Hub operations: delay recovery based on cost optimisation
- dynamic cost indexing and waiting for passengers strategies

L. Delgado, J. Martín, A. Blanch and S. Cristóbal

Dr Luis Delgado
Senior Research Fellow
University of Westminster
Innaxis Foundation & Research Institute
Overview

• Background and objectives
• Model description
• Datasets
• Case of study
• Results
• Conclusions and next steps
Background and objectives
Background and objectives

Dynamic cost indexing

outbound arrival delay

CI_{\text{max}} CI_{\text{min}}

EI BT_0\rightarrow MCT\rightarrow\text{connecting buffer}\rightarrow\text{departing delay}\rightarrow EOB T_0

Wait for passengers

MCT \rightarrow \text{missed connection}
Background and objectives
Background and objectives

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10h00</td>
</tr>
<tr>
<td>2</td>
<td>10h03</td>
</tr>
<tr>
<td>4</td>
<td>10h09</td>
</tr>
<tr>
<td>5</td>
<td>10h12</td>
</tr>
</tbody>
</table>

AMAN (EPTI – 1h)
Slots available
negotiation
delay

AOC

DCI

WFP

Delay

University of Westminster
Innaxis Foundation & Research Institute
Background and objectives

• Model operations at a hub allowing two strategies
 – Dynamic cost indexing (DCI)
 – Wait-for-passengers (WFP)

• Analyse effect of these strategies considering
 – Delay and uncertainty at different phases
 – DCI for inbound and outbound flights at TOC
 – E-AMAN with slot negotiation capabilities
Model description
Model description

- Agent Based Model
Costs computation

Fuel costs

Non-pax costs

Maintenance

Crew

Delay costs

Pax costs

Hard

Soft

Provision

Compensation

Transfer

Primary

Rotary
Cost computation

Fuel costs

Delay costs

Non-pax costs

Pax costs

Maintenance

Crew

Hard

Soft

Provision

Compensation

Transfer

Primary

Rotary
Costs computation

Fuel costs

- Based on BADA 4
 (4th degree polynomial fitting)
 - Ac model
 - Considering FP length
 - Flight level based on historical analysis
 - Reference speed for the aircraft from BADA
 - Mmin and Mmax (load factor 1.3g)
 - Estimation of reference weight considering specific range consumption
Cost are estimated following a normal probability distribution as a function of MTOW.

- Maintenance
 - At gate
 - Taxi
 - En-route
 - Arrival

- Crew
Costs computation

- Based on departure or connection delay
- Consider ticket and airline type

<table>
<thead>
<tr>
<th>AO (ticket)</th>
<th>Cost applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSC (flexible)</td>
<td>Average of high & base</td>
</tr>
<tr>
<td>FSC (inflexible)</td>
<td>Base</td>
</tr>
<tr>
<td>REG, LCC, CHT</td>
<td>Average of low & base</td>
</tr>
</tbody>
</table>

Delay costs

Pax costs

Hard

Soft

Provision

Compensation

Transfer

Primary

Rotary

Based on departure or connection delay
Consider ticket and airline type
Costs computation

- Based on arrival delay
- Based on Reg. 261 (distance and delay)
- Only percentage of passengers claim

Delay costs

Pax costs

- Hard
- Soft

Provision

Compensation

Transfer

Primary

Rotary
Costs computation

- Based on ticket type
- Consider airline and alliances

Delay costs

Pax costs

Hard

Soft

Provision

Compensation

Transfer

Primary

Rotary
Based on arrival delay
Consider propagation of delay from outbound with 30 minutes buffer
Metrics

• 140 indicators per flight (e.g. selected speed)
• 22 performance indicators (e.g. flight departure delay)
 – Delay (flight and passenger)
 – Costs
 – Efficiency
• Aggregators (e.g. average, count, percentile 90)
• Restrictors (e.g. all flights, only FSC)
• Total of 381 metrics
• 50 simulations per scenario
Datasets
Datasets

- **Traffic data**
 - Flight schedules from PRI SME
 - Flight trajectory and phases based on so6 data file
 - Nominal speed from BADA (adjusted for short flights)
 - Passenger itineraries from anonymised airport data
 - Taxi time estimations
 - Average ground speed to estimate wind

676 flights (336 inbound, 340 outbounds)

