROCONTROL DLR (AT-One) FRQ (FSP) HC (FSP) SINTEF (NATMIG)

G

DFS Deutsche Flugsicherung

EUROCONTE

FREQUENTIS

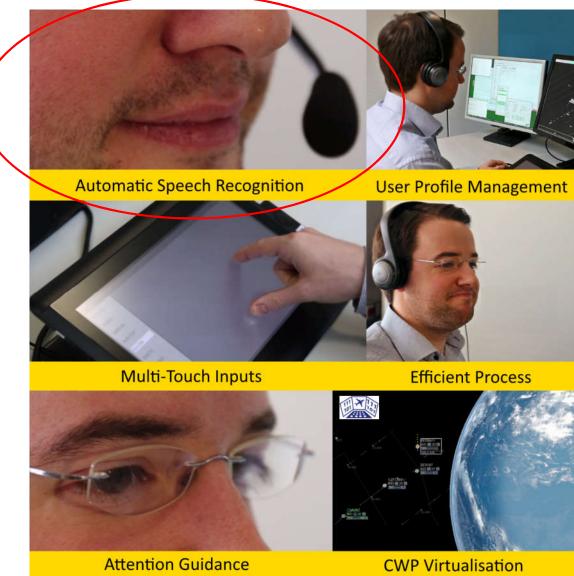
PARTNERS

ENAIRE - OVenov

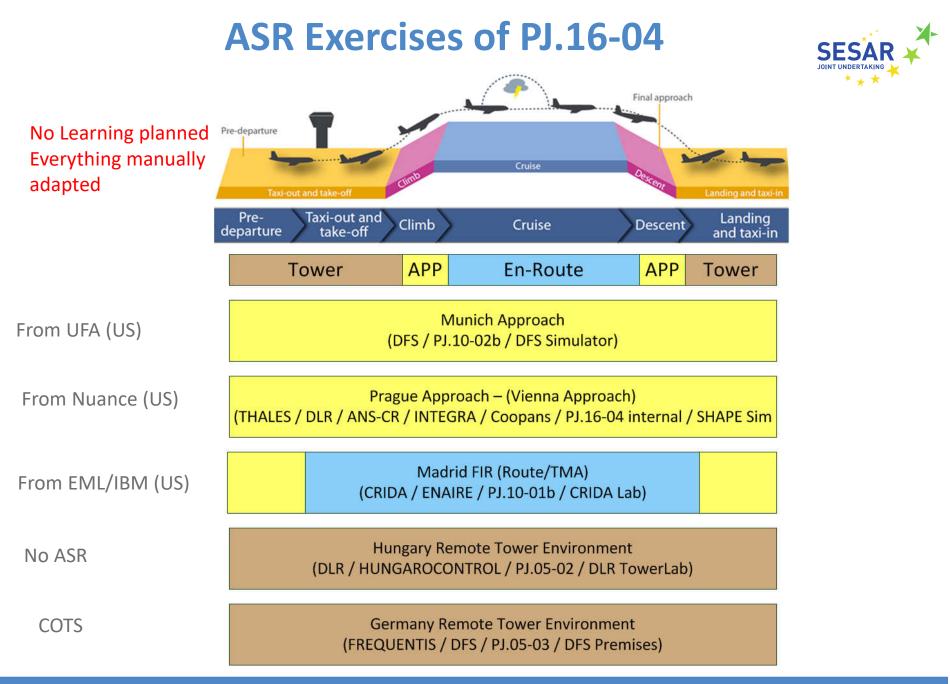
NATS skyguide

SINTEF

ATM System provider ANSPs Research and Consulting Institutes

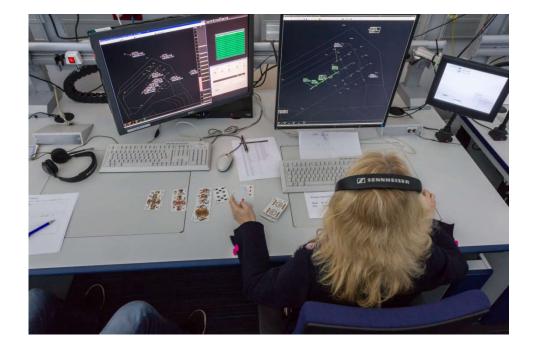


> MALORCA> H. Helmke > **SJU-SCM** > <u>2018-05-30</u>



Contents

- Motivation for Speech Recognition in Air Traffic Control
- MALORCA-Project Objectives and Building Blocks of a Basic Speech Recognizer
- Adaptation to Prague and Vienna and Approach Area by Machine Learning
 - Experiment
 - Results
- PJ.16-04 and Speech Recognition
- Next Steps
- Conclusions



Challenges for Speech Recognition (ASR) From MALORCA to IBICA

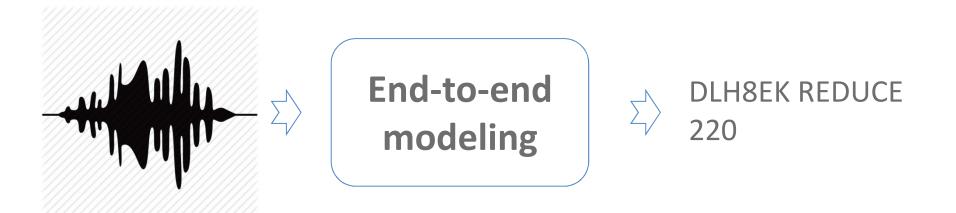
٠	Confidence scores	for ASR output	How	sure ASR is? Plausibility values for recognized
			com	mands and for predicted commands ?
٠	 Hesitation/Uncertainty/Aeh detection 			Controller certainty, professionality, performance analysis, good phraseology
•	Pilot Recognition	Different accen	nts, co	ockpit noise, more phraseology deviations

 Learning of Statistical-Language and phraseology (deviations) 			0 0	models	Not changing the controller	
•	 Standardization Exchanging of transcriptions 			0,	PJ.16-04 for ASR output? Data exchange ferent partners? Agreed interfaces?	
•	Real-time Speech Recognition		Online versus offline decoding? First output to controller before releasing push-to-talk-button			
•			hough? 1% o d or which pr	f Error Rate? Which rates are really ize?		
٠	Safety Issues			0	ut off? Over trusting in ASR? Bad ASR se workload and cause safety issue?	

