

Vista Project Building a Holistic ATM Model for Future KPI Trade-Offs

Gérald Gurtner, Luis Delgado, Andrew Cook

Jorge Martín, Samuel Cristóbal

Hans Plets

SESAR Innovation Days 28th November 2017 Belgrade

Goals and objectives

Vista aims to study the main **forces ('factors')** that will shape the future of ATM in Europe at the **2035 and 2050 horizons**

More specifically:

- trade-off between, and impacts of, primary regulatory and business (market) forces;
- trade-offs within any given period;
- trade-offs between periods;
- whether alignment may be expected to improve or deteriorate as we move closer to Flightpath 2050's timeframe

Focus on five stakeholders: airlines, ANSPs, airports, passengers, and environment.

Project overview

Workflow:

- Build an extensive list of **business** and **regulatory** factors likely to impact the ATM system.
- Classify the factors: short-term/long-term, likelihood of occurrence, importance of their impact on the ATM system, etc.
- Build current and future scenarios.
- Building model requirements:
 - consider as many (important) factors as possible in a flexible way;
 - produce level of detail required and achievable to capture relevant metrics.
- Iterative model development in consultation with stakeholders.
- Trade-off analysis.

Scenario definition in Vista

Vista model is a 'what-if' simulator

• What happens if I do this in the system?

And **not**:

What will happen in 2035 or 2050?

==> Scenario definition. Aim is **not** to compute the likelihood of a given scenario.

==> Factors entering scenario subdivided into two main categories:

- Business factors: cost of commodities, services and technologies, volume of traffic, etc. => demand and supply
- Regulatory factors: from EC or other bodies, e.g. ICAO, =>
 'rules of the game'

Objective of the model

- Vista model aims at:
 - Simulating a typical day of traffic in Europe to the level of individual passengers
 - Being able to change the operational environment and see their impact on several stakeholders and at several levels
- Vista model takes a holistic approach:
 - Because the behaviour of the system is not a simple sum of the individual behaviours.
 - Because the heterogeneity of behaviours among actors shapes the system.

Model presentation

Strategic layer – economic model

Objective of the economic model: take into account macro-economic factors to forecast the main changes of flows in Europe.

Desired output:

- Main flows in Europe,
- Market share of different airline types
- Capacities of ANSPs and Airports
- Average prices for itineraries.

Strategic layer – economic model

Should take into account:

- Main changes in demand:
 - volume
 - types of passengers
- Major business models changes:
 - Point-to-point vs hub-based (airlines)
 - competition vs cooperation (ANSP)
 - privatization vs nationalisation (ANSP and airports)
- Capacity restriction:
 - Congestion at airports
 - ATCO limits
- Major changes of prices in commodities:
 - Fuel,
 - airport and airspace charges, etc

Model description

Deterministic agent-based model

In a nutshell:

- Step-by-step multi-agent model
- Individual agents are currently:
 - Individual airports
 - Individual airlines, part of alliances (or not)
 - Passenger aggregated at an OD level per airline
 - Individual ANSPs
- Agents compete with peers, try to predict different values (delays, future demand, prices) and act accordingly

Network Based Model

- Supply: airport pairs (edges)
- Demand: itineraries (collection of edges)

ABM flow

- Airlines choose their supply, based on cost and price of tickets,
- Passengers choose between different itineraries, based on prices,
- Supply and demand are compared, prices evolve,
- Agents compute profit and form expectations,
- Short-list of airports assess a potential capacity extension,
- ANSPs choose their capacity based on target and set their unit rate.

Simple example: LLC vs trad

Simplified setup: four airports, two airlines LCC/trad

--- A - low cost P2P

B - traditional hub-based

Simple scenario:

- Increase in demand (higher income) on 0->3
- Increase of capacity of airport 3
- Increased fuel price for everyone

Number of passengers

Airport profit

Pre-tactical layer

From strategic high-level to tactical executable detail

Pre-tactical layer – flight plan generation

Schedules

Fid	From	То	SOBT	SIBT	Capacity	GCD	Ac type	•••
F _{AD1}	А	D	9:00	10:30	120	1234	A320	
F_{AD2}	А	D	10:45	12:20	240	954	A320	
F _{AD3}	А	D	10:50	12:20	120	2521	B737	
F _{CD1}	С	D	8:30	12:00	70	3213	B737	
• • •								

Fid	Flight plan type	Climb dist	Climb time	Cruise dist	Cruise time	Cruise speed	Cruise avg Fl	Cruise avg weight	Cruise avg wind	Descent dist	Descent time
F_{AD1}	0	208	00:29	504	1:07	445N (0.77M)	380	66500	34	201	00:35
F_{AD1}	1	213	00:31	442	1:00	450N (0.78M)	360	67000	-9	224	00:36
F _{AD1}	2	194	00:29	472	1:07	446N (0.77M)	380	66000	-24	201	00:35
F_{AD1}	3	208	00:29	466	1:02	450N (0.77M)	340	67500	0	218	00:36
•••											

Pre-tactical layer – flight plan generation

Tactical layer -- Mercury

Tactical layer -- Mercury

- Data-driven mesoscopic approach, stochastic modelling
- Individual passenger DOOR-TO-DOOR itineraries
- Regulation 261/2004 pax care & compensation
- Disruptions, cancelations, re-accommodations, compensations costs
- Airline decisions based on costs models or rule of thumb
- Full Air Traffic Management model, demand/capacity balance

Conclusions

Overall model:

- Aim at simulating what happens a typical day of if you change something in the system.
- Macro to micro model in different layers of increasing detail

Economic model:

- **High-level description**, dependence of main flows on macroeconomic parameters.
- Deterministic agent-based model, featuring ANSPs, airlines, airports and passengers
- Complex economic feed-back, emerging phenomena coming from network-based interactions

Potential next steps

Academic developments:

- Study of emergent phenomena related to more specific changes in the model, for instance introduction of different drone management systems
- Refinements of the economic side of the model by extending the financial aspect: capital of companies, loans, etc.
- Refinements of the strategies used by agents, game theory.

Application-oriented development:

- Support to projects like PJ19, development of performance tools and general views like EATMA
- Support to projections of demand at the ANSP level (stakeholder demand)

Vista project Thanks for listening!

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 699390.

Passenger demand

Pax demand: given all the possibilities (itineraries) to go from i
to j with associated prices, travel times, etc, how to choose
one?

$$D_k = D_k^0 (1 - \alpha \Delta p_k + \beta \Delta i_k + \dots) C(p_k, \{p_l\}_{l \neq k})$$
 Volume term Competition term

$$\mathrm{C}(p_k,\{p_l\}_{l\neq k}) = 1 - \frac{1}{s} \Biggl(\Delta p_k - \sum_{l=1,l\neq k}^n \frac{\Delta p_l}{n-1} \Biggr) + \dots$$

Airline supply

 Airline supply: profit maximizer, choosing their capacity on each branch.

$$S^* = \left(\frac{\hat{p} - c_o}{c_c}\right)^{\frac{1}{\alpha - 1}}$$

Operational cost, linear

Airline supply

Operational cost depends on a lot of parameters:

Market clearing and convergence

- Demand disaggregated itineraries -> airport pair
- Demand and supply are compared on each edge, price is updated:

$$p_{t+1}^k = p_t^k \left(1 + \lambda \left(\frac{S_k - D_k}{(S_k + D_k)/2} \right) \right)$$

Airport delay management

 Airports compute their total traffic, which produces an extra level of delay given by

 Airports try to maximise their profit by increasing (or not) their capacity:

$$r = T\widehat{P} - c(C)$$
 Cost of capacity (linear in the model)