

Combining Visual Analytics and Machine Learning for Route Choice Prediction

Application to Pre-Tactical Traffic Forecast

Rodrigo Marcos

Data Scientist, Nommon Solutions and Technologies

SESAR Innovation Days
Beograd, 29th November 2017

Scope and Objectives

Problem:

ATFCM in the pre-tactical phase

Current approach:

Based on similarity
 http://www.eurocontrol.int/articles/ddr-pre-tactical-traffic-forecast

Objectives:

- Use visual analytics to extract route choice determinants
- Model behaviour of airlines regarding route choice between airport pairs using machine learning techniques
- Evaluate pre-tactical prediction power

State of the Art Airline Route Choice Behaviour

Abundant research on tactical trajectory prediction:

- Prediction of arrival time
- Conflict detection
- •

Limited research on airline route choice prediction before the availability of flight plans (pre-tactical forecast):

• Luis Delgado (2015) "European route choice determinants"

Approach

- Data: actual trajectories (M3) from DDR2
- Route clustering per OD
- Visual exploration of route choice determinants
- Train a machine learning model
- Evaluate quality of predictions vs null model

Case Studies

- ODs:
 - Istanbul to Paris
 - Canary Islands to London
- Multinomial regression
- Candidate variables
 - Route length
 - Charges
 - Time
 - Schedule
 - Congestion
- Temporal scope:
 - Training/exploration: AIRACs 1601-1603
 - Testing: AIRACs 1501, 1502

Clustering

Cluster	No of flights
0	139
1	110
2	190
3	218
4	117
5	73
6	29
7	24

Clustered with DBScan Metric: Flown kilometres per ANSP

Visual Exploration Cost-worthiness

- Average route length
- Average route charges

1 variable discarded

Average flight time

Cluster	No of flights	
0	139	
1	110	
2	190	
3	218	
4	117	
5	73	
6	29	
7	24	

Visual Exploration Airline Behaviour

2 variables considered

- Arrival time
- Airline

Visual Exploration Congestion

1 variable considered

Average number of regulated flights

1 variable discarded

 Average standard deviation of en-route FL with respect to RFL

Visual Exploration Cluster Properties

Cluster	No of flights	Average length (NM)	Average charges (EUR)	Regulations per flight
0	139	1277	1188	0.15
1	110	1314	1144	0.11
2	190	1273	1199	0.06
3	218	1274	1203	0.06
4	117	1256	1207	0.07
5	73	1274	1204	0.1
6	29	1271	1229	0.03
7	24	1304	1152	0.04

Visual Exploration Cluster Properties

Canary Islands - London

Cluster	No of flights	Average length (NM)	Average charges (EUR)	Regulations per flight
0	659	1620	1653	0.18
1	238	1638	1676	0.13
2	68	1740	1051	0.13
3	13	1732	1582	0.46
4	7	1724	1893	0.42
5	10	1780	1165	0

Approach Parameters

Route parameters (used for modelling):

- Cost-worthiness:
 - Average route charges
 - Average route length
- Congestion:
 - Rate of regulated flights

Flight parameters (used for segmentation):

- Airline (CASK)
- Arrival time

Modelling Approach Multinomial Regression Model

$$P(Y_i = j) = \frac{e^{\beta_i \cdot X_j + \alpha_j}}{1 + \sum_{k=1}^{J} e^{\bar{\beta}_i \cdot \bar{X}_k + \alpha_k}}$$

Model of class i and cluster j

- X_i vector of parameters of cluster j
- β_i vector of constants of model i
- α_i independent constant of cluster j

Variables:

- Cost-worthiness:
 - Average route charges
 - Average route length
- Congestion:
 - Rate of regulated flights

Approach Training and Validation

Validation Results Canary Islands-London

- Low number of routes
- Very different
- Well explained

Validation Results Istanbul-Paris

- High number of options
- Similar routes
- Missing explanatory variables?

Cluster	No of flights	Average length (NM)	Average charges (EUR)	Regulations per flight
3	218	1274	1203	0.06
4	117	1256	1207	0.07

Cluster	No of flights	Average length (NM)	Average charges (EUR)	Regulations per flight
0	139	1277	1188	0.15
5	73	1274	1204	0.11

Approach Testing

Testing Results Canary Islands-London

- The model captures:
 - behaviour of new airline (Norwegian)
 - airlines changing route options
- Improvements with respect to null model

Testing Results Istanbul-Paris

- The model captures:
 - other routes considered (7)
 - significant change in charges
- Much better than null model

Cluster	Charges (train)	Charges (testing)	Regulations (train)	Regulations (testing)
0	1188	1305	0.15	0.04
3	1204	1260	0.07	0.02

Applicability

- Potential for pre-tactical demand forecast
- Range of applicability needs to be clearly identified:
 - Training data requirements
 - Prediction error measurement
 - Generalisation to other ODs

Future Research Directions

- Better explanatory variables
 - Other indicators
 - Congestion as a function of time
 - Other flight inputs: wind, type of regulation, route availability...
- Training with several years' data
- Continuous training/prediction (automatic adaptive training data)
- Combination with model-based approaches (cost optimisation)

SIDs, Beograd, 29th November 2017 Combining Visual Analytics and Machine Learning for Route Choice Prediction Application to Pre-Tactical Traffic Forecast

Thank you very much for your attention!