61,446 pax itineraries (11,570 connecting (18.9%))
Datasets

• Taxi times estimation
 – Planning stage
 – Execution stage
Datasets

- Taxi times estimation
 - CFMU
 - Schedules and planned flight plans
 - Reported at post-operation

![Diagram showing taxi times estimation process]

- Estimated Taxi out
- Flight plan take-off time
- EOBT

- Taxi in + buffer
- Flight plan landing time
- EIBT

- Average CFMU taxi in error
Datasets

- **Buffers**
 - Schedules
 - Minimum turn around time

Arrival buffer

Turnaround buffer
Datasets

- Average cruise wind estimation
Datasets

- Difference between cruise DCI and speed variation

(a) Full trajectory modified

(b) FL maintained

Cost index variation effect

Estimated from Airbus Performance Engineering Program
Datasets

- Uncertainties

Analysis of a year of traffic to-from the hub (AIRAC 1313-1413)

Normal distribution around reported values
Datasets

- Delay
 - CODA data
 - Select 25 and 75 quartile to define low, medium and high delay days
 - Outbound flights delay reduced considering reactionary delay (codes 91-96)
 - Consider release of delay information to AOC

Burr distribution fitting
Case of study
Case of study

- Strategies
 - Baseline
 - Flights with delay > 15 minutes → 10% probability recover up to remaining 5 minutes
 - Outbound → wait-for-passengers if inbound recovering and waiting time required < 20 minutes
 - Optimised
 - Delay recovered and wait-for-passenger based on estimated cost
Case of study

• Parameters
 – Delay
 • Nominal
 • High
 – Fuel
 • Nominal (0.5 EUR/kg)
 • High (0.8 EUR/kg)
 – Passenger compensation uptake
 • Nominal (11%)
 • High (50%)
Results
Results

• Number of missed connections at the hub

Reduction between 14.4% and 17.5%
Results

- Gate-to-gate trip time (min)

Increases by around 1.1%
Results

• Gate-to-gate trip time (min)

- Decreases by around 0.6-0.8%
- Increases by around 0.4%
Results

- Wait for passengers performances

- Increases by around 30 acc 3% to 12% of all outbound
 Increases by around 7 mins
Results

• DCI performances at TOC

- Increases more when delay is high
 Impact of fuel

- Decreases
 Effect of fuel cost
Results

- AMAN performances

Average delay (min)
Fuel is saved
More on high fuel

Average extra fuel consumption (kg)
More delay is generated
Fuel is saved
More on high fuel
Conclusions
Conclusions

• Hub operations modelled considering
 – Dynamic cost indexing
 – Wait-for-passengers rules
 – E-AMAN with collaborative decision making to select slots
 – Passengers’ gate-to-gate times
 – Costs: fuel, delay, passengers (hard and soft)

• Collaborative strategy computation

• Passenger-centric metrics
Conclusions

• Dynamic cost indexing
 – High number of flights decide to apply speed variations
 – Increment in speed is small (around 4%)
 – Sensitive to fuel cost
 • Higher fuel cost reduces flights increasing speed by 30-35%
 and selected speed by 5-7%
 – Delay recovered is small and adsorbed by E-AMAN

• Wait-for-passengers
 – Number of flights waiting increases from around 10 to around 45
 – Average waiting time increases from around 7 min to 13-14 min
Conclusions

• E-AMAN
 – Trade delay for fuel: consideration of connections at that point
 – Higher fuel cost leads to more delay and more fuel saving
 • Voluntary selection of later slot
 – Sensitive to original delay
Conclusions

• Costs
 – Airline costs reduced by around 0.7%

• Delay
 – Gate-to-gate time increased by around 1.1%
 – Tradeoff between type of passengers
 – Reduction of missed connections (14.4-17.5%)
 – Waiting time for passengers at airport decreases (around 1.6%)
 – Sensitive to passenger claiming ratio (missed connections reduced by 8.5-15%)
Next steps
Next steps

- Airport selection

![Map of Europe with airport locations]

AIRAC 1313 to AIRAC 1413
Next steps

- Airport selection
- Analysis expected and actual costs
Next steps

- Airport selection
- Analysis expected and actual costs
- Sensitivity and stability go the solutions to input variables
- E-AMAN radius
- Feedback to inbound flights when outbound are modified
- Differentiation of airline behaviours
- Learning techniques
Thank you