Challenges for Machine Learning From MALORCA to IBICA

•	Introspective Learning Algorithm, trust, self-diagnosis			Problem out of problem area, result out of envelope, early integration of regulators
٠	Daily Learning and U	pdate	Whe	n installing new version, Using 1000s of hours
٠	Learning directly in calso for data privacy	ps roon	าร	Voice and radar data stays in ops room, only learned models (abstraction) leave ops room
٠	Other Input Modaliti second sensor	es as	ADS	S-B, Mode-S, Electronic Flight Strips,
٠	 Automatic Radar Data processing resp. other second sensors 			Parallel processing of offline data, more than real time needed for pre-processing
٠	Artificial Data			lata, than more data, artificial is even cheaper, image disturbs images or avoids labels by synthetic data
•	 End-to-end-Learning 			Direct learning Commands from features, without indirection of phoneme and word learning

What else: End-to-end modeling Application of speech+other data from daily recordings



Benefiting Applications from MALORCA's Speech SESAR Recognition and Learning Competence

Individual Controller Education

• Immediate feedback after shift/simulation run

Holistic Workload Assessment and Prediction

• Monitoring and Planning tool for supervisors

Permanent Online Learning (in more Complex Areas / Environments)

• Training on daily basis directly in the ops room

Machine Learning for Controller Assistant Tool Configuration and Maintenance

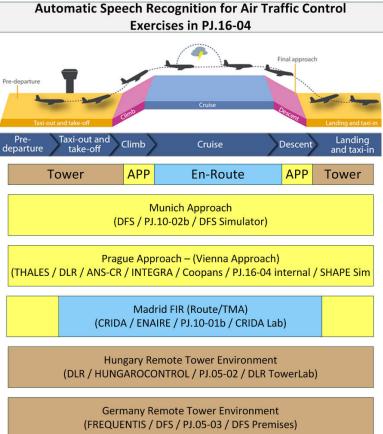
• Reducing xMAN deployment and maintenance costs, they are used and not only bought

Contents

- Motivation for Speech Recognition in Air Traffic Control
- MALORCA-Project Objectives and Building Blocks of a Basic Speech Recognizer
- Adaptation to Prague and Vienna and Approach Area by Machine Learning
 - Experiment
 - Results
- PJ.16-04 and Speech Recognition
- Next Steps
- Conclusions

European competence

- 16.04 DFS task: ASR system is from UFA (US)
- 16.04 CRIDA/ENAIRE task: ASR system is from EML/IBM (US)
- 16.04 Frequentis task: ASR system not chosen yet (COTS)
- 16.04 task in Rungis: ASR system is from Nuance (US)



- MALORCA's ASR is based on KALDI which is public domain, plus extensions done in MALORCA and before
- Competence stays in Europe

Conclusions

- Machine Learning of Acoustic Model, Language Model, Command Prediction Model is possible
- Command Recognition Rate improves from 80% to 92% (Prague) resp. from 60% to 85% (Vienna)

Command Hypotheses Generator plus Checker improves (Context integration)
Command Recognition Rate from 85.7% to 91.8% (Prague)
Command Recogn. Error Rate from 6.7% to 0.6% (Prague)

No safety issues were observed.

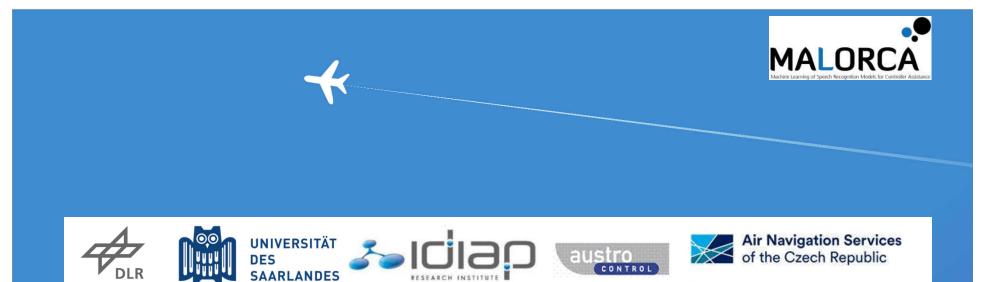
Machine Learning can ease Adaptation and Maintenance of ATC tools (e.g. adaptation of an AMAN).

MALORCA's competence

- Machine Learning (Big Data)
- Automatic Speech Recognition
- Air Traffic Management
- Integration of new technologies into the ATM world
- Project Management
 - Besides "algorithmic" competence MALORCA has data competence on board, i.e. MALORCA team has access to real data.
 - Different to PJ-16-04 MALORCA works on data from the ops room

Promising further applications for machine learning and Automatic Speech Recognition exists.

MALORCA team is ready for IBICA.



Thank you very much for your attention!

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 698824.

Covering the sky...

