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Scope and Objectives intul SESAR x

Problem:
e ATFCM in the pre-tactical phase

Current approach:

* Based on similarity
http://www.eurocontrol.int/articles/ddr-pre-tactical-traffic-forecast

Objectives:

e Use visual analytics to extract route choice determinants

e Model behaviour of airlines regarding route choice between airport pairs
using machine learning techniques

e Evaluate pre-tactical prediction power
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State of the Art intuic SESAR
Airline Route Choice Behaviour

Abundant research on tactical trajectory prediction:
e Prediction of arrival time

e Conflict detection

Limited research on airline route choice prediction before
the availability of flight plans (pre-tactical forecast):

e Luis Delgado (2015) “European route choice determinants”
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Approach intuit  SESAR x

e Data: actual trajectories (M3) from DDR2

e Route clustering per OD

e Visual exploration of route choice determinants
e Train a machine learning model

e Evaluate quality of predictions vs null model
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Case Studies intult  SESAR x

* ODs:
e |stanbul to Paris
e (Canary Islands to London

e Multinomial regression

e (Candidate variables
 Route length
e Charges
e Time
e Schedule
e Congestion

e Temporal scope:
e Training/exploration: AIRACs 1601-1603
e Testing: AIRACs 1501, 1502
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Clustering Lo SESAR

JOINT UNDERTAKING

Cluster No of flights

0 139
110
190
218
117
73
29
24

Noum|b{wWN |-

Clustered with DBScan
Metric:
Flown kilometres per ANSP

SIDs, Beograd, 29t November 2017 — Combining Visual Analytics and Machine Learning for Route Choice Prediction




. i e 4
Visual Exploration Lot SESAR

JOINT UNDERTAKING

Cost-worthiness

2 variables considered
e Average route length
e Average route charges

1 variable discarded
e Average flight time
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Visual Exploration Lla SESAR
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Airline Behaviour

2 variables considered
e Arrival time
e Airline
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Visual Exploration Lo SESAR x

Congestion
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Visual Exploration intuit SESAR x

Cluster Properties
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Istanbul - Paris
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Visual Exploration Lo SESAR

Cluster Properties

Canary Islands - London
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Approach intuit  SESAR x
Parameters
Route parameters Flight parameters
(used for modelling): (used for segmentation):
e Cost-worthiness: * Airline (CASK)
e Average route charges * Arrival time

 Average route length

 (Congestion:
e Rate of regulated flights
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Modelling Approach intuit SESAR ¥
Multinomial Regression Model

gli-Xj+a; Variables:

- 7 5.x .
14+ 3 efr et e Cost-worthiness:
* Average route charges

P(Y; = j)

Model of class i and cluster j

* X;vector of parameters of cluster j
* B, vector of constants of model i

* o;independent constant of cluster j

* Average route length
e Congestion:
e Rate of regulated flights
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Approach intuit SESAR

Training and Validation
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Validation Results intult  SESAR x

Canary Islands-London
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Validation Results
Istanbul-Paris
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High number of options
Similar routes
Missing explanatory variables?
. Average Average Regulations
Cluster No of flights length (NM) |charges (EUR)| per flight
3 218 1274 0.06
4 v T
. Average Average Regulations
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Approach intuit SESAR

Testing
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Testing Results intult  SESAR x

Canary Islands-London

e The model captures:
* behaviour of new airline (Norwegian)
e airlines changing route options

e Improvements with respect to null model
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Testing Results intult

Istanbul-Paris
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Applicability oo sESAR o
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= Potential for pre-tactical demand forecast

= Range of applicability needs to be clearly identified:
" Training data requirements
= Prediction error measurement
" Generalisation to other ODs
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Future Research Directions ot SESAR N
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Better explanatory variables
= QOther indicators
=  Congestion as a function of time

= Other flight inputs: wind, type of regulation, route
availability...

= Training with several years’ data

= Continuous training/prediction (automatic adaptive training data)

Combination with model-based approaches (cost optimisation)
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Combining Visual Analytics and Machine Learning
for Route Choice Prediction

Application to Pre-Tactical Traffic Forecast

Thank you very much
for your attention!

This project has received funding from the SESAR Joint Undertaking
under the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 699303
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" 9 The opinions expressed herein reflect the author’s view only.
- Under no circumstances shall the SESAR Joint Undertaking be responsible for any use that may be made of the information contained herein.




